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The Challenge of  iSPIED: intelligence 
Sense-making to Prognosticate IEDs

Kevin Burns
(The MITRE Corporation, USA)

Abstract

Sense-making is a cognitive component of  command and control, in 
which analytical inferences are made to support operational decisions. 
This article examines a prototypical problem in intelligence analysis 
and addresses the challenge from a psychological perspective. The prob-
lem, dubbed iSPIED (intelligence Sense-making to Prognosticate IEDs), 
reflects a vexing mission of  counterinsurgency in Afghanistan, Iraq, and 
elsewhere in the world. The thesis is that a scientific understanding of  
sense-making, in countering IEDs or any other threat, requires research 
grounded in Bayesian theory and formal testing. The result is a design for 
experimental game tasks, including computational metrics that measure 
cognitive biases relative to normative standards. The experimental design 
distinguishes between different dimensions of  sense-making, including 
learning, inference, and choices. The computational metrics are derived 
from information theory, using entropy to measure bias. Taken together, 
the design and metrics of  iSPIED enable rigorous experiments on cogni-
tive limitations, such as conservatism and confirmation bias, to inform the 
development of  advanced tools and techniques for intelligence analysis.
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Introduction

Operational Context

Improvised Explosive Devices (IEDs): “...continue for the foreseeable future 
to be the weapon of  choice for the world’s terrorists, insurgents, militias, guerillas, 
revolutionaries, and marginal or failed states” (Zorpette 2008). Billions of  
dollars have been spent on technological solutions, including better 
armor and trigger-jamming devices, but with limited success. As a 
result, the Joint Improvised Explosive Device Defeat Organization 
(JIEDDO) advocates an approach that includes analytical advance-
ments: “combining an understanding of  the psychology and sociology of  terrorist 
networks with probabilistic modeling, complexity theory, forensic science, pattern 
recognition, and data mining to predict human behavior...” (Zorpette 2008). 

For example, an approach known as Technosocial Predictive 
Analytics (AAAI 2009) models the physical and behavioral activities 
by which IEDs are developed, implanted, and detonated by insur-
gents. This is done using techniques of  quantitative risk assessment 
(Garrick et al. 2004), to enumerate scenarios and estimate their prob-
abilities and consequences (Apostolakis 1990; Kaplan and Garrick 
1980). Often the analyses employ Bayesian Networks (Pearl 2000), 
which have been demonstrated in principle (Whitney et al. 2009) as 
being useful for intelligence analysis.

But in practice these predictive methods are limited because the 
Bayesian Networks require tens or hundreds of  probabilities as 
input, from humans who are biased in various ways (Edwards et al. 
1968; Heuer 1999; Kahneman, Slovic, and Tversky 1982; Gilovich, 
Griffin, and Kahneman 2002). Thus ironically, the Bayesian tech-
niques and tools that have been developed to support human cog-
nition are limited by the same cognitive biases that these methods 
were developed to overcome in the first place. The biases are still not 
well understood, although they were recognized half  a century ago 



BURNS | The Challenge of  iSPIED       3

in the work of  Edwards and Phillips (1964) on “Man as transducer for 
probabilities in Bayesian command and control systems.” As a result, intel-
ligence analysis continues to be limited by cognitive sense-making.

Conceptual Frameworks

Sense-making is central to command and control in countering IEDs 
(Zorpette 2008), Weapons of  Mass Destruction (US Commission on 
the Prevention of  WMD Proliferation and Terrorism 2008), and 
other threats for which indications and warnings intelligence must 
anticipate surprise (Grabo 2004). The term “sense-making” itself  
highlights the psychological and social dimensions of  command and 
control (Leedom 2004), which are distinguished from the informa-
tional and physical challenges of  planning and execution. According 
to Alberts and Hayes (2006), situation awareness is the primary com-
ponent of  sense-making, and according to Endsley (1988), situation 
awareness is “the perception of  the elements in the environment within a volume 
of  space and time, the comprehension of  their meaning and projection of  status in 
the near future.” Alberts and Hayes (2006) also note that command and 
control involve sharing of  situation awareness, as well as sharing of  
commanders’ intent, in order to achieve desired effects. But before 
understanding of  a situation can be shared between minds, socially, 
it must first occur within minds, psychologically. 

According to Klein et al. (2007), sense-making involves “reasoning 
to the best hypothesis” as follows: “d is a collection of  data. H [hypothesis] 
explains d. No other hypothesis can explain d as well as H does. Therefore, H 
is probably true.” But this does not mean that sense-making is only 
a forensic process, because hypotheses are often concerned with 
what might occur in the future based on evidence from the past. 
Indeed the prognostic dimension of  sense-making, which corre-
sponds to Endsley’s (1988) notion of  projection in situation aware-
ness, is especially important for meeting the distributed and dynamic 
challenges of  network centric command and control (Smith 2008; 
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Alberts, Garstka, and Stein 1999). Also important is the probabilis-
tic dimension of  sense-making, i.e., to establish which H “is probably 
true.” 

Conceptual frameworks like the above, although helpful, are not 
enough to understand and integrate psychological judgments and 
computational models in sense-making. A more formal approach 
would use Bayesian methods to model cognitive sense-making—and 
thereby gain a deeper understanding of  where humans fall short 
and where humans excel. That approach has been demonstrated 
for a case study of  human error in command and control (Burns 
2005b), and a similar approach will be applied here to analytical 
tasks involved in countering IEDs. 

Analytical Gaming

Serious games (Abt 1987) are often played to improve command and 
control, sometimes with computerized representations of  the physi-
cal, informational, and social domains. But most of  these war games 
are designed for operational exercises rather than analytical exer-
cises (Ambrose and Ahern 2008; Powers, Stech, and Burns 2010). 
Also most war games are exercises rather than controlled experi-
ments, and are not intended or instrumented for measuring the cog-
nitive components of  command and control.

More rigorous are the lab games used in psychological experiments, 
such as the Iowa Gambling Task (IGT, see Bechara et al. 1997). IGT 
is played with four decks of  special cards indicating dollar amounts. 
The decks are face down and the player must make repeated choices, 
turning the top card of  any deck he/she chooses on each trial. A 
card, when turned, provides a win amount but also incurs a loss 
amount at probability P. The win/loss amounts and loss probability 
P are different for each deck, and must be learned by a player as he/
she tries to earn the most from repeated choices. By analogy, the 
player can be likened to a commander who repeatedly sends troops 
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along one of  four roads, e.g., to deliver supplies (a win), where each 
road poses risks of  injuries (a loss) from IEDs. Over time, the loss 
probability P is learned (Burns and Demaree 2009) for each course 
of  action (i.e., choice of  an option). Thus there is some similarity, 
from a cognitive perspective, between playing the IGT and dealing 
with IEDs.

But what makes these two tasks very different, besides the obvious 
difference in stakes, is that all knowledge in IGT comes via episodic 
learning from personal experience based on choices—also known as 
“reinforcement learning” (Doll et al. 2009). In the real-world of  com-
mand and control, operational knowledge typically comes from intel-
ligence sources rather than personal experience, e.g., from reports of  
significant activities (SIGACTS) that provide historical data on IED 
attacks of  various types, on various roads, at various times, by vari-
ous groups, etc. Also, an analyst’s challenge is not so much to learn 
and remember all the instances of  single-source evidence—but rather to 
obtain and exploit diverse sources of  intelligence, and thereby infer 
the chances for IED attacks of  various types, on various roads, at 
various times, by various groups, etc. In short, a more relevant game 
task for intelligence sense-making would pose problems of  probabilis-
tic inference from multi-source evidence.

Mathematical Theory

Inferential Problem

The simplest case of  probabilistic inference from multi-source evi-
dence, in H-from-d fashion, would involve only two sources of  evi-
dence (d1 and d2) and two hypotheses (H1 and H2). The prototypical 
problem of  sense-making is to infer the probabilities (P) of  hypoth-
eses (H1 and H2) in light of  evidence (d1 and d2), i.e., to determine 
which H is most probably true. More complex cases would involve 
more data and hypotheses, but the underlying mathematics are 
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much the same. Here the normative-mathematical approach to solv-
ing this problem, known as Bayesian inference (Burns 2005b; 2007), 
is applied to the cognitive-experimental design of  a new game, 
iSPIED: intelligence Sense-making to Prognosticate IEDs. 

In iSPIED, the intelligence analyst’s area of  interest has North, 
South, East, and West (N, S, E, and W) roads on which IED attacks 
can occur, akin to the four decks of  cards in IGT. Mathematically, 
these are four hypotheses (H). The multi-source evidence (d) includes 
baseline intelligence (e.g., from SIGACTS), called baseint, and image 
intelligence, called imint. Importantly, both baseint and imint must 
be expressed probabilistically for the analyst to infer which H is most 
probably true. For example, if  imint showed that activity was high-
est on road N, then this might suggest an IED attack is most likely 
to occur on road N. But without numerical likelihoods provided by 
imint (and baseint), an analyst would have to make assumptions 
about likelihoods in order to infer the probabilities of  various H 
given evidence d. 

In short, either the data must include likelihoods, or else the ana-
lyst must be asked to provide his/her assumed likelihoods, because 
likelihoods are needed to infer the probabilities of  hypotheses from 
data. Here we focus on the case where players are given baseint and 
imint in the form of  likelihoods. Subsequent experiments might use 
iSPIED to measure players’ assumptions about likelihoods, using 
data provided in various forms that do not specify likelihoods— 
and then measure players’ multi-source inferences based on their 
assumptions. But the assumptions are expected to vary widely among 
people, so a more controlled approach is adopted here to ensure that 
all participants in experiments have and use the same likelihoods as 
input to sense-making.

The likelihoods provided to the player are relative likelihoods of  IED 
attack on each road, i.e., they are probabilities that sum to 100% 
across the four roads. Each likelihood distribution, across the four 
roads, is based on a single source of  intelligence assuming that it is 
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the only source of  intelligence. For example, in iSPIED the baseint 
(b) likelihoods are based on IED attacks that have been reported in 
SIGACTS intelligence, whereas the imint (i) likelihoods are based 
on suspicious actions that have been observed from image intelli-
gence. These two sources of  intelligence are independent, and in 
iSPIED the analyst is also informed that the two sources are equally 
credible. The analyst’s task is to combine the two likelihood distribu-
tions in order to infer the relative likelihood of  IED attack on each 
road H (i.e., N, S, E, W) given both sources of  data d (i.e., b and i).

The mathematical method for combining likelihoods is given by 
Bayes Rule, which expresses how a prior probability distribution P(H) 
should be updated using a likelihood distribution p(d|H) to com-
pute a posterior probability distribution P(H|d). The equation can be 
derived from a law of  probabilities, written as follows:

 P(H,d) = P(d) * P(H|d) = P(H) * P(d|H) = P(d,H)

where d is data (i.e., from baseint b or imint i) and H is a hypothesis 
(i.e., N, S, E, or W). Rearranging the middle equality yields Bayes 
Rule, typically written as follows:

 P(H|d) = P(H) * P(d|H) / P(d)

where P(d) is a normalizing factor given by the sum of  terms P(H) * 
P(d|H) over all H in the frame of  discernment. In our case, where 
the frame of  discernment is {N, S, E, W}, we have:

 P(d) = P(N) * P(d|N) + P(S) * P(d|S) + P(E) * P(d|E) + P(W) 
* P(d|W)

where d denotes either baseint (b) or imint (i).

Thus, in effect, Bayes Rule can be seen as a way to transform prob-
abilities of  the form P(d|H) into probabilities of  the form P(H|d), 
using prior knowledge (before getting data d) about P(H). In the 
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special case where one has no prior knowledge, sometimes called an 
uninformative prior, we have P(N) = P(S) = P(E) = P(W) = 0.25 in 
our frame of  discernment {N, S, E, W}. In this special case, Bayes 
Rule can be written as follows: P(H|d) = P(d|H) / P(d|N) + P(d|S) 
+ P(d|E) + P(d|W). 

As noted earlier, in iSPIED each individual source of  intelligence 
(baseint b or imint i) provides a likelihood distribution P(d|H) across 
the four hypotheses (N, S, E, W) assuming that d is the only source, 
which implies a non-informative prior distribution. This allows us to 
express the likelihoods as relative likelihoods for hypotheses (H) given 
data (d), P(H|d), obtained from P(d|H) by dividing each P(d|H) by 
the sum P(d|N) + P(d|S) + P(d|E) + P(d|W), as shown above.

These relative likelihoods P(H|d), which are normalized to 100%, 
are provided as the input to sense-making in iSPIED for three 
reasons. First, normalized probabilities are what iSPIED requires 
the player to report as output, so it is logical to provide normal-
ized probabilities as input for consistency. Second, a single-source 
analyst considering multiple hypotheses to explain just one source 
of  evidence would typically report the relative likelihood of  each 
hypothesis given that evidence d, i.e., P(H|d). This in turn would 
be the input to multi-source inferences, as in iSPIED. Finally, cogni-
tive research (Burns 2006) has found that people naturally think in 
terms of  P(H|d) rather than P(d|H) when faced with the problem 
of  inferring probabilities of  hypotheses (H) from data (d). In iSPIED 
we wish to present likelihoods in a manner that is as logical and 
typical and natural as possible, to focus on biases in inference rather 
than biases stemming from the format of  input. However one task 
of  iSPIED is designed to measure how cognitive biases may differ 
when likelihoods are instead presented in the form P(d|H), see Task 
5 below.

Now given relative likelihoods of  the form P(H|d) as input, the 
normative process for combining the likelihoods from baseint and 
imint is again given by Bayes Rule. More specifically, taking the 
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normalized likelihoods P(H|b) for baseint as the prior distribution, 
the likelihoods P(i|H) for imint can be used to compute the posterior 
combination of  baseint and imint as follows:

 P(H|b,i) = P(H|b) * P(i|H) / P(i)

where the denominator P(i) is a normalizing factor given by P(N|b) * 
P(i|N) + P(S|b) * P(i|S) + P(E|b) * P(i|E) + P(W|b) * P(i|W). 

Finally, notice that the same result is obtained if  likelihoods of  the 
form P(i|H) are replaced by relative (normalized) likelihoods of  the 
form P(H|i), which is the form in which likelihoods are provided as 
input to iSPIED (as discussed above). Therefore we can write the 
equation for Bayesian inference from baseint and imint as follows:

 P(H|b,i) = P(H|b) * P(H|i) /  

where H = N, S, E, or W and   = P(N|b) * P(N|i) + P(S|b) * P(S|i) 
+ P(E|b) * P(E|i) + P(W|b) * P(W|i).

In words, the Bayesian aggregation of  normalized likelihood distri-
butions P(H|b) and P(H|i) is obtained as the normalized product of  
these two distributions: P(H|b) * P(H|i) / . Notice that the product 
is the same, regardless of  whether baseint or imint is treated as the 
prior.

Psychological Bias

Given the simplicity of  the final equation above, one might expect 
that human beings would be fairly adept at aggregating likelihoods 
in tasks of  Bayesian inference. But in fact research has shown that 
people exhibit significant biases, even when the task involves only 
two hypotheses (Burns 2007), let alone for the more complex case of  
four hypotheses. For example, in various effects known as Base Rate 
Neglect (Tversky and Kahneman 1982), Representativeness (Tversky 
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and Kahneman 1974), Availability (Tversky and Kahneman 1974), 
and Vividness (Heuer 1999), the first source (baseint) might be dis-
counted or ignored such that the analyst’s judgment is biased toward 
the second source (imint). Conversely, in other effects known as 
Anchoring and Adjustment (Tversky and Kahneman 1974) and Persistence 
of  Impressions (Heuer 1999), the second source (imint) might be dis-
counted or ignored such that the analyst’s judgment is biased toward 
the first source (baseint). 

Similarly, in Confirmation Bias (Lehner et al. 2009; Lehner et al. 2008; 
Davis 2008; Burns 2005b; Heuer 1999; Klayman and Ha 1987; 
Fischhoff  and Beyth-Marom 1983) an analyst might give more 
weight to the most likely hypothesis either within the baseint, and/
or within the imint, and/or within their product, causing high prob-
abilities to be overestimated and low probabilities to be underesti-
mated. Conversely, in an opposite bias known as Conservatism, the 
analyst’s posterior might underestimate high probabilities and over-
estimate low probabilities, thereby failing to extract all the certainty 
available in the data (Edwards 1982; Edwards et al. 1968; Phillips 
and Edwards 1966; Edwards and Phillips 1964). 

Although all of  these biases have been observed in various experi-
ments, it appears that Conservatism is prevalent in tasks of  probabilistic 
inference from multi-source evidence (Edwards 1982; Burns 2007). This 
has practical implications, because often data are expensive or dan-
gerous to obtain, and in those cases it is vital for analysts to extract 
all the certainty that is warranted. Also of  practical concern is that 
Conservatism is opposite to Confirmation Bias, and Confirmation 
Bias itself  seems to involve at least three component biases that need 
to be distinguished, as discussed further below.

The biases then get even more complex as more data are aggregated. 
In iSPIED an additional source of  data is signal intelligence, called 
sigint, from electronic surveillance of  cell phones and other devices 
used by enemies to coordinate actions and detonate IEDs. This actu-
ally poses two challenges for the player of  iSPIED, starting with the 
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choice of  a road on which to collect sigint. The choice is a decision-
making challenge, for which the normative (optimal) solution can be 
computed and compared to cognitive responses. Then, after sigint 
is obtained, the resulting sigint likelihood (s) must be combined with 
the previous aggregation of  baseint and imint (b*i) to get a posterior 
(b*i*s) that combines all the evidence. But notice that even the earlier 
problem of  decision-making requires Bayesian aggregation of  b*i*s 
for two possible likelihood distributions that may be obtained from 
sigint, i.e., if  signals are found or not found. The reason is that the 
optimal decision is to collect sigint on whichever road is projected 
to provide the greatest gain in information, and this depends on the 
expected change from prior (before sigint) to posterior (after sigint) 
considering both possibilities (signals found or not found).

To aggregate b*i*s, or any other number of  likelihood distributions, 
Bayes Rule is applied recursively. In the case of  three likelihood dis-
tributions (b, i, s): First combine baseint and imint (b*i) as discussed 
above to obtain {P(N|b,i), P(S|b,i), P(E|b,i), P(W|b,i)}. Then, treat-
ing this posterior distribution as the new prior distribution, combine 
it with sigint (s) to compute a new posterior distribution {P(N|b,i,s), 
P(S|b,i,s), P(E|b,i,s), P(W|b,i,s)}, which is the optimal aggregation 
of  baseint, imint, and sigint.

The various biases noted above may be amplified as the number 
of  data sources is increased to three or more. Biases may also be 
affected by the order and/or timing and/or format in which data are 
given, as all of  these factors vary in real-world situations. But cogni-
tive biases are not well understood even for the simplest case of  com-
bining two sources in a single stage. Also not well understood is how 
humans acquire individual likelihoods in the first place. Therefore 
iSPIED presents a series of  learning, inference, and choice tasks that 
become progressively more complex, as shown in Table 1. 
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Experimental Design

Prototypical Functions

Formal techniques of  Cognitive Task Analysis (Bonaceto and Burns 
2007; Crandall, Klein, and Hoffman 2006) have been used to per-
form descriptive studies of  sense-making (Pirolli and Card 2005), 
including “What makes intelligence analysis difficult?” (Hutchins, Pirolli, 
and Card 2007). Similar techniques, including functional decom-
positions (Elm et al., 2003; Means and Burns 2005), have also been 
used to design serious games that pose prototypical challenges of  
command and control (Burns 2005a). 

For example, the design of  “Pared-down Poker” (Burns 2010) cap-
tures a key distinction in command and control (Mandeles, Hone, 
and Terry 1996) between analytical inferences about situations and 
operational investments in courses of  action. The former are a chal-
lenge of  sense-making and the latter are a problem of  decision-
making. In the case of  iSPIED, we are primarily interested in sense-
making (see Tasks 1-5 below), but ultimately this sense-making is 
performed to support decision-making, and often decisions must be 
made in the process of  sense-making. Thus one task of  iSPIED (see 
Task 4 below) requires that the analyst make decisions about where 
to collect additional intelligence (Pirolli 2007).

Besides the basic difference between sense-making and decision-
making, there are functional distinctions to be made between foren-
sic (backward) inference and prognostic (forward) inference. Also 
important are  distinctions discussed earlier between episodic learn-
ing from single-source evidence versus probabilistic inference from 
multi-source evidence, as well as differences between learning of  
causes and effects versus learning of  effects only. These distinctions 
define different dimensions of  sense-making, in five tasks of  iSPIED, 
as outlined in Table 1 and described further below.
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Table 1. Cognitive challenges of  sense-making, posed by prototypi-
cal tasks of  iSPIED. Each task is distinguished from the previous 
task along one dimension (in a column) of  interest.

Task 1 Episodic learning of effects Prognostic Sense-making 

Task 2 Episodic learning of causes and effects Prognostic Sense-making 

Task 3 Probabilistic inference Prognostic Sense-making 

Task 4 Probabilistic inference Prognostic Sense-making and Decision-making 

Task 5 Probabilistic inference Forensic Sense-making 

Task 1 is a simple task of  episodic learning, similar to classic 
experiments on statistical learning discussed earlier. The stimuli are 
instances of  IED attacks on four roads, with attacks presented one at 
a time on a graphic display. The player’s response, at regular inter-
vals (e.g., once every 20 trials in a task of  100 trials), is a judgment 
of  IED attack probability on each road. This response is measured 
with a Graphical User Interface (GUI), see Figure 1, which displays 
probabilistic judgments in a layout similar to the simple map of  four 
roads on which episodic data are presented. For consistency, the 
same GUI is used to collect probabilistic judgments on all five tasks 
of  iSPIED. Task 1 is useful for measuring biases of  memory and 
recall, such as Vividness and Representativeness, in episodic learning of  
likelihoods.
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Figure 1. Graphical User Interface (GUI) for collecting human judg-
ments in iSPIED experiments. Each box represents a road (North, 
South, East, West). Judgments are relative likelihoods of  IED 
attacks, i.e., probabilities that sum to 100%. Judgments are entered 
numerically, with up and down arrows, and also displayed graphi-
cally, as levels in boxes.

Task 2 is a slightly more complex task where the stimuli include both 
cause and effect. The effects are IED attacks observed on roads, like 
Task 1, but each report of  attack also specifies the group (A, B, C, D) 
that caused the attack. Like Task 1, the player’s response is measured 
at regular intervals (e.g., once every 100 trials in a task of  300 trials). 
Unlike Task 1, the player must report not only the probability of  
IED attack for each road (N, S, E, W) but also the conditional prob-
ability of  attack by each group (A, B, C, D) on each road. This task 
is useful for measuring how well players internalize statistical data 
in a hierarchical structure (Kemp and Tenenbaum 2008; Burns and 
Demaree 2011) of  cause and effect.  
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Task 3 is a task of  probabilistic inference, as opposed to episodic 
learning in Tasks 1 and 2. This is the central challenge of  H-from-d 
sense-making, which Task 3 poses using four hypotheses and two 
sources of  data. The four hypotheses are roads (N, S, E, W) and the 
two sources of  data are baseint and imint. The stimuli are indica-
tions of  likelihoods, presented on a graphic display like that used in 
Tasks 1 and 2. The difference is that here the player is presented with 
probabilistic evidence (graphically and numerically) rather than epi-
sodic instances (graphically and sequentially), and the data are from 
two independent sources. The task is to combine the likelihoods and 
report the probability of  IED attack on each road. This task will 
measure biases in Bayesian inference, especially Conservatism and 
Confirmation Bias, but also Base Rate Neglect, Representativeness, Availability, 
Vividness, Anchoring and Adjustment, and Persistence of  Impressions.

Task 4 is similar to Task 3, but provides one more source of  data 
and requires decision-making as well as sense-making. The addi-
tional data comes from sigint, and the decision is to choose one road 
(N, S, E, or W) on which to collect sigint. The player must then use 
the sigint data to update his/her previous judgment from baseint * 
imint, and report the resulting probability of  IED attack on each 
road. By presenting three sources of  data in a two-stage process, 
Task 4 will enable further testing of  all the same biases noted under 
Task 3 but extended in a temporal dimension. The decisions in Task 
4 will also allow for testing of  biases in seeking information. This 
will help establish if  Confirmation Bias lies in the weighing of  likeli-
hoods as they are combined to make inferences, and/or the seeking of  
evidence to support a favored hypothesis. The term “Confirmation 
Bias” is typically used for both of  these component biases. Task 4 
includes the seeking dimension as well as the weighing dimension, 
for comparison to Task 3, which includes only the weighing dimen-
sion. Also, even the various components of  weighing are not clear, 
as weighing may arise from episodic learning of  evidence or probabi-
listic inference from evidence. Tasks 2 and 3 each focus on a different 
dimension of  sense-making, to help establish the relative roles of  
bias in learning (Task 2) versus bias in inference (Task 3).
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Task 5 is a challenge of  forensic sense-making about cause and effect. 
Task 5 presents input likelihoods in the form P(d|H), unlike Tasks 3-4 
where likelihoods were presented in the form P(H|d). As discussed 
above under Inferential Problem, both forms are of  interest from a psy-
chological perspective although the two forms are equivalent (in the 
case of  iSPIED) from a mathematical perspective. Here the player is 
presented with three independent likelihood distributions, regarding 
the size of  bomb (small or large), time of  day (am or pm), and place 
on road (left or right) of  IED attack. The task is to infer the group 
that most likely caused the attack, and to report probabilities for 
each group: P(A), P(B), P(C), and P(D). The inputs are given as likeli-
hoods of  effect given cause, e.g., P(size|group), P(time|group), and 
P(place|group), hence the likelihoods sum to 100% differently than 
for evidence provided in Tasks 3-4. For example, in Task 5 the likeli-
hoods for P(large|group) might be P(large|A) = 40%, P(large|B) = 
20%, P(large|C) = 60%, and P(large|D) = 80%, whereas the likeli-
hoods for P(small|group) might be P(small|A) = 60%, P(small|B) = 
80%, P(small|C) = 40%, and P(small|D) = 20%. These likelihoods 
of  the form P(d|H) sum to 100% across each group (H), because all 
attacks by a given group are either small or large. Thus when told 
that the IED was small, a player will receive evidence in the form 
of  likelihoods that do not sum to 100%, e.g., for a “small” IED the 
likelihoods would be {60%, 80%, 40%, 20%} for groups {A, B, C, 
D}. This is to test if  variations in how the problem is formulated and 
data are presented will affect cognitive biases, compared to Tasks 
3 and 4. In another manipulation, some trials of  Task 5 present 
size/time/place likelihoods sequentially in three stages (like the two 
stages of  Task 4), whereas other trials of  Task 5 present the identical 
likelihoods simultaneously. This is to test for biases in attention and 
limits of  working memory, which may also impact sense-making. 
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Initial Focus

As described above, the five tasks of  iSPIED serve to focus initial 
experiments and analyses on a fundamental understanding of  sense-
making. But this initial focus is not meant to ignore issues that will 
clearly require further research on more complex tasks. For example, 
notice that the output of  Task 5 is like the input to Task 2, i.e., it is a 
report of  the group that caused the IED attack, except that the out-
put of  Task 5 is a probabilistic report whereas the input to Task 2 is 
a deterministic report. A probabilistic report is more representative of  
real-world intelligence, where causes are often not known for certain 
—such that evidence itself  is a hypothesis. Future experiments might 
use iSPIED to study this problem, which reflects the hierarchical 
nature of  real-world intelligence where evidence at one level is a 
hypothesis at a deeper level (Burns 2005b). The problem is of  special 
concern for team sense-making in collaborative intelligence, where 
the hypotheses of  one analyst in the hierarchy serve as evidence for 
other analysts up the chain. 

The iSPIED tasks are also simplified in another important respect—
i.e., the frame of  discernment (Burns 2005b) for H-from-d sense-
making is given to the sense-maker in the form of  hypotheses, data, 
and associated likelihoods. As noted earlier, real-world situations 
often do not provide likelihoods directly, and in that case any infer-
ence will depend on the analyst’s assumptions about likelihoods for 
various data in light of  various hypotheses. Moreover, and not 
discussed above, a key task of  real-world sense-making is abduction 
(Klein et al. 2007; Thagard 2007; Peirce 1903) to establish the set of  
hypotheses in the first place—i.e., to create a frame of  discernment 
in which likelihoods can be used to make inferences. 

Errors in sense-making may arise from failure to consider a com-
prehensive set of  hypotheses (Heuer 1999), including the hypothesis 
that sources of  data may be deceptive (Stech and Elsässer 2004). 
Also humans often employ analogies and other abstractions, in the 
abductions and assumptions that frame their inferences. The present 
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treatment of  these matters in iSPIED has been purposely simpli-
fied, not to diminish their importance, but rather to enable rigorous 
scientific research on analytic inferences in initial experiments that 
control for abductions and assumptions. 

Computational Metrics

The five tasks of  iSPIED have been programmed in Java software, 
and human experiments have been performed in a laboratory 
instrumented for psychological testing. The detailed results of  these 
experiments will be reported elsewhere (see Burns and Demaree 
2011). But here it is useful to derive the computational metrics that 
are needed for the analysis of  experimental data and assessment of  
psychological biases.

The results of  experiments and analysis with iSPIED are cogni-
tive-subjective probabilities and normative-objective probabilities, 
where the latter provide the standard for benchmarking biases in 
the former. Each point of  human data provides a distribution of  
four probabilities that are directly comparable to Bayesian proba-
bilities. Various comparisons of  human-cognitive judgments against 
Bayesian-normative standards can then be made to answer research 
questions, discussed above, about how human inferences are biased 
relative to Bayesian inferences—and how these biases depend on the 
framing of  the problem situation and the nature of  the data that are 
given.

The comparisons require a mathematical measure of  difference 
between cognitive probabilities and normative probabilities. To that 
end, we denote a set of  probabilities as {Pf} = {P1, P2, P3, P4} where 
f  is an index that refers to the number of  hypotheses (H) in the frame 
of  discernment. Sense-making performance can then be measured 
by how much certainty the sense-maker has achieved across the set 
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of  hypotheses {Hf} = {H1, H2, H3, H4}. A formal metric is based 
on the information-theoretic notion of  entropy (Shannon and Weaver 
1949), defined as follows:

 E = – f    Pf  * log2 Pf .

Notice that entropy is highest (E = 2) when {Pf} = {0.25, 0.25, 0.25, 
0.25}, i.e., when all Pf  are equal such that uncertainty across the set 
of  hypotheses is maximal. Conversely, entropy is lowest (E ≈ 0) when 
one Pf  is ≈ 1.0 and all other Pf  in the frame are ≈ 0.0, i.e., when 
uncertainty across the set of  hypotheses is minimal. 

Entropy enables us to quantify the normative (optimal) sense-making 
performance. More specifically we can compute the negentropy (N) of  
{Pf} as N = (Emax – E) / Emax, which ranges from 0% to 100% as E 
ranges from Emax to 0. The normative negentropy (denoted Nn) mea-
sures how much certainty (fraction of  100%) is achieved in optimal 
sense-making, so Nn sets the standard for any other sense-maker. By 
comparison, the cognitive negentropy Nc of  a human sense-maker 
may be more or less than the normative Nn. For example, a human 
with a Conservative Bias will fail to extract all the certainty in the data, 
so Nc < Nn. Conversely, a human with Confirmation Bias will overesti-
mate P for the most likely hypothesis and underestimate P for other 
hypotheses, so Nc > Nn. Thus N offers a useful metric for distinguish-
ing between Conservative Bias and Confirmation Bias, as illustrated in 
Figure 2.  
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Figure 2. 

(a)

(b)

(c)

 (a) Likelihood distributions across four hypotheses for 
baseint, imint, and sigint. (b) Posterior probability distributions 
computed by three models (in three rows) at three stages (in three 
columns) as more evidence is accumulated. (c) Negentropy of  each 
posterior distribution, plotted at three stages (b; b & i; b & i & s) for 
three models: up-pointing triangles are Confirmation Bias; circles 
are unbiased; down-pointing triangles are Conservative Bias.

A related metric goes beyond the absolute entropy of  a probability 
distribution {Pf} to address the relative entropy between two prob-
ability distributions {Pf} and {Q f}. This metric, known as the 
Kullback-Leibler Divergence (Kullback and Leibler 1951), is defined 
as follows:

 Kpq = Epq – Ep = – f    Pf  * log2 Q f   +  f   Pf  * log2 Pf

Here K can be seen as the difference between a cross-entropy and an 
entropy, where Ep is the entropy of  {Pf} and Epq is the cross-entropy 
of  {Pf} and {Q f}. 
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Notice that K is zero when {Pf} = {Q f}, because in that case Epq 
= Ep. Notice also that K increases as the {Pf} and {Q f} distribu-
tions diverge, regardless of  whether Eq is higher or lower than Ep. 
These features make K a useful measure for the overall magnitude 
of  cognitive bias. For example, Kcn between the cognitive human 
and normative standard is a measure of  how far the human devi-
ates from the standard. Therefore, Kcn (or Scn , discussed below) is a 
good way to score how well a person has performed in iSPIED. But 
Kcn itself  does not capture the direction of  bias. For example, both 
a Conservative Bias and Confirmation Bias may lead to the same 
magnitude of  error, hence there is value in also computing negent-
ropy N (discussed above). There is also value in computing other K 
values, for comparison to Kcn , if  a descriptive model of  bias is avail-
able or can be developed.

For example, Kcd between the cognitive human and a descriptive 
model might be compared to two other K values: Kcn between cog-
nitive human and normative model; and Kcu between cognitive 
human and uninformative model. Here an uninformative model 
means a model with maximum entropy: {Pf}u = {0.25, 0.25, 0.25, 
0.25}. The normative model would serve as one null hypothesis (i.e., 
absence of  bias in the probabilities) and the uninformative model 
would serve as another null hypothesis (i.e., absence of  difference in 
the probabilities) for testing how well the descriptive model captures 
cognitive biases.

Finally, it is useful to derive a measure of  similarity (S) that expresses 
divergence on a 0-100% scale, like the 0-100% scale of  negentropy 
N. For example, Scn = 100% would be a perfect match between cog-
nitive sense-making and normative sense-making. Because K is a 
logarithmic measure of  information, an inverse log gives us the fol-
lowing expression for S:

 S  = 100% * 2-K.
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Figures 3 and 4 illustrate two examples, comparing Scn, Scd, and Scu. 
When Scn <  Scd > Scu, as in Figure 3, then the descriptive model is a 
good model because it captures cognitive biases better than a nor-
mative model and better than an uninformative model. When Scn > 
Scd < Scu, as in Figure 4, then the descriptive model is a poor model 
of  cognitive sense-making.

Figure 3. 

(a)

(b)

(c)

 (a) Probability Distribution for Cognitive data. (b) 
Probability Distributions for three models: (n) Normative, (d) 
Descriptive, (u) Uninformative. (c) Similarity (S%) of  Cognitive data 
to three different models: Scn, Scd, Scu . Here the descriptive model is a 
good model because Scn <  Scd > Scu. 
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Figure 4. 

(a)

(b)

(c)

 (Refer to Figure 3) Here the descriptive model is a  poor model 
because Scn >  Scd <  Scu.

As highlighted by Scn, cognitive data from experiments must be mea-
sured with respect to some normative standard in order to establish 
sense-making performance. This is not the same as comparing to 
ground truth, because optimal sense-making can only be as effective 
as the Bayesian inference from available evidence. Similarly, sense-
making cannot be measured simply by comparing a sense-maker’s 
decision to the normative decision in a forced choice task. For exam-
ple, when forced to choose the best road to take (e.g., to avoid IED 
attacks), the resulting choice will tell us very little about the underly-
ing probabilities that are the product of  sense-making and inputs to 
decision-making (Burns and Demaree 2009). Therefore, compared 
to other metrics like ground truth or other methods like forced 
choice, the information-theoretic approach given by N, K, and S 
above offers advantages for measuring and modeling sense-making.
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Practical Insights

The main contribution of  this article is an Experimental Design, along 
with underlying Mathematical Theory and associated Computational 
Metrics. The design, theory, and metrics offer several practical 
insights, especially regarding the importance of  cognitive task distinc-
tions, conditional likelihoods, and measures of  biases.

With respect to cognitive task distinctions, the challenges of  sense-
making have previously been described by others informally in 
Conceptual Frameworks. iSPIED goes further to formally distinguish 
between different functions of  cognition, especially: sense-making 
versus decision-making; prognostic inference versus forensic infer-
ence; and probabilistic inference versus episodic learning. These dis-
tinctions are crucial for rigorous understanding of  cognitive sense-
making and related processes, so that the relevant processes can be 
measured and modeled via psychological experiments and compu-
tational analyses.

With respect to conditional likelihoods, an important insight from 
iSPIED is that any inference (and especially the optimal Bayesian 
aggregation of  likelihoods) requires likelihoods as input in the first 
place. Although this may seem somewhat obvious, the central role 
of  likelihoods has not been recognized in most Conceptual Frameworks 
proposed by others. For example, authors of  the data-frame theory 
acknowledge that the purpose of  sense-making is to infer which “H 
[hypothesis] is probably true” (Klein et al. 2007, 125). But these authors 
never mention likelihoods, and do not address how likelihoods 
would be learned and used to establish which H is probably true, e.g., 
via probabilities in Bayesian inference. Instead they describe a frame 
more vaguely as “an explanatory structure that defines entities by describing 
their relationship to other entities... [which] can take the form of  a story... a 
map... a script... or a plan” (118). The same authors also write that “a 
frame is a structure for accounting for the data and guiding the search for more 
data” (125).
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The design of  iSPIED serves to formalize the various entities dis-
tinguished as hypotheses (H) and evidence (d), and to specify the 
knowledge structures needed for sense-making—which are likelihoods 
of  data (d) given hypotheses (H), i.e., P(d|H). A Bayesian frame-
work specifies how a posterior probability of  the form P(H|d) can 
be obtained by combining a likelihood P(d|H) with a prior P(H), 
and thereby infer which H is most probably true given d. The same 
Bayesian framework also specifies how additional data can be applied 
to update the probabilities of  hypotheses, in multi-source inferences, 
i.e., by recursive application of  Bayes Rule.

In short, data are useful for sense-making only when accompanied 
by the necessary knowledge structures—and the necessary knowl-
edge structures are not stories or maps or scripts or plans but rather 
likelihoods of  the form P(d|H) and P(H|d). Although these likelihoods 
may be implicit in stories or other notions of  frames, the likelihoods 
must be made explicit in any formal account of  sense-making—as 
noted in early research on “Man as Transducer for Probability in Bayesian 
Command and Control Systems” (Edwards and Phillips 1964). In that 
work it was proposed humans could be used to estimate likelihoods 
of  the form P(d|H), but machines would be needed to aggregate 
the likelihoods across multiple data sources to compute P(H|d1,d2, 
d3,...)— i.e., because humans were found to be biased in the aggre-
gation task. 

A key insight from iSPIED is that estimation of  probabilities and 
aggregation of  those probabilities may not be so easily separated, 
even in a simple game let alone the real-world. The reason is that 
both tasks (estimation and aggregation) are governed by cognitive 
heuristics and biases in probabilistic reasoning. Even initial estimates 
of  probabilities (later to be aggregated) often require the combina-
tion of  data presented episodically and/or probabilistically, so an 
integrated approach will be needed to understand the cognitive 
processes and uncover the relevant biases. iSPIED takes a step in 
this direction with a suite of  tasks, including Tasks 1-2 that focus 
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on learning and estimation of  single-source probabilities, as well 
as Tasks 3-5 that focus on inference in aggregation of  multi-source 
probabilities.

The formal framework of  iSPIED can also shed light on the informal 
notion often expressed as “connecting the dots.” This phrase is super-
ficial (see Lowenthal 2008) and perhaps even detrimental because 
it obscures what dots represent and how dots can and should be 
connected. Typically the term “dots” implies only data (d), but in 
iSPIED we see that the dots must include hypotheses H as well as 
data d in order to accomplish H-from-d sense-making. Moreover, 
iSPIED shows that sense-making requires not only d and H but also 
the conditional likelihoods that relate data to hypotheses. 

Recent critiques of  intelligence practices have focused on sharing 
data between (and within) agencies, in the aftermath of  failures like 
those of  9/11, Iraq’s WMDs, etc. Yet the key to effective intelligence 
lies not in sharing data d but rather in knowledge of  likelihoods that 
are needed for H-from-d sense-making. The  relative likelihoods of  
various hypotheses, given a collection of  evidence, can be computed 
only if  likelihoods for each individual datum d and hypothesis H are 
known (and then aggregated). Sharing data is useful only if  the asso-
ciated knowledge of  likelihoods is also shared, or if  receivers of  the 
data are capable of  accurately estimating the likelihoods themselves. 
Bias and errors can arise from sharing data in group sense-making, 
if  the receivers are not able to accurately estimate likelihoods for all 
competing hypotheses that they should consider in their frame of  
discernment (Heuer 1999).

Moving beyond the notion of  dots, a “signal-noise” analogy from 
Signal Detection Theory (SDT) has also been proposed for ana-
lyzing intelligence failures, e.g., in Wohlstetter’s (1962) well-known 
study of  Pearl Harbor. Her claim is that the US was surprised by 
the attack because we failed to identify signals of  impending attack 
in the context of  non-signals (noise). A problem with SDT, however, 
is that it only makes binary distinctions between a signal (H) and 
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non-signals (~H). Even in simple cases and especially in complex 
cases like Pearl Harbor, sense-makers must almost always consider 
more than two hypotheses in their frame of  discernment. For exam-
ple, in the context of  an insurgency in which IEDs are a concern, 
a binary distinction between friendly (H) and not-friendly (~H) will 
fail to distinguish between important classes of  not-friendly popula-
tions, such as neutral versus hostile. 

Finally, with respect to measures of  biases, it is important to acknowl-
edge that retrospective analysis of  any case study will be limited by 
a lack of  details about the actual likelihoods and associated data 
that were available to sense-makers at the time they needed to make 
sense. As such, analysis by anecdote (Medina 2008) using case stud-
ies (Davies 2008) cannot establish the existence of  cognitive biases, 
scientifically, let alone their magnitudes and directions, systemati-
cally. Instead the biases must be measured empirically and modeled 
computationally, using test beds like iSPIED, in order to gain a more 
rigorous understanding of  sense-making. 

This understanding, in turn, is needed to design advanced tools and 
techniques for improving intelligence analysis. Today’s tools for intel-
ligence analysis serve many useful functions, such as searching large 
databases and generating visualizations. But these tools do little to 
address the cognitive challenges of  sense-making, which involve esti-
mating and aggregating likelihoods of  various data d and hypotheses 
H in frames of  discernment. One exception comes from the tech-
nique known as Analysis of  Competing Hypotheses (Heuer 1999), 
and associated tools (Heuer 2008), which are designed to help miti-
gate Confirmation Bias by assessing evidence across a comprehen-
sive frame of  discernment. Another example is the graphic system 
known as Bayesian Boxes, which was developed to improve infer-
ences via “structure mapping” visualizations of  likelihoods, priors, 
and posteriors (Burns 2007; 2006). Additional tools and techniques 
might also be invented and improved, with proper grounding in 
computational theory, psychological models, and empirical testing. 
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Conclusion

This article began by introducing analytical challenges involved in 
countering IEDs, and identified shortcomings in the current state of  
Conceptual Frameworks and Analytical Gaming used to study sense-mak-
ing. The main contributions were then presented in a Mathematical 
Theory addressing Psychological Bias, along with an Experimental Design 
including Computational Metrics for formally assessing the magnitudes 
and directions of  cognitive biases.

The value of  iSPIED lies in its design, theory, and metrics, which 
together are needed to advance a scientific understanding of  sense-
making. This science, in turn, is needed to develop practical applica-
tions in the form of  training and tools that can improve sense-mak-
ing. The problems of  bias in tasks of  Bayesian inference have been 
known for decades, based on basic research (Edwards and Phillips 
1964; Edwards et al. 1968) as well as applied studies (Zlotnick 1970; 
Fisk 1972; Schweitzer 1976). However, recent research on sense-
making has typically been more conceptual (Klein et al. 2007; 
Alberts and Hayes 2006; Leedom 2004; Fishbein and Treverton 
2004; Weick and Sutcliffe 2001) and anecdotal (Davis 2008; Medina 
2008). A computational approach supported by empirical testing, as 
in iSPIED, is needed to deepen our understanding of  sense-making.

A computational approach is especially valuable for bridging the 
gap between machine systems and human users in human-system 
integration. Systems such as Bayesian Networks, discussed in the 
introduction to this article, will be of  limited use unless they are 
designed to work in concert with the humans that might employ 
them. Moreover, cognitive heuristics are often efficient (Gigerenzer 
and Todd 1999), and in that case worthy of  being implemented in 
computer systems that could realize the same efficiencies. But to do 
so, the cognitive heuristics must first be modeled computationally. 
iSPIED provides a test bed for measuring and modeling these heu-
ristics and biases, in sense-making tasks that present cognitive chal-
lenges prototypical of  multi-source intelligence analysis.
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