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Abstract

Tactical combat has been demonstrated to exhibit properties of complex
adaptive systems (CAS).  In this paper, recognizing and exercising some
degree of influence over CAS dynamics is investigated in the context of
command and control (C2).  In particular, approaches to selectively
“drive” a conflict towards more favourable regions of the available phase
space are discussed.  Two features of key importance to such a goal in a
CAS environment are combatant behaviour and measures of effectiveness
that incorporate complex systems factors.  The measures provide a win-
dow into the dynamical progression of the system, while behaviour modi-
fications offer the means to adapt to it.  The interplay between the two
factors comprises the underlying theme of this study.  Candidate measures
of effectiveness in a complex systems environment are discussed, includ-
ing: the fractal dimension, Shannon entropy (Carvalho-Rodrigues and
spatial entropy), the Hurst coefficient, the self-similarity parameter and
symmetropy.  Simulations are used to illustrate how a CAS mindset and
adaptive behaviour can be leveraged to achieve better C2 and improve
(simulated) mission outcomes.  
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Introduction

Motivation

Traditional command and control (C2) in warfare draws upon
results based on the analysis of classical combat dynamics such as,
for example, the Lanchester equations describing attrition rates
(Lanchester, 1914).  Most models are implicitly based on the
assumption of normal (Gaussian) underlying statistical distributions
for salient characteristics such as kill probabilities, and consequently
attrition.  However, it can be shown that in many cases the dynam-
ics of combat obey fractal, rather than normal, statistics (Lauren
2003, Dobias 2008b)—not only with regard to the distribution of
casualties, but also regarding the spatial distribution of forces, the
distribution of radio traffic and the frequency of conflict intensity.
Thus expectations that are in-line with traditional thinking may not
reflect certain realities of a conflict.  In addition, combat dynamics
have been shown in some cases to exhibit signatures of self-orga-
nized criticality (SOC) (Ilachinski 2004, Lauren 2001, Dobias
2008b) when viewed as a complex adaptive system (CAS)1.  This
means that once the system reaches its critical point2 (typically an
attractor), a rapid transition can occur, possibly leading to cata-
strophic large-scale events having a tremendous impact on the out-
come of the conflict under study.  Ignoring these factors can lead to
a perilous misconception of the risks involved in a combat operation
(Ilachinksi 2004). 

Thus recognizing and exercising some degree of influence over
CAS dynamics at or near critical points is worthy of investigation in
the context of C2—as is avoidance or migration towards such a

1. A complex adaptive system is any dynamical system composed of many simple, 
typically nonlinearly interacting parts, wherein the parts are capable of adapting 
to a changing environment (Ilachinski 2004).
2. A critical point is typically characterized by the absence of preferred scales. 
System characteristics typically exhibit power law relationships in time and space, 
which is consistent with underlying fractal statistics.
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state (depending on the circumstances), if possible.  Furthermore,
simply being able to characterize the dynamics of a given CAS,
even in more mundane settings (i.e., no evident SOC), may provide
insights into useful dynamical patterns or symmetries within the sys-
tem not readily apparent using more traditional analyses.  In partic-
ular, it is of great value to develop methods that selectively “drive” a
conflict towards more favourable regions of the available phase
space (Ilachinski 2004).  Since the CAS dynamics depend on the
underlying rules of behaviour adopted by the interacting entities
(e.g., training, tactics), it follows that reaching a given objective
within a conflict requires the parallel consideration of behaviour
and the system response to behaviour measured with respect to
achieving that objective.  Thus two factors of key importance for
favourably influencing a conflict are behaviour and complex sys-
tems measures of effectiveness (CMOEs).  The measures provide a
window into the dynamical progression of the system, while behav-
iour modifications offer the means to adapt to it.  The interplay
between these factors comprises the underlying theme of this paper.

Relevance to C2

If a conflict scenario, or specific aspects thereof, were analyzed
beforehand in consideration of the relationship between behaviour
(friendly, foe, or neutral) and the resulting CAS dynamics, then it is
conceivable that command could leverage this information to pre-
scribe optimal behaviour ‘rules’ that probabilistically improve mis-
sion outcomes.  In particular, a robust set of behaviour profiles can
be adopted that apply to general circumstances one might encoun-
ter, or alternatively a highly optimized set of situation-specific
behaviours can be adopted to deal with an exclusive scenario of
interest.  In any case, the commander is endowed with a heightened
awareness linking behaviour to consequences and extended capabil-
ities in directing those he/she commands in a CAS combat environ-
ment. 
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Previous Work

Others have demonstrated the value of improving mission success
rates by optimizing the behaviour of combatants under fitness crite-
ria tied to the achievement of the mission objectives in a simulated
combat environment (Ilachinski 2004, Lauren 2002, Tolk 1995,
Hofmann 1995).  Measures of effectiveness (MOEs) associated with
overall mission success drive the optimization process.  Common
examples of MOEs for a friendly (BLUE) force include ‘number of
BLUE casualties’ and the Boolean variable ‘BLUE reached the
desired location’.  It seems reasonable to move towards extending
the above notions of optimization to include the use of CMOEs,
especially with regard to triggering a desired behaviour (see the Sec-
tion Genetic Algorithms in MANA, below).

Aim

The aim of this paper is to illustrate how knowledge of complex sys-
tems factors in combat can be characterized and how it may lead to
a tactical advantage within a few conceptually simple combat situa-
tions.  Moreover, advantages are to be shown both in the analysis of
aggregate CMOE results (i.e., repeated simulations of a given sce-
nario) and real-time CMOE tracking (i.e., response to one or more
CMOEs within a single run).

Scope

In summary, experiments are conducted through simulation and
address the following: 

1. Exploration of behaviour optimization in a difficult combat sce-
nario; 

2. Use of CMOEs in repeated simulations to improve mission suc-
cess probabilities for the given scenario; and
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3. Successful use of a real-time CMOE coupled with optimized, 
situation-specific behaviour profiles in a second scenario having 
similar elements to the first.  

The principle metrics employed consist of the following:

1. Degree to which CMOEs contribute to the success and/or effi-
ciency of the optimization process (in repeated simulations); and

2. The interpretive value of CMOEs in a real-time combat simula-
tion environment.

The scenario employed was a difficult, closed, small unit operation
that was chosen rather arbitrarily.  It was not known or expected a
priori to exhibit any particular patterns with respect to CAS dynam-
ics.

Simulation Environment

The arena employed was an agent-based distillation (ABD) called
‘Map-Aware Nonlinear Automata’ (MANA) (Lauren and Stephen
2002), described below.  ABDs form a subset of the more general
class of agent-based models (ABM).  ABMs in this regime are gener-
ally based on the philosophy of cellular automata (CA).  They con-
tain entities (agents) that are controlled by decision-making
algorithms rather than by an interactive player.  The behaviour of
the agents is not predetermined; each agent makes its own decisions
based on built-in algorithms, pre-set personal preferences, and situ-
ational awareness (SA).  ABMs have been successfully utilized to
model a variety of scenarios where emergent behaviour rather than
specific technical properties were to be analyzed.  

Agent-based distillations are a highly abstracted subset of ABMs.
They focus only on the most generic characteristics of an analyzed
system while ignoring many detailed features.  For instance, a tank
might be modeled as a medium speed, armoured vehicle with a sig-
nificant direct fire capability.  In an ABD, the focus is NOT to rely
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on excessive detail with regard to rigorous physical correctness for
every aspect of the model, but rather to capture the main aspects of
the environment and behaviour while permitting a less-constrained
exploration of the parameter space of possibilities.  By abstracting
the physical laws, one can focus more on general scenario explora-
tion without the burden of specifying all the realistic (often irrele-
vant) details to high accuracy, which can quickly become overly
taxing given the payoff on time and effort invested.  Also, the more
highly specialized (or deep set) a model is to a given realistic scenario,
the less adaptable it will be to other situations that may display sim-
ilar dynamics but in a different context or environment.  The sim-
plicity of ABDs makes them particularly attractive for analysis and
interpretation.

Traditionally, the opposing force (RED) has been assumed to be a
regular (conventional) force.  However, in the current security envi-
ronment RED can range from conventional forces to insurgent
groups, to gangs and hostile crowds.  Although a more conventional
force is utilized in the simulations, other types are also discussed
with regard to the representative CMOEs.  

Before delving into simulations, potential CMOEs are briefly
described (see Appendix A for more detailed descriptions) and the
framework for behaviour representation and development is
reviewed.  Furthermore, genetic algorithms are portrayed as a
search tool designed to ‘find’ the optimal state of behaviour for
BLUE agents in various circumstances given limited SA.

Complex Systems Measures of Effectiveness in Combat

Heuristics

To understand the dynamics of a complex system requires that
appropriate measures be established.  We identify CMOEs with
variables that capture features of particular interest in complex sys-
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tems, on presumption that they might be applicable as measures of
effectiveness for combat.  A more general term might be ‘complex
system factors’.  The list includes various entropies, variables cap-
turing long-term correlations, measures of complexity, and others.
In this paper the CAS is described via a few carefully chosen indica-
tors normally associated with disorder; namely, the fractal dimen-
sion, Shannon entropy3 (two forms: Carvalho-Rodrigues and spatial
entropy), the Hurst coefficient, the self-similarity parameter and
symmetropy.  Most of these measures have been applied to combat
dynamics previously and each measure is described, in turn, below
(also see Appendix A).  Since complex systems generally straddle
the boundary between order and disorder, and indeed it is this mix
that contributes heavily to the fascinating dynamics, it makes sense
to observe the temporal evolution of disorder in the system in rela-
tion to major dynamical events or potential upcoming events.  Note
that whether disorder is increasing or decreasing in a CAS can be a
matter of perspective.  For example, in many complex systems
parameters that describe so-called macro-properties (or emergent
properties) of the system suggest that the unpredictable, nonlinear
interactions of system components may self-organize to such an
extent that they generate a larger-scale sense of order.  These emer-
gent properties are not easily derivable by analyzing any single com-
ponent (e.g., attributes of an individual fish do not directly lead one
to imagine the shape and behaviour of a school of fish).  Such ‘mac-
roscopic’ order, however, often hinges on ‘microscopic’ disorder
(e.g., The Second Law of Thermodynamics)4.  Note that in this
work the nature of the mechanism behind self-organization and any
resulting criticality is not directly measured, but rather is inferred
from general observations of the system dynamics.  Characterizing,
measuring and tracking the degree of self-organization in a CAS as

3. Note that when measuring the degree of self-organization in a complex system, 
entropy is somewhat contentious as a ‘measure of complexity’.  See (Shalizi 2004), 
for instance.  Nevertheless, in general various forms of entropy are relevant to 
understanding the dynamics of complex systems.
4. The second law of thermodynamics states that the entropy (a measure of 
disorder) of an isolated system not in equilibrium will tend to increase over time, 
approaching a maximum value at equilibrium.
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it progresses to a criticality holds potential value for future analyses
(see, for instance, Shalizi 2004 for a promising candidate measure).

In traditional combat models and wargames the primary measure
of effectiveness is often attrition—whether measured directly (num-
ber of killed, loss-exchange ratio5, etc.) or indirectly (attrition-based
definition of mission success).  However, in some cases the focus on
attrition actually ignores the complexity of combat (Dobias 2008a).
Furthermore, given the quality of the force protection of modern
militaries and the often asymmetric nature of warfare, standard
attrition-based measures might be misleading and/or inappropriate
for describing combat dynamics with potentially detrimental effects
on the mission outcome (a good example of such a case is hostile
crowd management).  

In this section several measures of complexity are described—one
attrition-based and others spatial- or vector- based.  These measures
are deemed by the authors to be appropriate for dynamical analysis
of a wide range of combat systems when viewed as CASs.  Never-
theless, it should be noted that the applicability of a given measure is
scenario-specific—none are universally relevant.  A key determi-
nant seems to be how disorder unfolds in the system.  Therefore, the
main focus of most measures is on the progression and degree of
disorder within the system from various perspectives.  Later in this
paper it is demonstrated how an appropriate subset of these mea-
sures can be applied to a specific (simulated) combat mission to gain
a tactical advantage over an enemy.

Individual CMOE Descriptions

Several measures have been proposed to capture the complexity of
combat.  Possibly the oldest of them is entropy, of one form or
another.  Entropy is a measure of disorder in a system from a partic-
ular perspective that varies depending on the application.

5. Ratio between RED and BLUE killed.
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Carvalho-Rodrigues (1989) (CR) proposed an attrition-based defini-
tion of combat entropy applicable to each force individually (e.g.,
RED or BLUE) or as a whole through reporting the difference in
force entropies.  It is a form of Shannon entropy (also referred to as
‘information’ entropy) (Shannon 1949).  One of the main features of
CR-entropy is that, prior to attaining a maximum value, a higher
CR-entropy for a force translates to a more disordered combative
state.  Thus prior to the engaged forces reaching maximum CR-
entropy, the force having the lower CR-entropy is considered to
have the advantage.  Once the CR-entropy of a force breaches the
maximum value, it enters into a disintegration phase, wherein combat
capabilities are assumed to have declined substantially (Ilachinski
2004).  For formulae related to Figure 1, see Appendix A.

Ilachinski (2004) suggested a specific form of Shannon entropy
based on the spatial distribution of soldiers relative to a regular grid
covering the battlefield area.  The resulting ‘spatial entropy’ is
closely related to the fractal dimension when the latter is computed
via the ‘box counting’ method (see Appendix A for a comparison).

 The CR-Entropy Function
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Figure 1. The CR-entropy function.  A plot of y = x ln(1/x).
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Rather compact, non-dispersed patterns display low spatial entropy
whereas disorganized, spread-out patterns display high spatial
entropy.

The fractal dimension can also be used as a measure of the spatial
distribution of combat units (e.g., crowd, BLUE force) (Ilachinski
2004).  It is a statistical quantity that quantifies the self-similarity of
the distribution of units on the battlefield from the large distance
scales of the system to finer and finer scales.  In particular, it
describes the clustering properties of force units (which has been
related to firepower concentration (Lauren 2000)) and can act as a
rough discriminator between laminar and turbulent classes of
behaviour (Ilachinski 2003).  The fractal dimension also relates to
scaling relationships typical of SOC.

Temporal and spatial correlations in agent velocity (speed and
direction) are other characteristics that could possibly provide addi-
tional insights into complex system dynamics.  Such correlations
can be calculated independently for each velocity component of
moving entities.  Correlations can be described in terms of the
Hurst coefficient H and/or also the self-similarity parameter (SSP).
For the scenario investigated, H and the SSP displayed the same
basic pattern.  In both cases, velocity correlations are characterized
by a scaling between the number of steps and the root mean square
distance traveled.  When H or SSP values are at 0.5, the motion is
random.  If between 0.5 and 1 the motion is correlated; if between 0
and 0.5 the motion is anti-correlated; and if 0, the motion is cen-
tered about a point.  There are notable differences between the two,
however, most evident in computational aspects and the interpreta-
tion of SSP for values larger than 1 (see Appendix A to compare).
For the scenario investigated, the two measures yielded similar
apparent behaviour.

A new quantity was proposed on the basis of Shannon entropy that
measures the symmetry and entropy of a given spatial pattern or
shape.  This measure is called symmetropy and has been applied to
investigations of SOC (Nanjo 2001, 2005).  The spatial distribution
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of units is projected onto a pattern basis to determine the relative
contribution of reference symmetries to the observed pattern.  The
rise and fall of the various spatial symmetries can be tracked during
a simulation.  When the pattern is random, the value is high (1), and
when dominating symmetries are present in the system the value is
low.  Figure 2 shows the first sixteen patterns of the two dimensional
Walsh function kernel used to compute symmetropy.  The patterns
are separated into four main classes of symmetries: vertical, hori-
zontal, centro, and double.

Application, or Potential Application, to Conflicts

The fractal dimension and corresponding power-laws have been
used to describe the statistical distribution of the intensities of wars
(Roberts and Turcotte 1998), warfare statistics (Richardson 1941)
and attack casualties (Lauren 2001, Dobias 2008b), to name a few.
In particular, when applied to the spatial pattern of force confronta-
tions on a turbulent battlefield, the fractal dimension expresses how

       

Figure 2. The first 16 members of the 2-D Walsh function kernel.
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the forces engage each other by forming clusters, and to what extent
a large cluster of combatants might itself be viewed as a collection of
smaller clusters (i.e., self-similarity) and so on (Lauren  1999).  Fur-
thermore, the fractal dimension has been used to explain spatial
properties of the battlefront and characterize how dispersed a force
is within the overall pattern formed (e.g., tightly grouped versus
widely dispersed).

Spatial entropy was employed by Ilachinski (2004) to characterize
the spatial distribution of soldiers on the battlefield and the degree
of disorder in a manner similar to that of the fractal dimension.

CR-entropy was first used to address logistical concerns during mil-
itary exercises (Carvalho-Rodrigues 1989).  Dockery et al (1993)
employed historical data to argue that CR-entropy is a useful pre-
dictor of the outcome of a battle during certain phases of combat.

The Hurst coefficient has been utilized to describe motion in crowd
control and, in particular, signal a phase transition between a group
confrontational mindset and the inclination to disperse (Dobias
2008a).  The SSP potentially could have been used in an analogous
manner.

To our knowledge, the concept of symmetropy is new to the domain
of combat dynamics6, but holds promise in general for pattern rec-
ognition under a degree of disorder, including possibly the identifi-
cation or classification of forces based on limited SA.  It also holds
promise for identifying the state of a complex system.  Examples
from the geological sciences involving earthquakes and/or acoustic
transitions leverage symmetropy values and corresponding symme-
try projections to describe various dynamical aspects of the system
in question.  For a fault model with SOC, fault patterns of critical
states and sub-critical states7 are distinguishable via symmetropy—

6. The article by Dobias (2008b), in press at the time of writing, also applies the 
concept of symmetropy to combat.  Therein, symmetropy is found to be quite 
effective in capturing system-wide changes in conflicts exhibiting SOC.
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sub-critical fault patterns show nearly constant symmetropy values
whereas various values are taken on during critical states (Nanjo
2005).  Work with microfracturing in rock indicates that the process
evolves under a constraint of increasing richness in double symme-
try (a trend towards low symmetropy indicates that symmetry is
building in the system) (Nanjo 2000).  Since the general dynamics of
complex systems are shared across multiple domains in Nature, it is
not unreasonable to expect that symmetropy might exhibit mean-
ingful variations in certain combat systems.

Precursors and SOC

The idea that precursors might exist in certain critical and/or sub-
critical states of a complex system holds obvious potential benefit if
measurable and applicable to a combat CAS.  The concept of SOC
was introduced to explain the behaviour of systems with a slow stor-
age and a rapid, avalanche-like release of energy, such as earth-
quakes, forest fires, and especially sand-piles.  Sand-piles have
become the prototype of SOC (Bak 1988) and so a brief description
is in order.  As grains of sand are dropped onto the pile, the pile
grows and the slope increases.  The increasing slope causes some of
the sand to roll down due to gravity.  The grains of sand falling off
the pile generally are not directly related to the grains added.

After a certain slope is achieved, the number of grains falling off is
on average the same as the number of added grains.  This stationary
state is independent of the way the grains are added to the pile, and
the way the grains fall off.  It is a characteristic property of the sand-
pile.  A sand-pile in this state is a special case of SOC.  The pile
evolves into this state independently of the driver (in this case, the
mechanism of adding the grains).  From the point of view of com-

7. A critical state of an SOC is one that exhibits a scale-free distribution of event 
sizes, whereas a sub-critical state is one that is not near such a criticality.  As an 
example, SOC sand-pile models evolve through sub-critical states before reaching 
a critical steady state.
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plexity, the SOC is an attractor for the sand-pile, which means that
no matter what the initial state was, the system will organize itself in
such a fashion that it leads to the SOC.

For a sand-pile at the point of criticality, a single added grain can
trigger an avalanche of grains falling off, subsequently decreasing
the slope.  The dependence of the frequency of incidents on the
number of grains falling off at each incident generally obeys a
power law.  In other words, the frequency of avalanches is higher for
small avalanches than for the large ones.

In general, large-scale critical events in dynamical systems are often
(but not always) preceded by smaller, more frequent events (precur-
sors).  The existence of precursors depends on the state of the com-
plex system.  A complex system may have multiple critical
configurations—some with precursors and others without (for
instance, see Narteau 2007).  Examples from natural complex sys-
tems where precursors are known to occur include tremors that pre-
cede large earthquakes (foreshocks) and localized intensifications or
resonances preceding the onset of magnetospheric disturbances
(substorms) (Samson 2003, Voronkov 2004).  Such precursors can
facilitate early response to the possibility of a large-scale event in
the near-time horizon.  Precursors should be interpreted as proba-
bilistic indicators, and can be extended to incorporate factors such
as the chance of observing multiple large-scale events in a short time
frame (based on the fractal distribution of events in the system and
knowledge of the current state of the system).  Note that the large-
scale events themselves may indicate the onset of more of the same.

As an example related to combat, Figure 3 shows the results for the
entropy for a hostile crowd-control scenario modeled using MANA.
Entropy shows a slight increase and then a dip preceding the main
increase due to crowd dispersal (time steps ~ 150-250).  This is con-
sistent with the change in the system’s state corresponding to a
phase transition (Dobias 2008a).  Similar precursors are common in
other dynamical systems such as those mentioned above.  
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The existence of the precursors (pseudo-breakups) in a magneto-
spheric system was explained by the lack of sufficient free energy in
the system to trigger a full-scale event (Dobias 2006).  This is consis-
tent with a sub-critical system near a critical point (discharge event
systems).  Thus it is reasonable to expect that in military combat sys-
tems, a major system change (phase transition) likewise will be sig-
nalled by precursors of a similar nature in certain cases.  Since the
identification of precursors varies from one phenomenon to
another, it seems reasonable to assume that, in general, the charac-
terization of precursors in conflicts (if present) will depend upon the
specific dynamics of the system under scrutiny.  

Evolving the Agility of Combatants within an Agent-based 
Distillation

Motivation

With enough simulations, a description of the relative frequencies of
possible outcomes for a virtual battle scenario emerges.  This fact
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alone can provide valuable insight into the dynamics of a real con-
flict and strategies needed to overcome difficult challenges.  How-
ever, it is natural to ask, “What combatant behaviour maximizes the
operation’s likelihood of success?” 

Given fixed forces, weaponry and equipment, the success probabili-
ties of simulated combatants in an agent-based distillation can vary
widely dependent upon the behavioural settings of agents belonging
to friendly and enemy forces.  Thus it is advantageous to examine
exactly how these settings are impacting the probabilities.  Fixing
behaviour settings leads to situation-dependent patterns of move-
ment and engagement.  The collective pattern of behaviour that
emerges for a group is referred to here as agility.  Agility, in the con-
text of the simulations employed, amounts to manoeuvre tactics and
involves different ways of traversing the environment in response to
obstacles, friends, opponents, neutrals, and preferred paths (e.g.,
towards a waypoint).  Unless otherwise stated, hereafter the term
‘behaviour’ refers to the agile variety.

ABDs such as MANA (Lauren and Stephen 2002), ‘Irreducible
Semi-Autonomous Adaptive Combat’ [ISAAC] (Ilachinsky 1997),
‘Enhanced ISAAC Neural Simulation Toolkit’ [EINSTein] (Ilachin-
sky 2000, 2003) and ‘Warfare Intelligent System for the Dynamic
Optimization of Missions’ [WISDOM] (Yang et al. 2004, 2005) pro-
vide a convenient environment for exploring such lines of interest
for several reasons.  A few are listed: 

• They provide a means to represent a battle scenario, from a 
whole of system point of view, to a measurable (but not overly-
burdensome) degree of realism8;

• They provide controls to vary the behaviour of combatants 
through in-built agent parameters including personality, weap-
onry and sensor capability; 

8. The “realism” of a scenario is an emergent property of the modeled system.  It 
does not imply that the individual agents behave in the same manner as real 
soldiers would. 
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• Conflict scenarios can be run multiple times and the average 
effectiveness of various sets of equipment, tactics and behaviours 
can be measured and compared; and 

• In some, the behaviour of friendly and opposition forces can be 
arranged to automatically adapt, within user-specified ranges, 
according to an embedded genetic algorithm, allowing one to 
explore a large parameter space of behavioural possibilities for 
an optimal solution. 

Genetic Algorithms in MANA

The MANA genetic algorithm has been employed by several
authors to investigate the effects of behaviour on combat (Luscombe
and Mitchard 2003, McIntosh and Lauren 2006, Parunak et al.
2006).  Simply stated, a genetic algorithm (GA) is a method of
searching a given parameter-space for the optimal solution of a fit-
ness function.  The mechanics are loosely based on the manner in
which organisms have evolved as solutions to the problem ‘How can
a species live and procreate on planet earth?’ The fitness function
measures how good a solution is with respect to the problem envi-
ronment and allows one to rank them from best to worst9.  GAs
maintain a population of candidate solutions which evolve over suc-
cessive generations in response to the fitness function.  Evolution
proceeds by first coding ‘solutions’ (chromosomes) as a set of param-
eters (genes) and ranges that cover the entire solution space.  Over
successive generations, a new population of solutions is bred from the
existing one.  Breeding new solutions typically involves three pro-
cesses or operators: 

1. Selection – solutions are measured for fitness and paired up 
according to some rule.  The rule usually involves a degree of 
randomness and favours pairing fit solutions together (e.g., fit-

9. In what follows, high fitness solutions are assumed to be better, to within the 
limitations of measurement, than low fitness solutions.
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ness-proportional pairing), often to the exclusion of unfit pairs.  
These pairs become the ‘parents’. 

2. Crossover – ‘child’ solutions are generated by randomly com-
bining genes of ‘parents’.  The children represent new, possibly 
unexplored solutions.

3. Mutation – some genes may be altered via a random, generally 
small probability, change in value.

The idea is that high-fitness parents have the best chance of produc-
ing higher-still fitness children.  In many implementations, the fittest
individuals are carried over to the next generation unaltered to
hedge against the destructive nature of crossover and mutation
operators.  The GA run terminates either when the desired level of
fitness is attained or after a specified number of generations have
been processed.  The ‘solution’ is generally the parameter set within
the chromosome of highest fitness in the final generation.  The
approach can break down in problems where independently good
solutions combine in such a way that gains made are repeatedly lost
(e.g., imagine the potential impact of crossover on chromosomes in a
problem having two equally good, paired solutions that are polar
opposites of one another).  Note that a solution found by a GA is
limited by the accessible degrees of freedom—it cannot evolve ‘out-
side of the box’.  Thus the practitioner must know, minimally, the
essence of a good solution in addition to how it will be measured.

Since combat involves sources of randomness, the evolution of the
population is somewhat complicated by the fact that, in the case of
combat simulation, the fitness function necessarily measures the outcome of a
probabilistic chain of events.  It may ‘miss’ an optimal chromosome due
to what essentially amounts to ‘bad luck’.  In other words, a high fit-
ness solution to the problem can actually be discarded if it failed
miserably to accomplish the operation set out in the simulation,
despite the fact that the chance of failure may have been small.
This effect can be buffered somewhat using the ‘Multi-run’ option
in the MANA GA.  However, doing so can greatly increase the
computation time, even for modest settings (e.g., 10 multi-runs
translates to 10 times the computational effort).  Furthermore, chro-
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mosome evolution is still vulnerable to a string of bad luck, so a bal-
ance must be struck that depends on the particulars of the situation.
Thus methods must include validation of the evolved solution (e.g.,
via simulations measuring the performance of a single chromo-
some).  Furthermore, it is instructive to pay special attention to
‘spikes’ in the fitness function occurring throughout the various
stages of evolution.  One should ascertain whether or not such com-
binations of genes were just lucky or the result of a (possibly lost)
highly effective solution.  Note that such a practice, however pru-
dent, goes against the above assertion that the highest fitness chro-
mosome in the final generation is the solution.  The term final,
though, can be exploited since it is somewhat arbitrary, loosely con-
ceptualized as the point at which one either is satisfied with the solu-
tion or has decided it is not worth pursuing further.

The use of event-driven changes of state (MANA triggers) with the
GA provides increased flexibility for evolving agent behaviour.
Using triggers, one can vary the response of agents to various stages
within the conflict operation.  For example, one set of behaviour
parameters could apply (and evolve) when no opponents are within
detector ranges and another set once opponents of a given type
have been detected.

Monitoring and Measuring GA Performance

Monitoring the performance of a GA can direct a run towards
faster convergence and avoid unproductive regions of the parameter
space.  Furthermore, it can be used to help define and refine the
quantity and ranges of evolving parameters.  The key measure in a
GA is fitness.  The distribution of fitness within a generation and
how that distribution changes from one generation to the next pro-
vide indicators of algorithm performance.  In many cases, it is also
possible to estimate the fitness of the next generation and/or char-
acterize the steady-state limit to a measured accuracy.  Also, moni-
toring the individual progression of the evolving parameters (genes)
can be of value, especially during the early phases of problem repre-
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sentation and structural scoping (i.e., defining a minimal list of
parameters, anticipating architectural ‘building-blocks’, or recog-
nizing ‘genetic drift’ (Rogers et al. 1999), which amounts to gene
evolution in the absence of fitness criteria). 

Although numerous involved methods are available for evaluating
and monitoring the performance of GAs (Bornholdt 1998, Gold-
berg 1989a,b, Holland 1975, Prügel-Bennet and Shapiro 1994,
1997, Rogers et al. 2006), many potentially useful techniques
require exceedingly more information than is readily available for
analysis within the MANA GA environment (e.g., Markov chain
analysis (Nix and Vose 1992) requires knowledge of chromosome
transition probabilities).  Nevertheless, even a small subset of these
methods is enough to infer important characteristics about the
dynamical progression of GA runs. 

In the section that follows, GA progression was evaluated and mon-
itored by following the genes of the fittest member of the population
as the generations proceed.  Additionally, mean population fitness
was tracked and the effects of varying attribute settings of the
genetic operators themselves examined, including: fitness criteria
(MOEs), gene set, population size, number of repetitions, mutation
rate/size and the use of trigger states.  For the sake of brevity, how-
ever, non-essential details are omitted.

Scenario

As alluded to in the Introduction, the purpose of this section was two-
fold 1) to demonstrate application of the GA in MANA, and 2) to
explore how knowledge of complexity in combat can be utilized to
achieve tactical advantage.  To begin with, complexity was ignored
and the optimal behaviour was found for a BLUE force pitted
against a formidable RED force.  Then complexity measures appro-
priate to the given circumstances were chosen and used to plan and
execute a challenging (virtual) mission.  Three simulations were
conducted: Sim I, II, and III.  In these simulations focus was on the
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‘control’ aspect of C2.  The idea was that the influence of agent SA
would drive the decision-making about what kind of behaviour to
adopt during a given encounter (or situation) of interest.

The overall objective of BLUE was to reach a waypoint ‘B’ from
their starting position ‘A’ on a billiard table battlefield.  It was a
tough scenario for the BLUE force—conditions were tailored to
make their situation extremely difficult, with the hope that behav-
iour would emerge that significantly improved chances of success.

In Sim I, the optimal BLUE force strategy was found without com-
plexity SA and without using triggers.  The scenario was treated as
a single obstacle for BLUE to overcome—meaning that only one set
of optimal behavioural parameters were sought.  In subsequent sim-
ulations (Sim II and III), the scenario was subdivided and each sub-
division dealt with accordingly.  In Sim II, the optimal BLUE force
strategy was found utilizing MANA triggers (state changes altering
behaviour) aided via analysis of CMOEs monitoring the system
dynamics.  Both Sim I and Sim II involved multiple simulation runs
to evolve combatant behaviour.  The population size for the GA was
set to 50 in both cases, and the fitness for each potential solution
(chromosome) was determined by averaging over 10 runs (using the
multi-run feature).  Note that initial attempts to evolve behaviour
with smaller population sizes and multi-run values did not produce
stable results.  Finally, in Sim III the feasibility of real-time response
to the complex system dynamics was explored—awareness of a
CMOE was used by the BLUE force in a new, but similar, situation
to define state changes on-the-fly between human-imposed and GA
evolved behavioural profiles.  The CMOE signalled changes in the
(sparse) pattern of spatial disorder within RED force opponents
detected by BLUE sensors, and this signal was used to switch an
indirect fire capability (IDF) on or off.10
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Sim I) Evolving Combatant Behaviour in a Simple ‘A to B’ Scenario

In this simulation, 6 BLUE soldiers depart from point A and make
their way through a 12-member RED patrol of comparable (indi-
vidual-wise) combat power and proceed to attack 6 RED site
defenders having double the kill probability (0.2 versus 0.1 kills per
shot) and slightly longer range sensors (25 versus 20 distance units).
The site defenders remained proximal to position B, moving ran-
domly within a confined area.  The setup is displayed in Figure 4.
The measure of success (fitness) was defined as the number of
BLUE combatants within the first cluster of agents to reach way-
point B under a time constraint of 500 steps.  Baseline MANA set-
tings and ranges for evolved BLUE traits for this simulation can be
found in Appendix B.

A single set of personality traits was evolved for the BLUE team that
optimizes the situation described above.  To keep the options open
without overburdening the search algorithm, only a few key degrees
of freedom (genes) were selected—neither a minimal set nor an
overly large set: 

• Attraction/repulsion to friends (range -100 to 100)
• Attraction/repulsion to enemies detected personally (range -100 

to 100)
• Attraction/repulsion to enemies detected by others [SA] (range 

-100 to 100)
• Attraction to waypoint B (range 50 to 100)

10. Note that in Sim III only one tactic was permitted per situation—in 
reality this would be undesirable since it would allow an opponent to learn 
the tactic and capitalize on it in future encounters.  An extension would be 
to predefine a number of ‘good’ strategies for a given situation and then 
pick one unpredictably to execute.
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Simulations indicated that the evolved behaviours had at most an
18% success rate (1000 repetitions).  The most common and signifi-
cant beneficial trait was high attraction to friends (clustering).  This
allowed the BLUE force to concentrate firepower helping them get
past the dispersed RED patrol.  BLUE combatants remaining after
this encounter proceeded with a less-than-fair chance to attack the
RED defenders at waypoint B using the same strategy.  Note that if
BLUE somehow completely avoided the RED patrol, 100 simula-
tions suggest only a 54% chance of defeating the RED site defender
squad using optimized tactics, which represents an approximate
theoretical upper limit in this scenario.

A typical successful mission roughly followed the timeline below:

Figure 4. MANA Scenario.  BLUE force consisted of 1 squad with 6 
members heading towards the blue flag (top).  RED force consisted 
of 2 squads: a 6 member squad defending the blue flag and a 12 
member dispersed patrol heading towards the RED flag (bottom).  
The RED patrol is shown in magenta.  Battlefield dimensions are 
200x200.



24     The International C2 Journal | Vol 2, No 2

1. First time step (1): BLUE departs from point A on a heading 
towards waypoint B;

2. 70-75 time steps: BLUE encounters the RED patrol;
3. 120-125 time steps: BLUE passes the RED patrol;
4. 135-145 time steps: BLUE encounters the RED site defenders;
5. 180-190 time steps: BLUE reaches waypoint B.

The process of arriving at relatively stable GA results within MANA
required some exploration in-and-of itself.  Main lessons learned
from this simulation are listed in the Discussion section (below).  

Sim II) Evolving Combatant Behaviour in Stages

It is easy to see that some benefit could be gained by partitioning
Sim I into different stages.  It is of interest to explore how the
CMOEs might help to understand how best to partition the sce-
nario.  To achieve as complete a picture as possible, complexity is
viewed from various perspectives and scales.  Note that in the fig-
ures that follow, the two squads of the RED force are combined
unless otherwise stated.  To begin with, the fractal dimension is plot-
ted for BLUE and RED forces at two different scales: 1) entire bat-
tlefield and 2) minimal containment (see Figure 5).  The latter
restricts the evaluation space to a minimal, axis-oriented bounding
box surrounding the squad of interest.  The center of the box is the
centroid of the squad and the box is always square.  This box moves
and resizes over time as the agents redistribute themselves spatially
or are eliminated via attrition.  

The fractal dimension plots in Figure 5 are time step averaged over
many simulations—168 for the case of BLUE success and 832 for
BLUE failure (1000 total simulations conducted)11.  At battlefield
scale (Figure 5a), the RED force starts off tightly clustered (dot-like)
as evidenced by the low fractal dimension.  The dimension then

11. Note that the Legend for Figure 5 applies to subsequent figures, where 
appropriate.
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increases as they spread out (near line-like) and then decreases for
two main reasons: 1) RED attrition, 2) RED patrols’ arrival at their
goal.  Also at this scale, it can be seen that the BLUE forces’ fractal
dimension remains small (dot-like) as BLUE agents maintain close
proximity to one another.  The branching of the fractal dimension
for the two different cases (BLUE success versus BLUE failure) can
be seen reasonably clearly.  In Figure 5b, the minimal containment
results show the branching as more pronounced.  For BLUE it
occurs early on at ~ 70 time steps, whereas for RED ~ 150 time
steps.  BLUE no longer starts off with a small fractal dimension—
the dimension now reflects the distribution of BLUE agents inside
the ‘dot’ as viewed from battlefield scale.  Note that the graphs sug-
gest that BLUE and RED are both more successful when they are
able to maintain a higher fractal dimension.  

Spatial entropy for the minimal containment case was also com-
puted.  It displays nearly identical behaviour to the corresponding
fractal dimension plot (not shown here – refer to Appendix A).
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a)

b)

Figure 5. Fractal Dimension from a) battlefield and b) local perspec-
tives.
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Figure 5b suggests that perhaps something important (spatially) is
happening to BLUE around time step 70, and that something
important happens to RED around time step 150.  The ‘important’
events merely correspond to the timing of significant changes in the
combat strength of the various forces; the computed fractal dimen-
sion and spatial entropy are more-or-less counting the surviving
number of agents for each force following an encounter.  So,
although the two quantities point out when the dynamics make crit-
ical transitions (branch), neither provides any insightful information
beyond what is derivable from a simpler measure in this scenario.
To shed some light on the complex nature of the dynamics, further
CMOEs must be explored.

Recall that symmetropy is a spatial measure taking into account
entropy with respect to a kernel of two-dimensional symmetries.
Symmetropy plots for the BLUE and RED forces are shown in Fig-
ure 6.  Symmetropy was computed using minimal containment.

In Figure 6a, it can be seen that BLUE symmetropy paths diverge
around time step 100 (in the midst of the battle with the RED
patrol).  At this point the successful branch maintains its course
while the unsuccessful branch falls below it.  Then near time step
153 the successful curve makes a gradual downturn, crossing the
unsuccessful curve at ~160.  Thus BLUE success favours steadiness
with regard to the distribution of symmetries during this interval,
owing to the fact that BLUE attrition coupled to formation tenden-
cies causes the squad to spatially reorganize itself.  Afterwards, the
successful branch proceeds downwards while the unsuccessful
branch shoots upwards.  Note that the steep climb in BLUE sym-
metropy after time step ~160 (failure case) seems to be weighted by
the timing of the elimination of the BLUE force.  On average, few
members of the BLUE force remain in the contributing simulations
by this time step, resulting in a decrease in the dominant symmetry
(double symmetry – see Figure 7a).  This decrease in double sym-
metry (Pd in the figure) is accompanied by a convergence of the
other symmetries (Pv, Ph, and Pc) to a value near 0.25 (i.e., all four
approximately equal indicating a lack of preferred symmetry).  In
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the case of BLUE success, double symmetry is more consistently
maintained (Figure 7b).

For RED symmetropy (Figure 6b), a small branching effect is evi-
dent near 130 time steps, while the main branching occurs near
time step 150.  The pattern of branching is similar to that of BLUE:
when RED is more successful, its corresponding symmetropy curve
first rises above the unsuccessful curve, and then falls below it.  

Figure 8 shows the symmetropy of the combined forces.  The curves
for BLUE success and failure branch near time step 110.  The
‘BLUE success’ branch rises above the failure branch and remains
as such until the run terminates.  The timing correlates well with the
initial branching of the BLUE symmetropy curve, suggesting once
again that something pivotal happens in the vicinity 100-110 with
regard to BLUE’s spatial pattern, corresponding in this case either
to a persistence of symmetry (success) or lack thereof (failure) (e.g.,
perhaps by this time it can be determined whether BLUE had a
good or bad encounter with the RED patrol).  The remaining
CMOEs are now examined to provide additional insight.
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a)

b)

Figure 6. Symmetropy for a) BLUE and b) RED forces (Legend of Fig-
ure 5 applies).
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a)

b)

Figure 7. BLUE force symmetry projections.
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Figure 8. Combined forces symmetropy.

Figure 9 shows the SSPs for BLUE force ‘X’ (lateral) and ‘Y’ (longi-
tudinal – towards the goal) coordinates under the cases of BLUE
success and BLUE failure.  The coordinates represent components
of the vector directions of agents at each time step, and the SSP
measures correlations in movement at a given time step over a num-
ber of simulations.  For ease of viewing, each point on the various
SSP plots represents an average of the ten preceding data series
points.

The first noteworthy point is that the plots for SSP in the X and Y
directions are quite different.  This could be an indication of self-
affinity (see Appendix A).  In the Y direction (Figure 9b), the crucial
time step occurs around step 75—the instant that the RED patrol is
encountered.  When BLUE is successful, they are able to maintain a
higher level of persistence in motion towards the waypoint B.
BLUE fails when motion at this juncture tends toward randomness
or even anti-correlation.

In the X direction (Figure 9a), time step 135 is where the branching
occurs.  In opposition to Y, the better path for BLUE is one of anti-
correlated motion.  Together, the two seem to suggest that a higher
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degree of self-affinity is beneficial (i.e., the fractal scales differently
in X and Y).

The Hurst coefficients for BLUE X and Y were also computed,
showing similar patterns to those of SSP.  Appendix A contains the
Hurst coefficient plot for the Y direction.

For comparison, Figure 10 shows the SSP for the RED site defender
squad.  This squad randomly moves about a small area proximal to
waypoint B until the BLUE force arrives, at which time BLUE is
pursued.  It is interesting to note that the X and Y correlations are
nearly identical to one another, suggesting non-self-affinity.

The branching of the Figure 10 curves in the time interval of 110-
130 steps suggests a potential non-locality in the movement data.
This feature is somewhat interesting since it does not specifically
relate to attrition (combat strength).  Although the timing is roughly
coincident with symmetropy bifurcation points for RED and BLUE
forces (above), evidence suggests that this is coincidental since
BLUE is well outside of sensor range of the RED site defenders
until, on average, ~ 136 steps in both success and failure cases.
Moreover, the earliest such detection time by RED site defenders
(recall they have superior sensors) in all 1000 simulations occurs at
time step 114, which is beyond the first drop in the SSP after the
branching point (the SSP for time step 110 averages the values for
time steps 101 to 110).  Thus, BLUE is not aware of the RED site
defenders and since there is no SA exchange between the two RED
squads, the RED site defender squad is not aware of BLUE at this
time.  Thus the RED site defenders cannot be reacting to BLUE’s
close proximity.  Rather, BLUE success seems to select a particular
configuration as being the more favourable one.  The initial move-
ment pattern of the RED site defenders as BLUE is proximal and
approaching must have an influence on the outcome of the encoun-
ter.  This can be likened to catching the RED site defenders ‘off-
guard’.  In an average sense, the drop in SSP could be likened to a
precursor.
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a)

b)

Figure 9. Self-similarity parameter for BLUE force (Legend of Figure 
5 applies).
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a)

b)

Figure 10. Self-similarity parameter for RED ‘site defender’ force 
(Legend of Figure 5 applies).
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a)

b)

Figure 11. CR-entropy when a) BLUE was successful and b) BLUE 
failed (Legend of Figure 5 applies).

The final CMOE, CR-entropy, is evaluated beginning at the first
sign of attrition (around time step 70 – Figure 11).  The disintegra-
tion phase (as noted previously and in Appendix A) for each case is
represented by a dashed curve.  In many ways, the indications of
CR-entropy at particular time steps seem to underlie the patterns
observed in other measures.  In Figure 11, the curves when BLUE
succeeded (Figure 11a) and failed (Figure 11b) are divided into
intervals corresponding to CR-entropy states (see Appendix A).
The states provide a rough indication of how the battle is progress-
ing.  Prior to the light green marker (~ time step 83), attrition is low
and the relative state is balanced.  After the light green marker, and
prior to the orange marker, BLUE has the advantage.  Note that on
BLUEs’ successful curve (Figure 11a), the advantage is maintained
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for around 20 time steps, whereas on their failure curve (Figure 11b)
the advantage is quickly lost.  After the orange marker and before
the dark green one, attrition is high but comparable, so the state is
somewhat balanced.  Surprisingly, this state ends at the same time
step for both of BLUEs’ curves (~ time step 113), transitioning to
one of BLUE advantage.  This advantage is due to the disintegra-
tion of the RED force, which occurs simultaneously for both cases
(the 0.37 threshold has been passed).  On BLUEs’ failure curve (Fig-
ure 11b), the advantage is once again short-lived and transition to
the full disintegration phase follows (~ time step 123), whereas on
their success curve the transition is delayed until approximately time
step 160 (yellow marker).

Note also the standard deviation (or spread) of BLUE’s CR-entropy
data was highly variable throughout, whereas RED was tightly con-
trolled, reducing to almost nil near the onset of REDs’ disintegra-
tion phase (not shown).  The high variance in BLUE CR-entropy
greatly blurs the above interpretation of the actual path followed by
BLUE when successful or not, suggesting that perhaps in many sim-
ulations BLUE circumstances fell somewhere in the midst of the two
paths.

It could be argued that the partitioning of the combat scenario is
loosely conceivable as a response to a kind of phase transition inher-
ent in the system dynamics.  Indeed, the various CMOEs suggest
that approximately 10-time step neighbourhoods around times 80,
110, and 150 represent pivotal (perhaps critical) and distinct
dynamical events in the system.  Since time step 110 falls near the
end of the first encounter, we group the first two of these together
and simply allow the BLUE agents’ behaviour to be partitioned by
encounter type (RED patrol or site defenders), rather than any par-
ticular timing.  However, it would be interesting to determine if a
third behaviour, defined between say time steps 100 and 130, holds
any benefit.  Since the degrees of freedom required to characterize
beneficial behaviour rules at this juncture fall outside the bounds of
the original behavioural parameter set, this aspect was not investi-
gated, despite its obvious potential.
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We proceed by partitioning the scenario according to the intuitively
obvious transition events (i.e., by encounter type) which are further-
more supported by the temporal dependence of the various
CMOEs.  Partitioning was implemented via MANA triggers.  To
define the triggers, the RED constituent forces were assigned differ-
ent threat levels so that BLUE could respond to each one differently.
This allowed for the evolution of two behaviour profiles appropriate
for dealing with each encounter separately (Note that detection,
rather than hard-coding, of the transition point is a subject of the
next section).  For the sake of comparison, it is of interest to put
forth guesses of what the optimal GA behaviour settings might be
for the BLUE force.  The point is to help assess the added value of
employing a GA in this scenario, as opposed to simple (human) rea-
soning.  Both guesses involve a fixed full attraction to squad mem-
bers (+100) and moderate attraction to the waypoint B for the
patrol encounter (+50).  Settings not mentioned are defaulted as in
Sim I.

Guess 1: Avoid contact with the patrol and then proceed directly to
waypoint B

• When confronting RED patrol: Full repulsion to all enemies (-
100)

• When confronting RED site defenders: Full attraction to way-
point (+100)

Guess 2: Punch through the patrol and redirect slightly away from
site defenders.

• When confronting RED patrol: Default settings.
• When confronting RED site defenders:

• Strong attraction to waypoint (+75)
• Partial repulsion to all enemies (-50)

Guesses 1 and 2 yielded marginal gains for success rates (recall 18%
from Sim I), given by 24% and 21% respectively (1000 runs – stan-
dard error reported as 1% by MANA).
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Personality settings for BLUE while running the GA are provided in
Section B of the Appendix.  The GA settled on the following opti-
mal settings, given a population size of 50 with 10 multi-runs per
chromosome, mutation rate 2% and strength 20%:

GA result: Avoid RED patrol contacts detected by other squad 
members (through SA), but proceed as normal when the 
detection is personal.  Furthermore, rush RED site defenders 
detected by others, but run away from those detected personally.  

a)  When confronting RED patrol: 

• Full repulsion to enemies detected by others (-100) 
• Indifference to those detected personally (0).

b)  When confronting RED site defenders: 

• Full attraction to waypoint (+100)
• Full attraction to enemies detected by others (+100) 
• Full repulsion to enemies detected personally (-100).

Validation revealed a success rate of 26% (1000 runs – standard
error reported as 1% by MANA), improving significantly over the
solutions without triggers and slightly over guesses made with trig-
gers.  Although the attrition rate was not part of the fitness function,
it is interesting to note that this solution displayed the lowest average
casualties for BLUE and the highest for RED (see Table 1 for com-
parisons).  In Table 1, the first three solutions are from Sim II and
the remaining from Sim I.  Note that only the success rates directly
contributed to the fitness function (MOE).  The RED force was the
same in all instances.  Error ranges shown are those reported by
MANA. 

The GA 2-trigger solution itself was somewhat surprising—charac-
terized by major differences, even complete polarity in motion,
between the reaction to personal versus squad (SA) detections of
enemies.  In retrospect, the tactic for confronting the RED site
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defenders could have been anticipated as it merely quantifies a ten-
dency to attack a superior (single) foe as a group rather than individ-
ually. 

Full attraction to the waypoint when up against the RED site
defenders was not surprising (see Guess 1).  Success rates for various
GA settings applied in Sim I (without triggers) are also provided in
Table 1 for reference: 1) the HM series is one of high mutation
[rate: 50%, strength: 20%], 2) the CM series balances crossover and
mutation [rate: 2%, strength: 20%], 3) the C series uses crossover
only [mutation rate is set to zero], and 4) the Default Settings refers
to a baseline, non-evolved ‘solution’.  Standard errors are included.

Analysis of the gene evolution under a high mutation rate in Sim II
did not reveal any definitive convergence patterns.  On its own, this
could indicate that either a rather delicate balance of parameters is
necessary (i.e., mutation keeps destroying convergence) or that blind
luck dominates (i.e., the settings don’t really matter much).  Rela-
tively high success rates in the validation runs seem to confirm the
former.  Also, fitness maximums and population means were signifi-
cantly higher here than those found in Sim 1, beginning early in the
run.  This suggests in-and-of-itself that the two-trigger approach is
superior to the single state approach of Sim I, as would be expected.

Table 1. A comparison of various solutions for BLUE behaviour.

Solution Success 

Rate

BLUE

Casualties 

RED

Casualties 

Mean Time 

Steps

Validation

Runs

GA, 2 triggers 26% 5.22 ± 0.05 10.78 ± 0.10 319 ± 2.0 1000 

Guess 1, 2 triggers 24% 5.26 ± 0.05 10.45 ± 0.10 341.2 ± 2.2 1000 

Guess 2, 2 triggers 21% 5.41 ± 0.04 10.64 ± 0.10 211.9 ± 1.1 1000 

GA, HM Series 18% 5.46 ± 0.04 10.50 ± 0.10  184.6 ± 0.9  1000 

GA, CM Series 17% 5.52 ± 0.04 10.18 ± 0.10 155.7 ± 0.7 1000 

GA, C Series 15% 5.57 ± 0.04  10.18 ± 0.10 160.5 ± 0.8 1000 

Default Settings 3% 5.94 ± 0.01 8.44 ± 0.11 132.2 ± 0.6 1000 
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Sim III) Real-time Response to CMOEs for Tactical Advantage

In the previous section, it was shown that the CMOEs were able to
distinguish between successful and unsuccessful behaviour.  There-
fore, it follows that actual knowledge of real-time complexity might
be beneficial to improve the likelihood of success.  The next simula-
tion illustrates how knowledge of combat complexity can be charac-
terized in real-time and how it may lead to tactical advantage
within a conceptually simple combat situation.  Various C2 options
were exercised by monitoring and responding to the temporal evo-
lution of a chosen CMOE.

In Sim I & II mission success was improved upon through use of the
MANA GA capability.  The behaviours so developed can be applied
to larger simulations involving encounters with RED forces of a sim-
ilar make-up with a reasonable chance of success under the right
conditions of use.  In the above simulations, the information about
which element of RED was encountered was hard-coded into the
trigger definitions, rather than inferred from RED’s spatial dynam-
ics or attrition entropy.  Thus, the problem to address next is how to
use real-time, localized CMOEs to quickly identify an encounter
type (e.g., patrol or site defenders) via entropic heterogeneity or oth-
erwise so as to trigger the appropriate response (i.e., the appropriate
behaviour profile).  The ideal situation would be to find a ‘precur-
sor’ to correctly identify the nature of the next encounter (see the
Section Precursors and SOC, above).  This possibility is discussed
below. 

At first glance, the arguments used for partitioning Sim II do not
seem to hold much practical value for real-time response.  Upwards
of one thousand simulations were needed to identify significant pat-
terns in the CMOEs in relation to important events.  In general,
high variance in the value of the measures preclude their use as a
basis for reliable forecasting in real-time for a single run—the pre-
cognitive signatures sought are definitely not evident in the aver-
aged results for this scenario.
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On the other hand, computing the fractal dimension and sym-
metropy of RED based on limited range detections by BLUE could
conceivably produce distinguishing features for the different
encounter types.  This is akin to detecting a change in the pattern of
spatial disorder within RED to signal a state change.  However, it is
important to consider that SA would be limited to a few detections
before a course of action must be decided upon to qualify, intu-
itively, as a precursor event.  Accordingly, given that sparse data are
expected, coupled with the fact that the fractal dimension is more
suited to characterizing data clustering, it seems inappropriate to
rely on the fractal dimension of detections of RED by BLUE in this
case.  Use of this quantity is further cautioned by its association with
simple casualty counting in the simulations examined.

Analysis of the spatial entropy for RED and BLUE would certainly
lead to a similar conclusion.  Given an extended SA for BLUE,
monitoring the SSP or Hurst coefficient for RED detections could
possibly reveal the identity of the type of force about to be encoun-
tered given that movement patterns have been pre-established
through simulation or otherwise, especially since one of the RED
components tends towards stationarity (site defenders clustering
around waypoint B).  Nonetheless, as stated in Appendix A, com-
puting the SSP or Hurst coefficient is data intensive and the real-
time scenario is not likely to be capable of producing the required
data support (several hundreds to several thousands of data points).  

Therefore, since symmetropy alone is not overly constrained in the
case of sparse data, it is the only measure investigated herein as a
prospective CMOE for real-time determination of the encounter-
type in this situation.  Like the Hurst coefficient and SSP, it also
requires at least a slight SA advantage to be particularly useful.  A
symmetropy signature would combine RED force spatial patterns
with their degree of disorder.  The signatures would have to be
established before the operation through simulation or otherwise.
The symmetropy patterns of detection preceding an encounter
should provide a reasonably accurate cue about what to expect, and
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will demonstrate the feasibility of real-time response to one facet of
complexity in the system.

To begin with, a new, but similar challenge for BLUE is designed
(Figure 12).  In this simulation we alter the above scenario some-
what, but not so much that we cannot draw upon the results of Sim
II.  In the new scenario, two 6-member BLUE patrols (A1 and A2)
are ‘searching’ for waypoint B.  To get to the waypoint, they expect
multiple encounters with a RED force similar to the RED patrol
above (however, in this case, it is more of an occupying force than a
patrol).  RED patrol members are to be identified and eliminated by
the indirect fire capability (IDF) available to BLUE.  When near the
waypoint, BLUE anticipates that they will face RED site defenders
as defined above.  IDF is not to be used at this stage—they must
fight their way in (e.g., to protect against accidental targeting of
civilians in a hostage situation), so the mechanism should not fire.
To accommodate the IDF support, BLUE is given a slightly longer
sensor range than RED (50 versus 40 units), and IDF is connected
to the squad SA.  Therefore, IDF has to quickly classify an encoun-
ter as a PATROL or a SITE based on the available CMOE data.
When BLUE reads RED contacts, local SA information is passed to
IDF, which determines if it should fire on RED or not.  The deter-
mination is based on the encounter-type signature recognition from
‘precursory’ measures.  These reference signatures are predefined
using pre-existing contact data (e.g., as in Sim II).
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Figure 12. MANA scenario for Sim III.

The first potential symmetropic signature investigated was the
mean (or average) force symmetropy.  Comparing mean symmetro-
pies of the two RED force constituents (both fully and also partially
based on detections) turns out to be a poor way to typify their differ-
ences.  The mean values are close together for a given quantity of
information and symmetropy exponent q (grid matrix is 2N X 2N),
and the spread is high enough to blur any distinctiveness12.  The
mean symmetropy data are presented in Table 2 (format is ‘value,
spread’).  Local symmetropies of 3 and 5 detections are shown in
addition to full force symmetropies, averaged over numerous time
steps.  If the mean values had been significantly different, they could

12. The standard error, computed as the standard deviation (spread) divided by 
the square root of the number of observations (N), was not shown in Table 2 
because N varied considerably between measurements.  The spread is less 
sensitive to N and so provides a better relative measure of uncertainty here.  
Standard errors were all below 0.04.



44     The International C2 Journal | Vol 2, No 2

have been used to determine the encounter type (SITE or
PATROL) and hence fix the decision whether or not to use the IDF
support.  Unfortunately, it is clear from Table 2 that real-time use of
the computed symmetropy means is of no value in this case.  

There is, however, another option worth exploring.  The detection
data can be separated into distinct symmetropy ‘modes’.  These
modes are a reflection of commonly encountered patterns in the
symmetropy matrix that characterize entropic heterogeneity13.  In
Figure 13, the frequency of symmetropy modes is shown for the two
RED encounter types SITE and PATROL (the sample is 30 sets of
5 detections, each set of detections in a 30 time step or less time
interval and is made by a single squad).  The spike at Mode 6 is the
sought-after signature.  It accounts for 40% of all SITE detections,
and only 13% of PATROL detections.  Plus, the distribution of the
PATROL symmetropy modes is far more uniform than that of the
SITE modes.  Mode 8 also adds to the signature, although it is
weaker than Mode 6.

Table 2. Mean symmetropies of encounter types for Sim III mission 
reference.

13. Symmetropy ‘modes’, in this context, refer to recurring measured 
symmetropy values.  A mode roughly indicates that some particular combination 
of patterns seems to occur in the system repeatedly over time.

RED Force 

Constituent

Force

Strength
N

Symmetropy 

Of Entire Force 

Symmetropy  

3 Detections 

Symmetropy 

5 Detections 

Site Defenders 

“SITE”  
10

2

3

4

0.81 , 0.12 

0.95 , 0.04 

0.99 , 0.02 

0.86 , 0.05 

0.92 , 0.07 

0.96 , 0.06 

0.80 , 0.11 

0.94 , 0.08 

 0.99 , 0.02 

Main Unit 

“PATROL” 200 

2

3

4

0.82 , 0.04 

0.93 , 0.03 

1.00 , 0.00 

0.86 , 0.04 

0.93 , 0.08 

0.98 , 0.06 

0.82 , 0.12 

0.89 , 0.12 

 0.98 , 0.03 
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Figure 13. Symmetry ‘modes’ of the RED force.

Now it is time to capitalize on the distribution of symmetropy
modes and devise a strategy for the Sim III mission.  Ideally, the
approach would be to simply use IDF support until the detections
indicate a good match to the sought distribution, for example a pre-
ponderance of Mode 6 and, to a lesser extent, Mode 8—above what
would normally be expected when encountering a PATROL.  Then
limit the IDF support so as not to fire against those RED agents
identified as belonging to the SITE force and let the BLUE assault
team handle the encounter on their own.  At this point BLUE
agents (presumably) proximal to the RED site defenders would
switch into the trigger state found in Sim II to be most successful
against this group.  A level of risk tolerance could be fixed before the
simulation, essentially defining the cutoff between the expected
Mode 6 (8) detections from a PATROL and unusually high Mode 6
(8) detections (indicating that the SITE has been found).  The
higher the cutoff, the more certain BLUE is that the target site
defenders have been correctly identified. 
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However, due to the sparseness of detection data in this scenario, a
more conservative approach was taken.  By default the IDF is set
on, then simply turned off whenever Mode 6 appears.  All other
detections are ignored (including Mode 8)14.  Note that this slightly
magnifies BLUEs’ exposure to the risk that the IDF might be turned
off too soon.  To minimize this exposure three steps were taken: 1) a
minimum symmetropy bounding box length, equal to the BLUE
detector range of 50, was introduced—this helps to ensure that the
symmetropy signature is spatially no smaller than the observed
scale, 2) the initial start-up of the scenario was not processed (first
500 time steps) and 3) the trigger state was given a lifetime of 200
time steps.  Detection processing occurred within a running time
window of width equal to 500 time steps, and each ‘signature’ set
was composed of exactly 5 detections.  The MOE for a run was
defined as the number of RED site defenders alive at the time of the
earliest correct Mode 6 discovery15.  The overall mission was
deemed ‘completed’ if BLUE reached the waypoint B.  The results
of the simulations and default runs are displayed in Table 3.
‘Default’ runs are simulations (10) performed without utilizing the
GA-evolved trigger states and without knowledge of the CMOE to
signal a behavioural state change.  ‘Random’ runs (10) employ the
same set of trigger states, except that in this case the switching to the
state catered to dealing with RED site defenders is triggered at ran-
dom, depending on when BLUE encounters any of ten randomly
wandering neutral entities.  The maximum number of time steps for
any run was set to 2000.

The mission was completed in all Sim III runs for the Default refer-
ence case and the case using CMOEs and triggers.  The mission
was not completed in many of the Random case runs.  The differ-
ence between the Default and CMOE-triggered simulations (num-

14. Note that this ‘switch’ had to be implemented manually, since MANA does 
not have the capability to trigger a state change based on CMOE values.
15. When there were no SITE detections by the end of the run (e.g., simulation 
#6 in Table 3 in addition to all ‘Default’ and ‘Random’ cases), ten subtract the 
number of RED site defenders killed by the IDF was substituted for the 
numerator of the MOE. 
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bered 1-10) lies in the value of the MOE.  The MOE was improved
upon by over 12-fold compared to the Default case and over 3-fold
compared to the Random case, on average.  This translates to a sig-
nificant increase in the quality of the end-result.  Nevertheless, there
is still much room for improvement via a more detailed analysis.

Table 3. Classification and mission success results.

Overall, in interpreting these results it is important to realize the
mindset of the BLUE force. From BLUE’s perspective, the CAS
amounts to detections on an SA map corresponding to locations of
comrads and targets. At some point, the pattern of spatial disorder
in that map changes to a known pattern. At this juncture, from
BLUE’s perspective, a transition is in order since it seems likely that
the CAS has changed and a new set of dynamics is at work. BLUE
then carries on in a new state of readiness to deal with the perceived
threats in the most efficient way known to them.

The salient result of this simulation is that a CMOE was successful
in improving mission success for a real-time combat scenario; this in

Simulation 

Number

First SITE 

Id Time 

Step

Correct

SITE

Ids

False

Positive

SITE Ids 

MOE
Mission

Completed 

1 667 2 of 2 0 of 88 5/10 YES 

2 1249 4 of 16 0 of 0 7/10 YES 

3 899 2 of 5 2 of 22 3/10 YES 

4 1575 3 of 6 0 of 67 5/10 YES 

5 1092 11 of 26 0 of 113 7/10 YES 

6 NA 0 of 4 11 of 26 1/10 YES 

7 1039 19 of 49 0 of 4 9/10 YES 

8 1276 1 of 4 2 of 68 4/10 YES 

9 744 1 of 9 1 of 94 5/10 YES 

10 726 4 of 12 0 of 3 5/10 YES 

SimIII Avgs 1030 (52%) 35% 3.3% 5.1 /10 (51%) 100% 

Default NA NA NA 0.4/10 (4%) 100% 

Random NA NA NA 1.6/10 (16%) 40% 
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spite of the fact that the forces were sparse and hence data were
quite limited. The means through which CMOEs might contribute
as a useful degree of freedom in a simulated conflict were not specif-
ically known a priori; nevertheless, an opportunity was eventually
uncovered.  In other conflicts, these measures may contribute signif-
icantly to the acquisition of combat system knowledge, or only mar-
ginally over and above traditional measures. Lastly, measures not
covered by the limited set of CMOEs used here may apply.

Discussion

The simulations conducted in the previous section revealed several
interesting features concerning the use of a GA to help define
behaviour patterns in combat operations.  It also hints at possible
advantages of endowing agents with an awareness of complexity in
a combat system when the system is viewed as a CAS.  

A key benefit of employing a GA to find optimal behavioural pat-
terns is the potential generation of new concepts that combine the
available degrees of freedom (genes) in ways that a practitioner may
not have considered otherwise.  Sim I was useful in that it high-
lighted which genes contributed strongly to the fitness of an individ-
ual solution, permitting efficient progression to Sim II where more
variables were under consideration (due to the use of triggers to par-
tition the search).  In Sim II, CMOEs based on BLUE SA were
shown to have distinctive features for different encounter-types
(RED patrol or site defenders), inducing a partitioning of the behav-
ioural pattern search space into two distinct groups—one for each
encounter type.  The result was a significant improvement in mis-
sion success rates.  Regarding the GA used in Sim II, a surprising,
unanticipated result was generated.  That is, the opposing move-
ment pattern that BLUE evolved for dealing with personal versus
squad detection of enemies.  This is not the first time a surprising
result was obtained using the MANA GA.  In McIntosh (2006),
RED agents evolved an unexpected, optimal behaviour in a combat
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scenario that allowed them to remain still, despite the fact that the
option to remain still did not exist in any single gene.  

The methodology applied in Sim I mapped out a framework for
running, analyzing and interpreting genetic algorithms used in
MANA to optimize agent behaviour and tactics in a difficult sce-
nario.  The main lessons learned from this simulation were as fol-
lows: 

1. The Multi-runs option should be used when running a GA to 
buffer against the effects of randomness in the outcomes of a 
conflict (10 were used in this study).

2. The final solution provided by the GA should be heavily vali-
dated through repeated simulation.  Furthermore, it is prudent 
to compare the performance of the solution with other solutions 
that performed extremely well in previous runs, and with solu-
tions obtained using different GA settings.  Lastly, it may be 
instructive to compare the results with ‘best guess’ solutions 
formed by a practitioner.

3. Testing for genetic drift and evolving the system using a high 
mutation rate may help to eliminate extraneous variables (genes) 
thus improving performance and simplifying the interpretation.

In Sim II, the concept of a phase transition (as per SOC) was used as
a framework to improve upon the findings of Sim I.  These concepts
were not, however, strictly demonstrated to be applicable to the spe-
cific scenarios investigated.  In particular, the presence or absence of
SOC was not demonstrated in any of the simulations.  Nevertheless
the idea of approaching possible ‘criticality’, adapting to a ‘phase
transition’ and looking for ‘precursors’ fit well as an approach to
framing the improvement of mission success.  Intuitively, it parallels
a sensible and careful approach to optimal mission planning.  Thus,
despite the lack of rigor, it was demonstrated that the complexity
indicators introduced in the section Complex Systems Measures of Effec-
tiveness can display recognizable and distinctive patterns during
encounters, and that these patterns can be leveraged to help parti-
tion the application of the GA into streams that deal with different
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types of encounters separately.  It was also shown that dividing the
solution up in this way can yield significantly better mission success
rates compared to undivided solutions.  The partitioning was
achieved using MANA triggers that caused state changes in agents’
behavioural profiles dependent upon the current situation and
agent’s intent.  

Note, however, that the results of Sim II do not indicate that parti-
tioning chosen without the aid of CMOEs coupled with behaviour
chosen without using the GA would have faired much worse.  The
CMOE-driven selection of a trigger pointed to the ‘most obvious
one’, and (educated) guesses at optimal behaviour profiles per-
formed nearly as well as GA-optimized ones.  Perhaps the scenario
was too simple, or the force sizes too small, to demonstrate any
practical advantages gained in this scenario.  In the end, the
CMOEs really only helped by providing insight into the underlying
dynamics of the Sim II runs, and the GA only helped by presenting
an alternative to an already good option.  It is worth noting though
that a potentially useful possibility for catching the RED site
defenders off-guard was exposed via the SSP, however the available
degrees of freedom did not allow BLUE to take advantage of the
opportunity.

In Sim III it was found that precursory-like signatures derived from
CMOEs could constitute an early warning in real-time via entropic
heterogeneity, hinting at the nature of an imminent near-future
encounter.  These precursors, recognized via limited situational
awareness, were successfully used by the BLUE force to distinguish
between RED encounter types and to call off IDF support when
appropriate.  Furthermore, the use of precursors was combined
with state changes and partitioned, evolved behaviour as demon-
strated in Sim II.  Although mission completion rates were not radi-
cally improved upon (all missions were completed), those that were
completed showed an overall improvement in the quality of the end
conditions in alignment with the main purpose of the mission (i.e.,
reduced use of IDF support against the RED site defenders, see
MOE column in Table 3).  With proper support, this result has
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potential application for automated recognition of, and early
response to, an upcoming change or pivotal event (or perhaps criti-
cality) in an observed conflict system; either as a warning or to high-
light a budding opportunity regarding the possible onset of a large-
scale event.  It is of interest to determine if CMOEs can be used as such
to detect precursors in a more subtle context and in real-time.  Although
the situation presented in Sim III is artificial, the methodology seems to
show promise.  

Note that other methods, not directly linked to disorder or complex-
ity, could have been devised to achieve a similar effect—there are
many differences between the two kinds of encounters to capitalize
on.  Further study is required to establish whether some combina-
tion of CMOEs can provide unique capabilities relevant to C2 in
the general case.

Conclusions

GA-evolved behaviour profiles for agent combatants were found to
significantly improve mission success probabilities within the simu-
lated conflicts investigated.  Moreover, unanticipated patterns of
beneficial behaviour were discovered by the GA search.

Several CMOEs appropriate for a variety of conflict scenarios were
described in this paper: the fractal dimension, Shannon entropy (via
CR-entropy and spatial entropy), the Hurst coefficient, the self-sim-
ilarity parameter and symmetropy.  All but one of these measures
are directly based on the spatial dynamical properties of the system
rather than on attrition.  Therefore they are better suited to captur-
ing certain aspects of the complexity of combat than attrition-based
measures.  It was also suggested that precursors to large scale events
(e.g., a wave of casualties) may exist in some combat systems as they
do in natural complex systems such as earthquakes, and that
CMOEs potentially could be used to help identify and capitalize on
these precursors.
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The combat scenario faced by the BLUE force in this paper pre-
sented a difficult challenge to overcome (under default settings, the
success rate was negligible).  Mission success and agent response
capabilities were generally enhanced by adapting agent behaviour
based on the knowledge of complexity in the system.  Factors that
contributed to the improvements were 1) how to partition the sys-
tem on the basis of various entropies and long-term correlations,
and 2) the early determination of enemy type based on an entropy/
symmetry measure (symmetropy).  

The scenarios investigated constituted small confrontations and
consequently the data sets used were sparse.  This prohibited the
use of several CMOEs for use in real-time complexity tracking due
to lack of data support.

Future work

Improving understanding of the progression of self-organization
within a combat CAS is a topic of future research interest.
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Appendix A 

CMOEs for the Practitioner

The following potential CMOEs are described in detail:

• Carvalho-Rodrigues Entropy;
• Spatial Entropy;
• Fractal Dimension;
• Hurst Coefficient;
• Self-similarity Parameter;
• Symmetropy.

Some other complex systems factors of interest that were not pur-
sued in this analysis include the Kolmogorov Complexity (Kolmog-
orov 1965), Statistical Complexity (Shalizi et al. 2004), Depth
(Lloyd and Pagels 1988), Effective Complexity and the related term
Total Information (Gell-Mann and Lloyd 1996).

Carvalho-Rodrigues Entropy

Carvalho-Rodrigues (CR) proposed an attrition-based definition of
combat entropy for the i-th force (i being RED or BLUE) of the
form (Carvalho-Rodrigues 1989, Ilachinski 2004)

In the above definition, Ci represents the number of casualties and
Ni is the force strength of the i-th force at time t (Ni = Ni0 – Ci).  The
overall combat entropy is then defined as .  Early
stages of attrition cause the combat entropy Si to rise until reaching
a maximum at Ci/Ni ~ 0.37 (see Figure 1).  Up until this point, high
CR-entropy translates to a more precarious position for the force in
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ln Ni
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question.  The maximum value corresponds to a point of complete
breakdown of combat capabilities, with the attrition reaching a pos-
itive feedback stage.  Once the breakdown point has been reached,
however, the interpretation of CR-entropy shifts to a somewhat
opposite meaning—as attrition continues the entropy now
decreases.  The quotient Ci/Ni for two opposing forces can be used
to define rough indicator stages of battle.  The indicators below are
based on dividing the range of Ci/Ni for each force into three
regions: 1) Ci/Ni < 0.185 – less than half way to the disintegration
point, 2) 0.185 = Ci/Ni < 0.37 – more than half way to the disinte-
gration point, and 3) Ci/Ni >= 0.37  (disintegration – past the half-
way point).

1. Advantage BLUE: There are three cases when BLUE has a 
clear advantage.  The first two imply a moderate advantage and 
the final one suggests that the advantage is high:

a. Moderate: 

i. CBLUE/NBLUE < 0.185; 0.185 <= CRED/NRED < 0.37
ii. 0.185 <= CBLUE/NBLUE < 0.37; CRED/NRED >= 0.37

b. High: CBLUE/NBLUE < 0.185, CRED/NRED >= 0.37

2. Advantage RED: Analogous to above, switching RED and 
BLUE subscripts.

3. Balanced: Neither RED nor BLUE has a notable advantage.  
RED and BLUE CR-entropies are comparable.  

Similarly, the difference (CRED/NRED - CBLUE/NBLUE) is also a rele-
vant parameter to monitor.  Note that the definition of CR-entropy
ignores the spatial dimension that is so important in modern
manoeuvre warfare.  Nevertheless, it is a useful quantity that con-
tributes to spatiotemporal interpretations when combined with
other measures.   
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CR-entropy is a special case of a more general definition of entropy
devised by Shannon (1949) in the field of Information Theory.  The
Shannon expression for entropy is

In the above expression, pi denotes the probability of the ith option
and the summation is over all of the options considered in the
model.  Considered options may include, for example, the number
of incapacitations (leading to CR-entropy), spatial distribution, or
detections at certain ranges.

Spatial Entropy

Ilachinski (2004) suggested a specific form of Shannon entropy
based on the spatial distribution of soldiers.  The computation and
meaning of spatial entropy are somewhat akin to the fractal dimen-
sion computed via the box-counting technique (below).  Figure A1,
when compared to Figure 5b in the main text, shows that the two
are nearly indistinguishable for the scenario examined.  

To compute the spatial entropy, a combat area of size B is split into
a number of sub-blocks of size b.  If, at any given moment, Ni out of
N soldiers are in the ith sub-block, the probability of finding a soldier
in that sub-block is .  Then Shannon entropy takes
the form

The expression is introduced as a normalization coef-
ficient.  Unlike CR-entropy, spatial entropy characterizes combat
dynamics independently of attrition.  Therefore, it could be used to
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characterize the spatial dynamics of a conflict even in the absence of
attrition.   

For randomly distributed individuals pi = (b/B)2, and entropy S = 1.
If all of the individuals are in a single sub-block, S = 0.  Thus, if indi-
viduals are tightly clustered together, entropy is close to 0.  Con-
versely, if they are uniformly distributed over the entire battlefield,
entropy is close to 1.  In this fashion, spatial entropy is capable of
quantifying force cohesion and manoeuvres, and the temporal
dependence of entropy provides information about the overall com-
bat dynamics.

Figure A1. Spatial entropy – compare with Figure 5b (Figure 5 Legend 
applies).

Fractal Dimension

Another option to describe the dynamics of a combat system is to
use the fractal dimension as a measure of the spatial distribution of
units (crowd, BLUE force) (Ilachinski 2004).  The most natural of
many possible fractal dimensions to describe spatial dynamics of a
combat seems to be the box-counting (or capacity) dimension DF.  It
expresses the relationship between the size of a box , and the min-
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imum number N( ) of boxes needed to cover all the agents.  Gen-
erally, the dependence is a power law:

In the expression above, L is the size of the battlefield.  For agents
uniformly distributed over a two dimensional (2D) battlefield, DF =
2.  Taking the logarithm of both sides of the equation for sufficiently
small , a formula for DF is obtained:

Practically,  just needs to be reasonably small compared to the
battlefield size L.  The battlefield is then divided into (L/ )2

squares, and all of the squares that contain at least one agent are
counted.  Then the ratio  is calculated.  The
fractal dimension computed in this manner is qualitatively similar to
spatial entropy, the main difference being that rather than consider-
ing the probability of finding an agent in a particular square (and
therefore the number of agents within the square), only the presence
or absence of agents is considered.  Note that as of version 4.0, cal-
culation of DF has been incorporated into MANA.  

Hurst Coefficient

The interpretation of the Hurst coefficient bears a strong resem-
blance to that of the self-similarity parameter (below).  The calcula-
tions for each also share similar features.  In fact, for the scenario
examined it is evident that they show nearly equivalent behaviour
(compare Figure 9b (main text) with Figure A2 (below)).

Temporal and spatial correlations in agent velocity (speed and
direction) are found via the Hurst coefficient.  Such correlations are
calculated independently for each velocity component.

ε

 N (ε) = (L / ε)DF
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The Hurst coefficient H (also referred to as the Hurst exponent in
some literature) for velocity is characterized by a scaling between
the number of steps and the root mean square distance (RMSD)
traveled.  For random (Brownian) motion the relationship between
the RMSD (L) and the number of steps (N) is , being
the length of a single step.  The generalized expression relating the
number of steps and the MSD via the Hurst coefficient is .
If the Hurst coefficient is , a random, Brownian motion is
recovered.  If  the motion is correlated.  As H approaches
1, the RMSD becomes directly proportional to the number of steps,

.  This corresponds to intentional travel in a particular
direction.  If the motion is anti-correlated, meaning the
RMSD is less than the corresponding distance for the random walk.
For the extreme case of H = 0 the RMSD is constant (e.g., circling
around a fixed point).  

The Hurst coefficient has been used to provide insight into the
dynamics of crowds (Dobias 2008a).  For a random group of people,
such as pedestrians on a street in a downtown area, the speed and
direction of individuals is uncorrelated ( ).  On the other
hand, for marching troops, or a parade, or a demonstrating crowd,
the motion can be highly correlated.  The Hurst coefficient for such
systems would be greater than 0.5.  A Hurst coefficient 
suggests that the mean distance between any two individuals is
more-or-less constant.  

A caveat needs to be included at this point.  Due to their stochastic
nature, the velocity correlations are relevant only for large numbers
of data points (thousands and more).  The large number of data
points requires replicating a model a large number of times, or
including large numbers of entities in the scenario (or both).   

Various methods are available for computing the Hurst coefficient
(Kaplan).  Wavelet transform methods (Jones 1996) and the R/S
method (Feder 1988) are frequently recommended in the literature.
The R/S method is described briefly below (as per Kaplan).

 L = λN 1/2 λ

HNL λ=
5.0=H

5.0>H

 L = λN
5.0<H

H = 0.5

5.0<H
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At first the data series is divided into boxes of length n.  Within each
box, the data is (locally) integrated.  The integration equation for a
data series Di of N points (within a box) is given by:

where k ranges from 1 to N. 

Next, the range R is computed for each box as the difference
between the minimum and maximum X(k) values:

Now a rescaled range R/S is computed for the box, where S is the
standard deviation of the X(k) series.  Rescaled ranges are computed
for each box of size n and then averaged, which we denote R/S(n).
This process is repeated for various box sizes n.  Finally, the log-log
plot of R/S(n) vs. n is used to calculate a slope, which in turn pro-
vides the Hurst coefficient.  Since the box size n is limited by the
sample size, it is necessary to have a sufficiently large sample to
obtain meaningful results.  Also, generally it is best to use values for
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box sizes uniformly distributed in logarithmic space.  This allows for
a better fit of log R/S(n) as a function of log n.

Self-Similarity Parameter

The self-similarity parameter (SSP) can be viewed as a measure of
the ‘roughness’ of a time series (Peng et al 1995).  Furthermore, it
shares many interpretive properties of the Hurst coefficient (above).
One advantage of using the self-similarity parameter over H is that
it can be applied to a non-stationary time series.  Now a time series
is self-similar if the process y(t) shares the same statistical properties
as a properly rescaled process given by  y(t/a).  has the follow-
ing interpretation (Goldberger et al 2000):

• 0 <  < 0.5: The series is anti-correlated.  The interpretation 
is consistent with that of Hurst coefficient in this range;

•  = 0.5: Like the Hurst coefficient, this corresponds to a ran-
dom walk.  The data series is uncorrelated (white noise);
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• 0.5 <  < 1: Persistence is present in the long-term correla-
tions.  The interpretation is consistent with that of Hurst coeffi-
cient in this range;

•  = 1: This corresponds to 1/f noise (or pink noise);
•  > 1: Correlations exist, but they no longer follow a power 

law;
•  = 1.5: This corresponds to Brownian noise (the integration 

of white noise).

A method called detrended fluctuation analysis (DFA) is commonly
used to calculate the SSP (Peng et al 1995).  DFA was designed spe-
cifically to deal with non-stationarities (trends) in nonlinear data.
For instance, variations in stock indices are composed of two parts.
One is a small long-term increase; the other is the deviation from
this trend.  To analyze long term correlations in the deviations, the
trend needs to be removed first.  The DFA is based on a root mean
square analysis of a random walk.  The procedure can be briefly
summarized as follows.  

At first the entire data series is integrated and then divided into
boxes of length n.  The integration equation for a data series Di of N
points is given by:

where k ranges from 1 to N. 

Afterwards, a least-squares fit is performed for each box.  The linear
fit represents the local trend in the analyzed variable for the box.
For a given box size n, values F(n) are computed as root mean
squared deviations of the data series y(k) from the local trend yn(k).  
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This process is repeated for various box sizes n.  Finally, the log-log
plot of deviation F(n) versus n is used to calculate a slope, which in
turn provides the SSP.  Since the box size n is limited by the sample
size, it is necessary to have a sufficiently large sample to obtain
meaningful results.  Also, generally it is best to use values for box
sizes uniformly distributed in logarithmic space.  This allows for a
better fit of log F(n)  as a function of log n.

Symmetropy

A new quantity was proposed on the basis of Shannon entropy that
measures the symmetry and entropy of a given pattern or shape.  In
this instance the measured quantity in question is the spatial distri-
bution of agents.  This measure is called symmetropy (Nanjo 2001).
It captures not only the spatial distribution, but the symmetry of the
distribution as well.  The definition of symmetropy utilizes a two-
dimensional Walsh transform as follows.  The battlefield is divided
into M x M cells where it is assumed that M = 2q, q being a positive
integer.  The two-dimensional Walsh transform (Walsh 1910) is then

where m, n = 0, 1, 2,..., M – 1, xi,j is the value of grey (e.g. “black”
and “white” – i.e. 1 or 0) in the ith row and the jth column.  Wm,n is
the two dimensional Walsh function defined as 

In the above expression the function bk(i) denotes kth bit in the
binary representation of i.  For instance, for a number 5 = (101)2
the values of b are b0(5) = 1, b1(5) = 0, and b2(5) = 1.  (m) is a
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transformed function for the binary representation of the number
m.  The transformation is defined as

This transformation is necessary to obtain a proper ordering of the
Walsh functions to allow for calculating projections into the four
principal symmetries (vertical, horizontal, centro-symmetric or
diagonal, and a double symmetry).  The symmetries are as follows.
If m is odd and n is even the Wm,n measures horizontal symmetry; if
m is even and n odd a Wm,n has a vertical symmetry; if both are odd
it is centro-symmetric, and finally if both are even, double symmet-
ric (Nanjo 2001) (see Figure 2 in the Section Complex Systems Measures
of Effectiveness).  W0,0 is the exception.

The probability for each of the four types of symmetry (vertical,
horizontal, central, and double symmetry) is then

In the expression above, (m,n)Sk denotes a sum over a particular
symmetry (odd/even, even/odd, odd/odd, even/even).  The proba-
bilities satisfy the normalization condition
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Then Shannon’s formula for entropy can

be applied.  The 1/2 factor serves to normalize the symmetropy so

that the maximum value is 1.  The higher the pattern, the higher

the symmetropy.  For a random pattern (randomly distributed black

and white cells), the symmetropy is 1.016 (Nanjo 2001).

16. Note that in Nanjo (2001), the author does not use the normalization factor 
0.5.  Consequently, therein the maximum value for symmetropy (equal to the 
symmetropy of a random distribution) is 2.  
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Appendix B

MANA Settings

The MANA personality settings for RED and BLUE squads in Sims
I, II and III are provided below.  Ranges are given for evolved
parameters.  ‘X’ indicates a MANA default setting was used (in all
cases, the default setting was zero).

Sim I

The MANA personality settings for RED and BLUE squads in Sim I
(Section 4.1) are provided in Table A.1 below.  Note that all RED
agents were considered ‘threat level 3’ in this simulation.

Table A.1. Settings for Sim I.

Sim II

The MANA settings for trigger states of the BLUE squad in Sim II
are provided in Table A.2 below.  RED settings are constant
throughout as per Sim I.  Note that BLUE attraction/repulsion to
RED agents was refined to allow BLUE to react differently to RED
patrol agents (threat level 2) and RED site defenders (threat level 3).
Furthermore, BLUE was empowered to respond differently to RED

Personality

Trait

BLUE

squad

RED site 

defender squad 

RED patrol 

squad

psEnemies -100 to 100 10 100 

psFriends -100 to 100 X -50 (squad only) 

psNextFlag -100 to 100 X 20 

psOrgThreat3 -100 to 100 X X 
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agents personally encountered versus those detected through squad
(organic) SA.

Table A.2. BLUE  Settings for Sim II.

Sim III

The MANA settings for RED and BLUE squads in Sim III are
shown in Table A.3 below.  Note all RED agents were considered
threat level 3.

Table A.3. Settings for Sim III.

Personality Trait Trigger 1 State Trigger 2 State 

psEnemies X X 

psFriends 100 100 

psNextFlag 50 50 to 100 

psOrgThreat2 -100 to 100 X 

psEnThreat2 -100 to 100 X 

psOrgThreat3 X -100 to 100 

psEnThreat3 X -100 to 100 

Personality

Trait
BLUE Trigger 1 BLUE Trigger 2

RED site 

defender 

squad

RED patrol 

squad

psEnemies X X 10 20 

psFriends 100 (squad only) 100 (squad only, 

cluster=2) 

X 60 (squad only, 

cluster=8) 

psNextFlag 50 100 X 20 

psOrgThreat3 -100 100 X X 

psEnThreat3 X -100 X 10 


