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Abstract

The Defence Science and Technology Laboratory (Dstl) makes use of
many models in order to model military conflict.  Most of these models
are based upon a Cold War era opponent, and it is argued that there is a
need to update these models in order to reflect the evolving structure of
the UK armed forces needed to meet the current threats.  Algorithms are
presented which will allow the planning processes within military models
to make more informed decisions.  The approach uses a mathematical
model to identify agents which may be working together as a group, and
subsequently make inferences about their intent.  This research is carried
out within the context of a wider programme concerned with updating
existing simulation models of conflict.  Initial results are presented and the
future development of the work is discussed.

Introduction

The Defence Science and Technology Laboratory (Dstl) is part of
the UK Ministry of Defence (MoD) and routinely provides analyti-
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cal support and advice to decision makers on policy, procurement
and operational issues.  In order to conduct studies of this nature,
Dstl makes use of many models in order to model military conflict.

The term du jour in modern military operations is ‘asymmetric war-
fare.’  That is, warfare in which the weaker force uses unconven-
tional weapons and tactics in order to try and neutralise a stronger
opponent.  As a result, UK and coalition forces are having to adapt
their doctrine and Command and Control (C2) structure in order to
remain effective against these new threats.  Consequently, there is a
need for military models to reflect this shift in battlespace paradigm.

One such model is the Wargame Infrastructure and Simulation
Environment (WISE) (Pearce et al. 2003) which is a Formation
Level wargame used as an operational analysis (OA) model.  WISE
can operate both as a wargame, in which military players are used
to make decisions, and as a simulation which operates without
human input in closed form.  This makes WISE suitable for both
experimentation and analysis of doctrinal issues (in wargame mode)
and for performing analysis on issues such as procurement options
(in simulation mode) (Holt 2006).  In order to operate realistically in
simulation mode, WISE utilises two planning and decision-making
processes: The Deliberate Planner which operates at the Strategic
and Operational Levels of command, and the Rapid Planner which
operates at the Tactical Level (Moffat 2002).  This article details
work concerned with improving inputs to the Deliberate Planner
within the wider context of a three-year study developing models to
reflect modern C2  (Holt et al. 2007). 

A novel approach to identifying collective behaviour in opponents
using a technique based on Minimum Spanning Trees (MSTs) will
be described.  Having hypothesised which agents may be working
together in a group, a second algorithm is presented which gives an
indication of the intent of the groups with respect to a number of
possible destination locations.  The algorithms provide a more accu-
rate picture of the size and structure (i.e. groupings) of the battlefield
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agents, and in doing so, provide the Deliberate Planner with better
information on which to base its decision-making.  

Prototypes of these algorithms have been written and tested, and it
is intended that these will now be implemented in WISE for further
validation and verification.  Whilst WISE is used as a test-bed, the
aspiration is for a generic mathematical algorithm which can be
embedded in a variety of models.

The article proceeds as follows.  First, the emerging concepts of
Network Enabled Capability (NEC) and Agile Task Organised
Groupings (ATOGs) will be defined in the context of the Command
and Control structure of the UK’s armed forces.  This will be con-
trasted with the more traditional hierarchical military command
structure, and in doing so, a need to develop new modelling tech-
niques to accurately represent ATOGs will be presented.  Next, the
key modules required to reflect these concepts are described briefly.
In particular, the Deliberate Planner is introduced and the limita-
tions of its current implementation are outlined.  Next, research is
described concerned with addressing these limitations by identifying
collective behaviour on the battlefield and inferring intent in order
to better inform the planning process.  Finally, the results of the first
phase of this work are presented, and future research is outlined.  

Throughout this article, enemy forces will be referred to as Red and
friendly forces as Blue.

Emerging Concepts

An emerging concept within the Command and Control (C2) struc-
ture of the UK’s armed forces is that of ATOGs:

The Cold War era was dominated by a predictable, monolithic and
structured enemy using tactics that could be templated. This was
reflected in a rigid and hierarchical command structure, separated
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by component (Air, Maritime and Land) with minimal communica-
tion between them.

Today, and for the foreseeable future, UK and coalition forces will
be presented with a much more complex battlespace paradigm with
several opponents, agents and actors (some of which will adopt
asymmetric tactics).  Success will depend on the ability to share a
comprehensive view of the battlespace and to allocate battle assets
rapidly as required to meet the immediate threat.  In this spirit,
force structures will need to be dynamic; the inflexible, rigid com-
mand structure will need to be replaced with dynamic, cross-com-
ponent task groups which can be assembled and dissolved at all
levels in the command hierarchy according to the immediate task
needs.  That is, task groups will be optimised for specific missions or
tasks.  This dynamic re-allocation of assets will make use of cross-
component collaboration to match requirements with capabilities,
in contrast to the traditional hierarchical military command struc-
ture.  The resulting task groups are ATOGs.

Figure 1 (taken from Moffat (2006)) illustrates the traditional C2
structure:  The Permanent Joint Headquarters (PJHQ), located at

Figure 1: Traditional C2 Structure
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Northwood in Middlesex, commands overseas joint and combined
military operations; the Joint Task Force Headquarters (JTFHQ) is
deployed to an operational theatre.  Beneath the Joint Task Force
Commander are a number of Component Commanders (CCs)1.
Each of these Component Commanders (Air, Maritime and Land)
has a number of formed units under their command (e.g. Deployed
Operating Bases, Maritime Task Groups and Brigades). Requests
for support outside of a particular component’s capabilities go up
and down the command hierarchy with minimal horizontal com-
munication and interaction.

In Figure 2 (taken from Moffat (2006)), CCs are replaced by Task
Groups consisting of elements from all components.  These Com-
prehensive Task Groups (CTGs) are formed by the Joint Force
Commander (JFC).  CTGs are formed and dissolved according to
the JFC’s intent and desired effects.  CTGs can interact horizontally

1. Special Forces and Logistics components are not shown on the diagram.

Figure 2: Future C2 Structure



6     The International C2 Journal | Vol 2, No 2

to create a common picture and understanding.  The same process
also occurs at the level of the Units of Action (UA) under command
of the CTGs. These UAs can exchange “components of force”
(Moffat 2006) within the ellipse bounded by the CTG Com-
mander’s Intent as shown in the diagram.

The concept of ATOGs falls within the wider framework of Net-
work Enabled Capability (NEC), which encompasses the ways in
which people, information and networks can be integrated to
improve the sharing of information and situational awareness2, and
to increase command agility.  It has already been argued that these
changes are required in order for UK and coalition forces to meet
current and future threats.  NEC is defined in the Defence Indus-
trial Strategy (Ministry of Defence 2005) as:

“ ... the coherent integration of sensors, decision-makers and 
weapon systems along with support capabilities ... [leading to] 
better situational awareness across the board, facilitating 
improved decision making, and bringing to bear the right 
military capabilities at the right time to achieve the desired 
military effect.”

In order to conduct network-centric operations, forces need to be
able to interoperate; that is, work together though communication
and information sharing.  Alberts and Hayes (2003) summarise:

“Entities that are not interoperable or have limited interoperability
will not have access to all available information, will not be able to
provide information to entities that may need it, and will be limited
in the ways that they can collaborate and work together with others.
As a result, their value (ability to contribute to combat power or
mission effectiveness) will be limited over time.”

2. “The understanding of the operational environment in the context of a 
commander’s (or staff officer’s) mission (or task)” (Ministry of Defence 2006).
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Figure 3 shows the Alberts’ Grid (originally known as the Network-
Centric Warfare (NCW) Maturity Model (Alberts and Hayes 2003))
which divides NEC into three epochs: Initial, Transition and
Mature.  These levels of network-centric capability relate to the
degree to which interoperability has been achieved:  whilst Level 0
requires limited interoperability and information sharing, Level 4
(NEC Mature) requires greater richness, reach and quality of inter-
actions.  In order to reach this zenith, there must be advancements
in organisational structure, work processes, attitudes and technol-
ogy.  Currently, the UK can be considered to be at Level 2: NEC
Transition.  The epochs are defined in terms of the completeness
and quality of situational awareness (a comprehensive view of the
battlespace) brought about through technology interventions; and
the organisational/command structure (of which ATOGs are a
part).  It is the command structure aspect of NEC which is the focus
of the research presented here.

Moffat (2007) identified an area where improvement can be made
to Dstl’s current combat modelling capability; namely how to repre-
sent, in simulation modelling terms, the difference between NEC
Transition and NEC Mature. To progress the full distance of the

Figure 3: The NEC Journey along the epochs of NEC
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NEC Journey to NEC Mature, there is a requirement to develop a
set of computer algorithms which can be used by a range of simula-
tion models in order to capture this key aspect of NEC and assess its
likely benefits.  There is a requirement, therefore, to represent
ATOGs and the more dynamic doctrine and C2 processes in com-
bat models in order to capture the shift in battlespace paradigm
from the Industrial Age to the Information Age (defined in, for example,
Alberts and Hayes (2003)).

Capturing NEC and ATOGs

Dstl is currently in the second year of a three year study (Holt et al.
2007) concerned with modelling the C2 associated with ATOGs
using WISE (Pearce et al. 2003) as a test-bed.  The focus of the
study as a whole is to develop a more agile command structure to
support analysis of the UK MoD’s aspirations of Network Enabled
Capability (NEC) (Ministry of Defence 2005).  Figure 4 illustrates
how the study areas integrate together to achieve this. 
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The system can be split into two phases: planning and execution.
The planning process is carried out by the Deliberate and Rapid Plan-
ners.  The Deliberate Planner (which shall be described in the next
Section) represents the human decision-making processes that takes
place at the military Strategic and Operational Levels (high command)
where there is generally more time for decision making, and is con-
cerned with the generation and evaluation of multiple Courses of
Action (CoAs).  

In contrast, the Rapid Planner attempts to replicate the processes at
the Tactical Level (battle command) where decisions must be made
quickly in response to a rapidly-changing, dynamic environment. It
is influenced by what is referred to as naturalistic decision making, and
in particular the recognition-primed decision making model (Klein
1989) which “corresponds to decision-making by experts under
stress” (Moffat 2002).  The focus, then, is on assessing the situation
and applying previous experience in similar scenarios to rapidly
select a (tactical) CoA.  Moffat (2002) summarises:

“The output of the [Recognition-Primed Decision] model is a 
command decision (the selection of a CoA) made not on the 
basis of extensive option generation and evaluation but instead 
by recognising the extant situation and using experience to 
jump immediately to an appropriate solution (a CoA).”

The Commander of a Brigade (represented by the Deliberate Plan-
ner) gives each of his immediate subordinates (Battlegroup Com-
manders) a mission.  Each of these must then plan how to execute
their designated assignments (represented by the Rapid Planner).
The same process is replicated lower down in the C2 hierarchy; for
instance, each Company/Squadron will receive a mission from
their Battlegroup Commander.  Each peer decision maker shares
cues with the other decision makers in order to allow them to antic-
ipate each other’s decisions, and in doing so, enable a coordinated
plan to be constructed.  These planning processes result in the selec-
tion of a CoA which a Commander requires to be prosecuted in
order to achieve an effect.  The reader is referred to Moffat (2002)
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for more information on the Deliberate and Rapid Planners.  The
focus of this paper is on improving the quality of the information
supplied to the Deliberate Planner.  

The execution phase of the system (which consists of intelligent
movement algorithms and learning technologies) are concerned
with the intelligent execution of a CoA.  Within this context, intelli-
gent execution is concerned with an agent’s ability to plan and exe-
cute a given CoA as specified by the Rapid Planner, without
recourse to the use of fixed templates or rules that can restrict the
ability of an agent to adapt to new or emerging changes in a situa-
tion.  

The intelligent movement algorithms allow a formation to adjust to
gains- or losses- of subordinate agents (for example, losses through
combat degradation or agile and dynamic task reorganisation in
response to a changing situation) while maintaining a credible force
disposition. 

The focus of the learning technologies aspect of the research is on
the development of artificially intelligent learning algorithms that
are capable of adapting to changing situations and learning about
the best way to tackle new situations when executing CoAs.  The
aspiration is to develop algorithms which not only have an ability to
generalise well in unseen scenarios and to be adaptive, but which
exhibit the desirable property of being able to evolve a diverse range
of behaviours simultaneously.

So far, it has been argued that military models of conflict need to be
developed to reflect new processes in C2 which are required as a
result of a new battlespace paradigm and to move from the NEC
Transition state to NEC Mature.  Key terms and concepts have
been introduced, and an overview has been given of the work that
Dstl is conducting to meet these new challenges in modelling.  The
focus of the remainder of the article is on improvements to the
Deliberate Planner.  It is intended that improvements to this deci-
sion-making process will allow models of military conflict to operate
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more realistically in simulation mode.  The Deliberate Planner is
described in more detail and the limitations of the existing imple-
mentation are highlighted.  Subsequently, work is presented to
address these limitations.

The Deliberate Planner

The Deliberate Planner (which is embedded in WISE) is a represen-
tation of human decision-making at the military Strategic and
Operational Levels (Moffat 2002). The process is referred to by
Moffat (2007) as rational choice decision making (in contrast to recognition-
primed decision making described in the previous Section) and is sum-
marised as follows:

“Deliberate Planning represents decision-making based on a 
rational choice among alternatives ... In such rational choice 
decision-making the emphasis is on the explicit generation, and 
subsequent evaluation, of alternative courses of action.  In 
military terms it corresponds to the generation of a plan which 
involves the allocation of multiple forces both in space and time, 
in order to prosecute an intent and objectives.”

The decision-process that the Deliberate Planner replicates can be
best described from a ‘real world’ perspective:  

First, the Blue Commander must evaluate the options that the
enemy Commander may have, and Red’s possible intended effect
using a range of input data values (see below).  Moffat (2002)
describes this as an assessment of Enemy Capabilities and Intentions
(ECI).  Once a range of ECIs has been considered, the Blue Com-
mander must determine the likelihood of each ECI and rank them
according to this assessment.

Having identified likely enemy options, the friendly Commander
must select a Course of Action (CoA) for Blue forces.  This is
achieved by matching Blue CoAs to the range of ECIs and evaluat-
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ing each ECI-CoA pair.  Having done this, the Blue Commander
must compare all the CoAs available to him and select his favoured
option along with his intended effect.  These directives are then
passed to subordinate Commanders (represented by the Rapid
Planner) who determine how to execute the plans at the tactical
level.  

In implementation terms, the Deliberate Planner utilises Game
Theory and Bayesian techniques to generate ECIs.  A large data set
is required in order that the Planner can span the set of possible
enemy options against which the Red Commander’s intent is
assessed.  More specifically, it requires inputs to describe the possi-
ble enemy avenues of approach; possible enemy objectives and
likely courses of action for Red3.  The nature of these inputs can
result in models that are ‘scripted’ along set lines which does not
allow for dynamic and emerging agent behaviour.

In the next Section, novel mathematical methods are presented
which aim to improve the process by which a Blue CoA is selected.
The algorithms described will improve the situation assessment by
using a number of cues to give a better indication of adversarial
intent.  In doing so, the number of ECIs generated by the Deliber-
ate Planner will be reduced resulting in better information on which
to base subsequent decision-making.

Ultimately, it is hoped that these enhancements will result in the
removal of input data artificialities (such as those described above)
from the existing generation of combat models which are currently
required to enable these models to run but play no part in the mili-
tary planning processes.

3. In contrast, the Rapid Planner requires data associated with low-level tactical 
cues such as the value of the local perceived combat-power ratios.  It then uses a 
form of pattern-matching to map these cues to a CoA.  
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Identifying Collective Behaviour

The aim of this research is to look at ways of identifying groups and
activity between those groups, and to infer intent by examining
characteristic group behaviours and indicators of intention.  It has
been argued that this will result in a reduction in the amount of
information that the Deliberate Planner has to assess in order to
make its decisions.  It is hypothesised that a better indication of
adversarial intent will result in better strategic and operational deci-
sions being made by the Deliberate Planner. Prototypes of the devel-
oped algorithms are implemented, for verification and validation in
WISE.  Ultimately, the aspiration is for an algorithm that can be
embedded in a variety of combat models.

Gelenbe et al. (2006a) document the results of a three month pre-
liminary study conducted at Imperial College, London, in collabo-
ration with Dstl to evaluate computational methods for identifying
collective behaviour in enemy units set in a conventional (symmet-
ric) warfare environment.  It is anticipated that the method devel-
oped can then be applied to asymmetric warfare.  A multi-agent
modelling approach was used to test candidate solutions (Gelenbe et
al. 2006a, 2006b).  Principally, two suitable computational methods
were identified for application: k-means clustering, and an approach
using a Minimum Spanning Tree (MST).

k-means clustering (MacQueen 1967) is a technique based on spa-
tial interest.  A disadvantage of this method of clustering is that the
number of clusters has to be specified beforehand.  It was deter-
mined that an approach using a network Minimum Spanning Tree
(MST) was the most suitable for general application in the context
of collective behaviour modelling by providing a computational
framework within which to model the fusion of different behaviour
identifiers.  It proceeds as follows:  
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• A fully connected bi-directional weighted graph with vertices 

and edges is constructed.  The vertices represent 

observed agents, and the weights of the edges are a measure of 
how well a pair of agents is related.

• An MST is built using Dijkstra’s Algorithm (Dijkstra 1959) 
whereby the agents are all connected in such a way that the sum 
of the arc weights is the minimum possible.

• A density approximation of the distribution of MST arcs is com-
puted using Gaussian Parzen Window estimation (Parzen 1962).  
The arcs that have a value above some pre-defined cut-off 
threshold are removed.  The resulting ‘forests’ (that is, a collec-
tion of non-cyclic trees) represent groups of agents.

Figure 5 illustrates the algorithm pictorially: The top image repre-
sents the fully connected graph.  The bottom left image represents
the MST and the bottom right image represents the forests that
remain after cropping the MST.
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Figure 5: MST Algorithm
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The utility of this method is two-fold:  the weights are free variables
that can be defined for a specific application (e.g. separation dis-
tance, velocity difference, density of communications traffic, etc).  In
addition, the method allows fusion of cues to be easily modelled and
weighted to reflect the importance of the individual factors’ contri-
butions to the definition of collective behaviour.

This method has subsequently been developed and implemented by
Dstl and shall be presented here:

The algorithm takes as its inputs the geographical location of an
agent; its speed and its heading.  This is used to calculate the cues
which weight the edges of the graph.  The cues used are: distance
between a pair of agents, difference in speed between a pair of agents
and difference in heading between a pair of agents4.  Each cue is nor-
malised in the range [0,1] by dividing by the maximum observed
value for that cue in order that a cue does not dominate due to dif-
ferences in unit (i.e. distance in metres is likely to be a much larger
value than heading in degrees).  

The edge-weight (EWi,j) of the graph (that is, a measure of relatedness
between any two agents, i and j) is given by Equation 1.

Equation 1

4. with care taken to ensure that differences are taken in the minor sector so that 
the difference in heading between an agent travelling at 1 and one travelling at 
359 ais 2 and not 358 .
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Given that there are agents: is defined as the distance between
the two agents and max is the maximum distance over all pairs
of agents; similarly and are the respective differences in
speed and heading between all pairs of agents.

The parameters , and are weights which can be adjusted
according to how ‘important’ each cue is considered to be.  For
instance, speed and heading will be more discriminatory for groups
which are co-located.  In contrast, when agents are spread over a
wide geographical area with varying speeds and headings, each cue
becomes important when trying to group agents together.  The
weights are adjusted dynamically with each execution of the algo-
rithm, based upon the corresponding cues’ standard deviation and
range.  

First, the input data for each of the cues is normalised, to give ,
using central limit theory:  for example, consider the set of agent
speeds 

, for i  {1,2,...,n}

where is a value of the cue;

is the mean of the set ;

is the standard deviation of the set .

The range of the normalised set of cues is then calculated:

This process is repeated for the other sets of cues (viz. heading and
distance between a pair of agents).  Completing the example, then, the
weight of the speed cue, is calculated by dividing range  by the sum
of all three of the calculated ranges.  Having computed the weight
of each edge, the algorithm proceeds as described above.  For the
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purpose of prototyping the algorithm, the cut-off threshold above
which arcs are removed to compute forests is set at 0.9. 

Confidence Scoring

Having hypothesised which agents are grouped together, it is useful
to provide some means by which to measure the confidence that the
algorithm has in these groupings.  If the speeds and headings of the
agents within each cluster are similar, this is used as an indication
that they do indeed belong in the same group.  In contrast, if there
is a wide spread of speeds and headings of the agents within the same
cluster, then there is a lower confidence in the grouping.  Based on
this premise, the confidence in a hypothesised cluster (a set C, which
defines a subset of agents that are grouped together) is calculated
according to Equation 2.  The standard deviation of the speed and
the heading are normalised by the range of values for each property.
Given that the difference in heading between, for example, an agent
travelling at 2  and another at 358  is 4  (rather than 356 ), head-
ings are adjusted to ensure that they lie in the range [-180 ,
+180 ].  This results in the difference in heading being maintained
but the standard deviation being reduced. and are the values
that are used to weight the cues in Equation 1.

Equation 2
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It is desirable to normalise the possible values of Confidence in
Equation 2.  This can be done by considering the range of values
that the denominator can take (Richardson 2007).  Without loss of a
generality, it can be shown (see Appendix A) that for a cluster of P
agents, the confidence lies in the range defined by:

As noted by Richardson (2007), the upper limit is dependent on the
cluster size.  Therefore, the raw confidence score is scaled to take
into account the cluster size, placing more confidence in smaller
clusters.

Let the minimum and maximum possible confidences be and
 respectively; a normalised score in the range [0,1] is given by:

Equation 3

When P = 2, so that the normalised
confidence is undefined.

An algorithm for identifying which agents may be working collec-
tively has been described.  Each hypothesised cluster has a score
attached to it to indicate the confidence that the algorithm has in the
identified groupings.  Initial results are presented later.
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Inferring Intent

Having hypothesised groups, the second aim of this research is to
infer intent.  Given M dynamically evolving clusters in a synthetic
environment where there is a possible destination objectives,
there is a requirement for a method by which each cluster-objective
pair can be scored to represent the likelihood that a specific cluster
is moving towards an objective.  Currently, intent is inferred with
respect to the position of static objectives; these may be, for exam-
ple, key geographical features which Red may wish to dominate.
The positions of such features are passed as input parameters to the
algorithm.  This prediction of intent, or likelihood scoring, is calcu-
lated dynamically thus confidence varies as a function of time.

Daglish (2007) proposes a method of likelihood scoring for a set of tar-
gets.  In this paper, this method is adapted by considering a set of
objectives (defined by locations).  Briefly, the method can be
described with reference to Figure 6.  All angles are measured in an
anti-clockwise direction from the positive x-axis.  The direction of
movement, representing the direction of a cluster, is defined by the

N

x 
Intent 
direction 

Obj2 

ω

Obj1 

Obj3 

Obj4 
Obj5 

Obj6 

θ2 

Figure 6: Direction of Intent and a Collective of Possible Objective 
Locations
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angle w and is taken to be the mean heading of the agents in that
cluster.

A family of functions is defined to give an indication of intent with
respect to an objective; thes e are stated in Equation 4.  Put another
way, it calculates the likelihood th at the cluster is  moving towards
an objective: 

Equation 4

for , then:

;

;

given  is the direction of movement of a cluster;

is the angle between the positive x-axis and the arc that links Obj
i and the origin, measured in an anti-clockwise direction from (see,
for example, Figure 6).

Figure 7 shows the first five members in the family of functions
, given  for any angle .  

Clearly illustrated is a tripartite tendency of the curve, which corre-
sponds to the classes defined below.  This tendency becomes more
pronounced as n increases.  When considering a single direction of
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movement against a single objective location, the significant values
of , determined by the value of  are as follows:

•  The direction of intent is the objective location

•  It is undecided whether the direction of intent is 

aligned with the objective location
•  The direction of intent is not the objective location

As n increases, the plateau shown in Figure 7 becomes longer.  Fur-

thermore, when n is small the class defined by  is also

small.  The choice of the value of n will determine the degree of sen-

sitivity of the function:  with increasing n the bins corresponding to

 = 0 and   = 1 become narrower.

The choice was made to use n = 10 at this developmental stage,
purely as a ‘proof of principle’ to show the function of the algorithm
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Figure 7: Naive Target Commitment Functions



22     The International C2 Journal | Vol 2, No 2

in inferring intent.  Observe, though, that a wider plateau results in
a higher likelihood that those clusters sent to the  = 0 and  = 1
classes are correct, and that increasing n from 10 to 20 has only a
small effect upon the length of the plateau.  It is intended that future
development of the algorithm will attempt to assign n dynamically.
It could be argued, for instance, that the choice of n should be
allowed to vary depending upon scenario or time-in-the-battle,
where the degree of accuracy becomes more critical.  For instance,
for high or very high values of n, ‘marginal’ hostile intent could be
masked by the extent of this plateau5.

In addition to an indication of intent, the destination objectives can
prioritised relative to the naively perceived commitments of any
given cluster according to Equation 5:   

Equation 5

for 

and where is the total number of objectives.

Note that , such that the set  is termed a set of
Ranking Commitments for the given set of objective locations.  That is,
the Ranking Commitments suggest where the attention of the Blue
Commander should lie, and the relative importance of these priori-
ties.  This will allow decisions to be made with regards allocation of
assets (force priorities).

5. False inferences of this type would not present so much of a problem for those 
clusters that are classified as undecided rather than non-threatening (that is, those for 
which  tends to zero).
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Two algorithms have been presented which together identify agents
which are operating collectively, and infer their intent with respect
to a number of static objectives.  The next Section presents initial
results from executing these algorithms. 

Results and Discussion

Trials using the WISE wargame were conducted, enlisting Dstl Mil-
itary Advisers as gamers, to play-out a number of conflict scenarios.
Input data for the algorithm was extracted from the movement logs
of these games providing geographical location, heading and speed for
a number of agents over time.  This allowed the output from the
algorithms to be compared to ground-truth.  In addition to the
movement data, four further positions were input as objective loca-
tions.

Figure 8 is a comparison of ground-truth (left-hand image) with the
output from the clustering algorithm (right-hand image). The
colours on the left-hand image were assigned by a human player as

Figure 8: Ground Truth c.f. Hypothesised Clusters
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an aid to understand the possible groups.  The output from the clus-
tering algorithm displays a number of forests which indicate which
agents (represented by vertices) are judged to be operating collec-
tively.  The groups are numbered incrementally and coloured for
visual clarity.  In addition, the location of the four objectives is also
shown (labelled in the form Obj x). 

Visual comparison between the two images in Figure 8 clearly
shows a strong mapping between the ground-truth and the clusters
identified by the algorithm; a selection of comparisons is highlighted
for clarity.  This is consistent with initial results, a more detailed dis-
cussion of which can be found in Gelenbe et al. (2006b). 

The graph in Figure 9 shows the confidence that the algorithm has
in each of the hypothesised groupings according to Equations 2 and
3.  It can be seen that Cluster 2 is undefined since it comprises only
two members; given that Cluster 8 is elongated, it would not be
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inconceivable that Cluster 2 and Cluster 8 are merged for lower
MST cut-off threshold values to form a larger cluster.  In compari-
son Cluster 7 has a fairly low confidence score.  The factors that
contribute to this are:  the cluster is not isolated (i.e. there are some
neighbours) and the shape of the cluster is anisotropic.  Clusters 3,
4, 5 and 9 correspond to clusters with ‘middle range’ scores; their
shapes are anisotropic but their headings are sufficiently distinct.
This illustrates that the cluster confidence scoring, based on the
range of speed and heading (normalised by the respective standard
deviations), gives plausible results that can be explained by rational
argument.

Table 1 gives the headings for each of the hypothesised clusters (taken
as the mean heading of the agents in that cluster) and shows the out-
put from the intent inferencing algorithm; that is an indication of
the likelihood that a cluster is moving towards an objective.

Table 1. Cluster Heading and Likelihood that a Cluster Is Moving 
Towards an Objective

Recall from the previous Section and Equation 4 that: 

•  The direction of intent is the objective location

•  It is undecided whether the direction of intent is 

aligned with the objective location

•  The direction of intent is not the objective location

Cluster (Heading) Obj 1 Obj 2 Obj 3 Obj 4 

1  (88.16°) 0.048 0.500 1.000 0.500 

2  (349.25°) 0.500 0.006 0.500 0.500 

3  (29.75°) 0.500 0.500 0.621 0.500 

4  (0.61°) 0.500 0.422 0.500 0.499 

5  (10.03°) 0.613 0.500 0.502 0.948 

6  (270.71°) 0.940 0.500 0.459 0.512 

7  (42.99°) 0.500 0.500 0.521 0.850 

8  (19.71°) 0.500 0.495 0.500 0.500 

9  (42.93°) 0.500 0.500 0.676 0.503 

⇒=1τω
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Given Figure 8 and the associated headings and likelihood scores

shown in Table 1, it can be seen that the algorithm is calculating

scores consistent with expectation.  For instance, given the heading of

Cluster 1 and the position of Objective 3, it is apparent that if Clus-

ter 1 continued on its heading of 88.16× (as measured clockwise from

North), its path would coincide with the position of the objective.

This is reflected in the likelihood score of .  In contrast,

Cluster 1 is diametrically opposed to Obj 1 and so .  Simi-

larly, Obj 4 is currently a likely destination for Cluster 5.  Cluster 4,

which is moving North, does not appear to be travelling towards

any of the objectives, and so for all objectives.  

Table 2 gives the Ranking Commitments (as calculated using Equa-
tion 5) for the set of objective locations.  That is, an indication as to
where the attention of the Blue Commander should lie, and the rel-
ative importance of these priorities.  

Table 2. Naively Perceived Ranking Commitments

By comparing the values in Table 2 with those in Table 1, it is
clearly seen that likelihood scores for each cluster-objective pair are
reflected in the distribution of the Ranking Commitments.  For

1aτω
n

0aτω
n

2
1

aτω
n

 Obj 1 Obj 2 Obj 3 Obj 4 

Cluster 1 0.024 0.244 0.488 0.244 

Cluster 2 0.332 0.004 0.332 0.332 

Cluster 3 0.236 0.236 0.293 0.236 

Cluster 4 0.260 0.220 0.260 0.260 

Cluster 5 0.239 0.195 0.196 0.370 

Cluster 6 0.390 0.207 0.190 0.212 

Cluster 7 0.211 0.211 0.220 0.358 

Cluster 8 0.251 0.248 0.251 0.251 

Cluster 9 0.229 0.229 0.310 0.231 
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example, the Blue Commander’s attention with respect to Cluster 1
should be weighted towards Objective 3 whereas for Cluster 4, none
of the objectives are considered more of a priority than the others.

The algorithm was tested further on a generated dataset over 4
time-steps, t, such that two groups moved towards each other, cross-
ing each other’s path at t = 3 before continuing on their path.

The dataset was compiled in such a way that the two groups had
distinct mean speeds and headings.  The output over the 4 time-steps is
shown in Figure 10; note that the image at t = 3 is of a larger scale
than the other three.  It is clearly shown that the algorithm success-
fully distinguishes between the two groups when they cross.  Table 3
shows the dynamically-calculated values of the weights used in
Equation 1 ( ,  and ) at each time step.  At t = 3 when the twoα β γ

Figure 10: Algorithm output at time-step t = 1 (top left), t = 2 (top 
right), t = 3 (bottom left), t = 4 (bottom right)
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groups are geographically co-located, speed and heading become
more discriminatory and so the values of these weights is much
higher than that for distance.  At each of the other time-steps, none of
the cues is considered to be more discriminatory than the others.

Table 3. Values of the parameters used to weight each of the cues at 
each time-step

Conclusions and Future Work

In this paper, the changes in force structure as part of the UK
MoD’s aspirations of NEC have been described.  It has been argued
that simulation models of conflict need to be updated in order to
capture these changes and reflect the progression from NEC Tran-
sition to NEC Mature.  Novel algorithms have been presented
which aim to improve the decision making process carried out by
the Deliberate Planner by providing a better indication of adversar-
ial intent.  The algorithms have been tested on data taken from a
conventional warfare environment before being transferred to the
asymmetric domain.  Initial results have been presented; first, the
clustering algorithm is successful at identifying clusters and is consis-
tent with previous published work (Gelenbe et al. 2006b).   

Furthermore, the results in Figure 10 and Table 3 demonstrate the
utility of ,  and  in Equation 1 in distinguishing between
groups even when they are geographically co-located.  In this
instance, speed and heading become more discriminatory than distance
(between pairs of agents) when trying to identify discrete groups.
The flexibility of the MST method allows for the addition of further
attributes determining collaborative behaviour. For example, estab-

distance speed heading
1t 0.314 0.350 0.335 

2t 0.363 0.345 0.292 
3t 0.027 0.272 0.242 

4t 0.341 0.346 0.313 

α β γ
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lishing levels of communication traffic between pairs of agents may
give an indication of their organisational structure.

The sizes of the clusters depend on the value of the cut-off threshold
used in determining the MST.  It could be suggested that varying
this cut-off threshold will result in the discovery of different sizes of
organisations.  For example, if the cut-off is ‘low’ so that few (but
large) clusters are found, these might correspond to Red brigades;
similarly, a ‘medium’ cut-off may result in small clusters which
might correspond to the battlegroups; and even ‘higher’ cut-off may
produce clusters that represent company groups.

It may be useful to run the algorithm using different levels of cut-off
threshold.  This will enable better decision-making by giving the
commander varying levels of detail of the same scenario.

It has been shown that the cluster confidence scheme, based on the
range of speed and heading (normalised by the respective standard
deviations), is successful in discriminating between weak and strong
clusters.  Such a measure may be used to weight the priority attrib-
uted to the different decision options presented to Commanders.

Having hypothesised groups of agents working collectively, an indi-
cation of intent is given with respect to a number of static objectives.
The results presented in the previous Section demonstrate that the
likelihood scores calculated are intuitive.  The associated Ranking
Commitments were distributed in accordance with these likelihood
scores.  Together, the two values can be said to provide a good indi-
cation of intent and the severity of that threat.

The next phase of this work is to implement the clustering and
intent algorithms in WISE for further validation and verification.
Figure 11 illustrates how the output might be displayed graphically
to represent the information upon which the Deliberate Planner is
making its decisions.  The left hand image shows the hypothesised
clusters and associated confidence in those groupings; the right
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hand image displays the mean heading of each group and the highest
calculated intent likelihood value (as given by Equation 4).

The intent inferencing algorithm does not take into account the
local terrain.  For example, even though  in Equation 4 may be
close to 1 for a given cluster-objective pair, the local terrain may
prevent that cluster from traversing the path from its instantaneous
position to the objective.  The host model could, therefore, pass a
value to the algorithm as a terrain complexity score for the immediate
area.  This assessment could then be factored into the calculation to
moderate the likelihood score appropriately.

In addition, the confidence that the algorithm has in the hypothe-
sised groupings (Figure 9) should be used to weight the Ranking
Commitments (Table 2).  For instance, a group which is moving
towards an objective (as given in Table 1) and for which the algo-
rithm is confident is indeed operating collectively, should be more of
a priority than one which is moving towards an objective, but for
which the algorithm is less confident in its grouping.  This will allow

τω
n

Figure 11: Example Wargame Display



HOSSAIN ET AL. | Identifying Collective Behaviour     31

the Commander to make better decisions as to how best to allocate
his assets.

Each of these enhancements to the algorithm as reported, will fur-
ther improve the quality of information on which the Deliberate
Planner makes its decisions and result in a better representation of
modern C2 within combat models.
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Appendix A

The following proof taken from Richardson (2007) derives the mini-
mum and maximum values  for the confidence in each hypothesised
cluster as given by Equation 2. 

Without loss of generality, suppose that there are P points in the
cluster, the values of one of the cues are and their
minimum and maximum values are a = min{xi} and  b = max{xi}
respectively. 

The confidence is minimum wh en each  term is maximum:

This occurs when the points ar e most dispersed. Suppose that n of

the points are at a and that  are at b.  The standard devia-

tion, σ, will be calculated  from the mean of the xi, E[x], and the

expectation of the xi
2, E[x2].  

Then:
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Now  is the range, so

 .

This is greatest when  when

.

Suppose that all the cues conform to this arrangement, then the
minimum possible confidence is:

.

Conversely, the confidence is maximum when each term is

minimum:  This term is smallest when the points are least dis-

persed.  Suppose that there are single points at each of a and b, and

that the other P - 2 points are at the midpoint.

It should be noted that when there are just two points, this reduces
to the situation described above for minimum confidence. It can be
shown that this arrangement results in a larger confidence than if
one point is at one end of the range, and all the other P - 1 points
are at the other end.

For the situation outlined above,
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so that

 and .

Since  is the range,

.

It can be seen that, unlike the expression for the greatest value, this

depends on the number of points in the cluster, P, and that when

, the confidence returned is .

Suppose that all the cues conform to this arrangement, then the
maximum possible confidence is:

.

For a cluster of P points, the confidence lies in the range defined by:
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