
ODP-based Improvements of C4ISR-AF*

Jan Øyvind AagedalÀÀ, Arne-Jørgen BerreÀÀ, Bjørn W. BjangerÀÀ, Tor NepleÀÀ,
Camilla B årnes RoarkÁÁ

À SINTEF Telecom and Informatics, P.O.Box 124 Blindern, N-0314 Oslo, Norway. Tel:
+47 22 06 73 00, fax: +47 22 06 73 50,
{joea | bjornb | ajb | tne}@informatics.sintef.no

Á CCIS House, P.O. Box 452, N-1371 Asker, Norway. Tel: +47 66 76 58 00, fax: +47 66
90 36 60, cbr@ccis.no

Abstract

This paper introduces a reference architecture based on C4ISR-AF extended with concepts from
ISO RM-ODP. The work is a result of experiences using C4ISR-AF and certain shortcomings
identified (namely more focus on distribution aspects, security issues and an information model).
RM-ODP was chosen because of its influence in the computer science society, and because it
provides a consistent overall framework and foundation for describing distributed systems. An
example using the UML notation is presented to obtain more insight in using the different
models.

1. Introduction

Military operations often require the joint efforts of a mix of forces. The ability for the
supporting information systems to interoperate is essential to succeed [Department of Defense,
1998].

During the last decades many military computer systems have been built, each with a specific
purpose in mind. The results are mainly stand-alone systems that satisfy a set of requirements,
but that are not able to communicate with other systems and are difficult to maintain.

As the computer industry has evolved and more high-level features are readily available, more
focus has been put on interoperable systems that still provide the same basic functionality. It has
become clear that most military units need the same subset of functions to support planning,
report status, give orders, etc., and these functions should be coordinated. Specific functionality
such as fire direction systems, logistics support, etc. can then be added as needed. However, the
systems are large and complex and involve many intricacies. To succeed in building such
systems, it is useful to build an architecture that contains the essential models of the systems and
that can be used as a basis for adding functionality to each specific system. In addition, an
architecture enforce that the systems are developed using the same concepts. From this, reusable
elements can be discovered, requirements on interoperability imposed and potential areas of
conflicts identified.

This paper is structured as follows: Section 1 defines the important terms, gives a brief
introduction to RM-ODP and describes the importance of interoperability. Section 2 introduces

* The work reported herein is sponsored by the Norwegian Army Material Command.

the experience gained when building the first iteration of the Norwegian C2IS Architecture.
Section 3 suggests improvements to C4ISR-AF and introduces a reference architecture with
elements from C4ISR-AF and ISO RM-ODP. Finally, Section 4 gives examples of some of the
models presented in Section 3 and how they correspond.

1.1 Terminology

In order to avoid confusion of the exact meaning of some important terms used, we define the
semantics of the terms system, architecture, architecture framework and reference architecture.

A system is any part of the world we choose to regard as a whole. A system can consist of
subsystems, each of which is a system in its own right.

In the context of command and control, the term system describes the collection of resources
necessary to perform a function with defined goals. The term encompasses

• qualified personnel,
• infrastructure and hardware,
• specified routines and methods, and
• their support in information systems and proper equipment.

This wide use of the term can be a source to confusion, even more so when the definition is used
recursively. Nevertheless, a system describes a collection of resources, routines, facilities and
actors put together for a specific purpose in a specific context.

All systems have an architecture that can be viewed from a number of perspectives. For
instance, security architecture, operational architecture and physical architecture are all
perspectives of the architecture, all with different foci. An <X> architecture (where <X> denotes
any one perspective on the architecture) contains a description of essential elements and
relationships that systems should include with respect to <X>. Different systems that have the
same <X> architecture are conformant with respect to <X> in that they follow the same
guidelines and principles on this; hence, they contain the elements and relationships prescribed
by the <X> architecture. For instance, two systems can both use third-party authentication as
their authentication architecture; they then have the same authentication architecture even if they
use two different third-parties for the actual authentication. As an architecture defines a set of
perspectives (<X> architectures), it describes a coherent set of guidelines and principles a
conformant system should follow. When creating a system according to this, the resultant system
should meet all the properties of the constituent <X> architectures. The term architecture is in
our context mostly used when discussing information systems, but with the broad definition of
system above, systems like an organization will also have an architecture. The organizational
hierarchy is one perspective on this architecture, a work process description is an other.

An architecture framework is a collection of generic <X> architectures (perspectives). While an
architecture also consists of a set of <X> architectures (perspectives), they differ in level of
abstraction. A system has an architecture that represents the essential aspects of that system,
while an architecture has an architecture framework that represents the essential aspects of that
architecture. Many architectures can follow the same architecture framework just like many
systems can have the same architecture. An architecture framework can for instance prescribe
that architectures should include a security and a physical architecture, that the security
architecture should include the specification of security levels, that the physical architecture

should include a specification of nodes, and that the specification of communication between
nodes should include security levels.

A reference architecture defines a set of useful terms and concepts to use when specifying
architecture frameworks, architectures or parts thereof, together with some rules on how to
structure the architectures or architecture frameworks. Based on definitions of important terms, a
reference architecture could for instance include definitions of different <X> architectures and
how they relate, e.g. what comprises an security architecture and a physical architecture, and
how these relate.

Architecture
framework

System

Architecture

1

*

<X> architecture
**

0..1

*

<<refine>>

* *
<X> architecture

Reference
Architecture

1

1

*

*

conforms

conforms

uses

uses

Figure 1. Relationships between architecture definition frameworks, reference architecture, architectures and
systems

Using the UML notation, Figure 1 summarizes the relationship between systems, architectures,
architecture frameworks and reference architecture. The architecture framework defines
properties of some architectures that in turn define the properties of some systems. An
architecture consists of a number of <X> architectures. Some of the <X> architectures are
refinements of the corresponding <X> architectures of the architecture framework. Both the
architecture frameworks and the architectures are defined using terms and concepts from the
reference architecture, and may also be structured according to rules in the reference
architecture.

1.2 RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) [ISO/IEC JTC1/SC21, 1995] is
an ISO standard focusing on open distributed processing systems, and it is, in our terms, a
reference architecture. It creates a framework within which support for distribution, inter-
working, and portability can be integrated. RM-ODP defines a set of basic concepts and an
analytical framework for normalized description of ODP-systems. It also contains the
specification of the required characteristics that qualify distributed processing as open.

RM-ODP divides the specification of ODP systems into five different, but related, viewpoints.
Each viewpoint focuses on some aspect of the systems, disregarding others. However, since each
viewpoint specification is a specification of the same underlying system, concepts defined in one

are often related to concepts in other viewpoint specifications. The viewpoints in RM-ODP are:
enterprise (focuses on purpose, scope and policies), information (focuses on information
processing and relationships between information objects), computational (focuses on functional
specification and decomposition), engineering (focuses on how to solve distribution issues), and
technology (focuses on specific technology and solutions). In the first three viewpoints, a set of
distribution transparencies are chosen (access, location, replication, migration, re-location,
transaction, persistence, and failure), meaning that some of these issues can be regarded as
transparent. How to solve each of the chosen transparencies is addressed in the engineering
viewpoint.

1.3 Interoperability

Literally, interoperability means the ability for two or more systems to co-operate, i.e. work together
in a meaningful sense. As such, interoperability is about being able to exchange information between
the co-operating parties and to ensure that this information keeps the intended interpretation when
passed on to the peer system and further to the end user. The information passed can be both a
message containing information that holds some importance and meaning to someone, or it can be a
procedure call between two parts of two systems, for instance two components exchanging
information.

Posing a requirement of interoperability on two or more systems introduces a series of properties
on the systems that need co-operate. This means that many aspects of a system need to be able to
be compared with similar aspects in other systems and discrepancies identified. On one level, the
systems must be physically and electronically connected. Second, they must be able to
understand the messages being sent over this connection, for instance by using a common
communication protocol. Third, they must be able to interpret the meaning of the data sent over
the connection, that is, the number of bits sent must have a common interpretation. For instance
may some data represent a procedure call on the remote system while other data may represent
conveyed information. Finally, the data must be used in a common context so that the end users
of each system have a shared view of what the systems do.

Interoperability is therefore an issue that must be treated on different abstraction levels and from
different viewpoints, and we believe the five viewpoints of RM-ODP provide a good basis for
discussion of various aspects of interoperability between systems. Interoperability aspects have
different implications at the different viewpoints:

• Technology viewpoint: Describes the technologies chosen in the two systems. One needs
to discuss how these technologies can be bridged.

• Engineering viewpoint: Is it possible to make the mechanisms chosen for communication
and distribution play together? Can objects in the two systems communicate with each
other?

• Information viewpoint: How is information modeled, stored and interpreted in the two
systems? Can the data be converted between the formats without losing their meaning?
For this, the two systems need to have a common understanding of at least parts of the
world.

• Computational viewpoint: The computational viewpoint describes how the systems are
decomposed, and which interfaces the components export. Do the systems already have a

notion of each other and have the knowledge necessary to call procedures in the other, or
do there exist mechanisms for them to discover and interpret these interfaces at run-time?

• Enterprise viewpoint: How do the two organizations work, and in what contexts? Is it
possible for a worker in one organization to put a message from the other side into its
context, and give it the interpretation intended? Will the message then mean the same as it
did when it was sent?

2. Experiences

The Norwegian Defense Research Establishment (NDRE) has strongly recommended that C2IS
systems should be developed using an architecture-driven approach. The motivation for this is
that the architecture will contribute to coherence between the different subsystems. This is true
because the same models and terminology will be used to describe them. As a result of this,
reuse will be encouraged mainly because it is easy to discover similarities in the system design.
Furthermore, the life cycle costs will be reduced owing to the fact that parts of the system easily
can be replaced. When the Norwegian Industry received the contract to design the Norwegian
Army Tactical Command, Control and Information System there was an unspoken requirement
that an Architecture Framework should be used. After an evaluation of the architectural
frameworks C4ISR-AF and ISO RM-ODP, it was decided to use C4ISR-AF to build the
Norwegian C2IS Architecture. There were several reasons for choosing C4ISR-AF:

• It is tailored for military systems
• It gives a good description of the products
• It emphasizes which products that are essential
• It gives good examples.

However we soon discovered that using the framework raised some questions:
• What process is used to develop a product?
• What are the dependencies between the products?
• How can we get from the Operational View to the Systems View?
• How do we maintain consistency in the Architecture?
• Which tools can we use?

Developing the Operational Architecture did not invite many problems. We chose to focus on
OV-5: Activity Model to describe the functionality the system should support. The main
discussion was on how to make the system as independent of the organization as possible. It was
not clear how to achieve this using the concepts defined in C4ISR-AF. We introduced role-
modeling [Reenskaug et al., 1996] to address this problem.

Using the products from the Operational Architecture to develop the System Architecture was a
challenge. The problem was to achieve the correct level of detail and to maintain consistency
between the products. A conceptual model was developed. This model explains how the different
elements of the architecture are connected.

Today no tools are made that fully support architecture-driven development. As we had
experience using RDD-100, which is a requirement driven system engineering tool, we used this
to build the first iteration of the Norwegian C2IS Architecture. However, in time we will focus
on using UML-notation and change to an UML-based tool. Using RDD-100 was not trivial, and
it was an effort to make the tool support what we wanted the architecture to express.

In retrospect, after using C4ISR-AF to build the first iteration of the Norwegian C2IS
Architecture, we believe we need to focus more strongly on distribution and security aspects, and
on the information model. These aspects were problem areas, and by emphasizing them we hope
to improve our architecture. We also believe it is important to build an architecture where the
requirements are reflected in the system in a manner that makes them traceable.

3. Suggested improvements

C4ISR-AF divides the specification of a system into three different architecture views. It is our
view that the approach of RM-ODP of refining it into five viewpoints is useful, and that the more
object-oriented approach of RM-ODP is beneficial to the development of complex systems.
Specifically, RM-ODP makes distribution an important concern, it makes the information
viewpoint explicit, and it introduces the concept of roles.

Based on these observations, we created MACCIS (Minimal Architecture for CCIS in the
Norwegian Army) [Neple et al., 1999]. MACCIS consists of a reference architecture that
prescribes how systems following this architecture should be described and built, and a process
of maintaining this reference architecture that includes procedures of how to handle changes in
the reference architecture. This is shown in Figure 2.

MACCIS

Maintenance
process

Reference architecture

Figure 2. MACCIS

The reference architecture consists of a description of five sets of models and a process to
develop these models. The models represent, when created, the essential parts of the final
system. However, in the reference architecture itself only the models to create and their
properties are described. The system developers then use these model descriptions when
modeling and creating the real system. The reference architecture also contains a discussion of
possible tool chains that can be used to develop both the models and the system itself. Finally,
the reference architecture contains a number of standard elements in some of the models. In this
version of the reference architecture there are no such standard elements, hence the name
minimal architecture. Future versions will have an increasing number of standard elements
included. These standard elements and their relationships will make the architecture framework
for CCIS in the Norwegian Army, and represent one important tool to facilitate interoperability.
The inclusion of these new elements is the most important activity that is regulated by the
maintenance process.

The model descriptions that are part of the reference architecture are grouped into five different,
but related, sets (herein called viewpoints). Each viewpoint focuses on specific aspects of the
system, leaving others out. However, the models in each viewpoint represent aspects of the same
underlying system, they only focus differently. The consistency between the models is therefore
of particular importance; they all model the same system. Having overlap in the elements used in
the models ensures consistency, and from this conflicts between models can be detected.

Consistency is best enforced by tools, hence requirements of a possible tool chain is discussed in
the MACCIS-report. This is left out in this paper for brevity. Figure 3 shows the structure of the
reference architecture, an important part of the minimal architecture.

Reference architecture

Model descriptions

Enterprise
viewpoint

Information
viewpoint

Computational
viewpoint

Engineering
viewpoint

Technology
viewpoint

Possible tool chains

System
development
process

Standard model elements (initially empty)

Enterprise Information Computational

Engineering Technology

Figure 3. Reference architecture

System developers wanting to conform to the prescribed architecture are the primary users of this
reference architecture. First, they must develop their system according to the system
development process prescribed. Second, they get advice on which tools to use to develop their
system. Third, they get a description of which models they must create when designing their
system. Finally, they get a set of standard elements they must use in their system, and a
description of the models in which these elements are represented.

However, system purchasers are also important users of MACCIS. First, by forcing the use of
MACCIS, they ensure that the system developers follow a well-defined process in developing
the system. Developing systems is an error prone and high-risk activity, by following a well-
funded process it is more lightly that the developers will deliver the system in time, to the right
price and with the right quality. Second, by forcing a set of standard elements to be used,
interoperability between different systems using the same elements can be achieved. Third, by
forcing the developers to model the system using the same set of models, reusable elements can

be discovered that others that use the same set of models can use at a later stage. Putting these
elements into the standard set of elements can even enforce this.

3.1 Viewpoints

C4ISR-AF consists of three architecture views in which a number of deliverables (artifacts) is
defined. We suggest specification of five viewpoints corresponding to the viewpoints of RM-
ODP. Based on the artifacts from C4ISR-AF and the concepts in the five viewpoints of RM-
ODP, we suggest specification of specific models in each viewpoint. The models identified form
the basic set of models. In addition, a number of derived models can be created. These would not
contain any new information, but rather combine information in new and potentially useful ways.

In [Neple et al., 1999], both process of how to develop the models and which UML-diagrams to
use for expressing each model is indicated, this is left out in this paper for brevity.

Figure 4 shows all models in each viewpoint, and two cross-viewpoint documents.

Requirements
Model

Enterprise
Information Model

Enterprise
Process Model

Boundary
 Model

Service
 Model

Static schema

Enterprise
Distribution model

System
Architecture Model

Overview and
Summary

Integrated
Dictionary

Enterprise Security
Model

Organisation
Model

Node Distribution
Architecture

System
Evolution Model

Enterprise
viewpoint

Information
viewpoint Computational

viewpoint

Engineering
viewpoint

System
Security Architecture

Test
Model

Dynamic schema

Invariant
schema

Standards Data Storage
Model

Implementaion
Model

Technology
viewpoint

Architecture
Extension Model

Role-Activity
Distribution Model

Role-Activity
Model

Figure 4. Models overview

Much of the information expressed in these models is also present in C4ISR-AF; the
correspondence between our models and C4ISR-AF artifacts is discussed in the presentation of
each viewpoint.

3.2 Cross-Viewpoint Documents

In addition to the models in the five viewpoints, two cross-viewpoint (C) documents exist. C1 is
a dictionary that defines all terms used in all models. C2 is a system evolution model that
contains descriptions of how versioning, configuration management, etc. are to be handled. This

includes both evolution of the system with its constituent models, and evolution of the enterprise
the system is part of.

Document
reference

Document
name

Essential or
supporting

General nature

C1 Integrated
dictionary

Essential Definitions of all terms used in all models

C2 System
evolution
model

Essential System evolution policies and tools

Table 1: Cross-viewpoint documents

The integrated dictionary in C1 corresponds to AV-2 in C4ISR-AF. C2 has no corresponding
artifact in C4ISR-AF.

3.3 Enterprise Viewpoint

Model
reference

Model name Essential or
supporting

General nature

EV1 Overview and
summary

Essential Purpose, scope, intended users, environment depicted,
high-level graphical representation of operational
concept

EV2 Enterprise
process

Essential Activities, relationships between activities,
constraints and other policies on the activities,
information flow between activities.

EV3 Enterprise
information

Essential Enterprise information objects and their relationships

EV4 Organization Essential Organizational roles, their responsibilities, their
interactions, and related policies

EV5 Distribution Essential Units of distribution within the enterprise

EV6 Role-activity Essential Responsibilities of organizational roles in terms of
activities that must be performed. It combines
activities with roles from the organizational model to
show which roles have responsibility of executing
which activities.

EV7 Role-activity-
distribution

Essential Organizational roles with their activities mapped to
units of distribution. It combines the roles already
combined with the activities they are responsible for
in EV6, with the units of distribution.

EV8 Security Essential High-level security policies

EV9 Requirements Supporting Based on the previous models, this model summarizes
the system requirements, hereunder QoS
requirements.

EV10 Test Supporting Test model of system requirements, including use
cases. It – outlines how the identified requirements
can be tested in the system

Table 2: Enterprise Viewpoint Models

Specification of the enterprise viewpoint of a system is concerned with describing it from an
enterprise (or business) point of view, and as such focuses on the purpose, scope and policies of
the system.

This viewpoint (i.e. the models in this viewpoint) forms the basis for the other viewpoints in that
the system requirements are identified here; the other viewpoints focus on how to meet these
requirements.

3.3.1 The Enterprise Viewpoint in C4ISR-AF

C4ISR-AF has a number of architecture products that defines elements in the enterprise
viewpoint. The following table summarizes where in C4ISR-AF elements from the Enterprise
Viewpoint are represented:

Model
reference

C4ISR-AF
Architecture
Products

Comment

EV1 AV-1, OV-1 One to one between EV1 and the union of AV-1 and OV-1

EV2 OV-5 One to one between these models

EV3 OV-7 EV3 contains the subset of OV-7 that represents enterprise objects

EV4 OV-1 High-level organization contained in OV-1, detailed role descriptions
not in C4ISR-AF

EV5 OV-2 Units of distribution contained in OV-2

EV6 OV-2 Activities performed at each node contained in OV-2

EV7 OV-1 High-level mapping of organization to geographic configuration in
OV-1, detailed mappings not in C4ISR-AF

EV8 Not in C4ISR-AF

EV9 Not explicit in C4ISR-AF

EV10 Not in C4ISR-AF

Table 3: Correspondence between Enterprise Viewpoint and C4ISR-AF

3.4 Computational Viewpoint

Model
reference

Model name Essential or
supporting

General nature

CV1 Architecture Essential System components and their collaboration

CV2 Boundary Essential User interfaces

CV3 Service Essential Design models of service components

Table 4: Computational Viewpoint Models

Specification of the computational viewpoint is concerned with describing the computational
objects and their interactions. The computational viewpoint is based on entities (objects) and
activities (processes) identified in the enterprise viewpoint.

The computational viewpoint defines the distribution-independent design of the system. It
specifies how the functionality of the system is divided into components, how these components
interact and how each such component offering services are designed. It also provides user
interface design.

3.4.1 The Computational Viewpoint in C4ISR-AF

C4ISR-AF has a number of architecture products that defines elements in the computational
viewpoint. The following table summarizes where in C4ISR-AF elements from the
computational viewpoint are represented:

Model
reference

C4ISR-AF
Architecture
Products

Comment

CV1 SV-1, SV-3,
SV-4

CV1 contains SV-1 with the communication between components
as represented in SV-3 and the information flow from SV-4

CV2 Not represented in C4ISR-AF

CV3 SV-7, SV-10a-c CV3 contains the design of components as represented in SV-10a-c,
along with QoS constraints from SV-7

Table 5: Correspondence between Computational Viewpoint and C4ISR-AF

3.5 Information Viewpoint

Model
reference

Model name Essential or
supporting

General nature

IV1 Static schema Essential Facts about information true at a given point in time

IV2 Invariant
schema

Essential Statements always true about the information

IV3 Dynamic
schema

Essential Information processing

Table 6: Information Viewpoint Models

The information viewpoint of a system is concerned with describing the information objects and
information processing in the system. The information viewpoint is based on the entities
identified in the Enterprise Viewpoint, for instance EV3, and information flow identified as types
for parameters etc in the systems viewpoint.

The invariant schema describes facts about the information content of a system that must be true
at any time. For instance "the completion date of a project must not be set to a date before the
start date of the project". It is important to note that the invariant schema should be created first,
as it naturally sets constraints for the other parts of the information schema.

The static schema describes facts about the information in a system at a given point in time. For
instance "upon creation the balance of an account is zero".

The dynamic schema describes how the information in the system changes as the system is used.
This in essence means a description of how the state of information objects change as operations
in the component or object interfaces are called.

To illustrate the state changes, state diagrams should be created for the operations that make
essential changes to the information. Pre- and post-conditions for the operations are also a part
of this work product, and can be depicted as formal statements or plain text. The pre- and post-
conditions can be attached to the interface description in the computational viewpoint, but are in
essence a part of the information viewpoint.

3.5.1 Information Viewpoint in C4ISR-AF

C4ISR-AF has a number of architecture products that are related to the information aspects of
the architecture. The following table summarizes where in C4ISR-AF elements from the
Information Viewpoint are represented:

Model
reference

C4ISR-AF
Architecture
Products

Comment

IV1 OV-7

IV2 OV-7

IV3 OV-7

OV-7 defines the logical information model of C4ISR-AF. Parts of
the information in IV1-3 are not represented by C4ISR-AF.

Table 7: Correspondence between Information Viewpoint and C4ISR-AF

3.6 Engineering Viewpoint

The engineering viewpoint consists of two architectures: Security Architecture and Node
Distribution Architecture.

3.6.1 Security Architecture

This architecture description should describe the different security mechanisms in use in the
system. In EV8, a set of high-level constraints or requirements to the security aspects of the
system at hand is described. Within the Engineering Viewpoint, the choices of security
mechanisms and how these are used is described. Specifically, mechanisms that address the
following issues should be discussed (see Security Service in CORBA[OMG, 1996]):
identification and authentication, authorization and access control, security auditing, security of
communication, non-repudiation, and administration of security information.

Some of the security functionality mentioned above uses other types of security mechanisms
such as cryptography. Such underlying mechanisms should also be discussed, but the focus is on
the listed mechanisms that support transparencies defined in the computational and information
viewpoint. While having a stable set of security mechanisms, the underlying mechanisms such as
cryptography can be changed without affecting the outside view of security.

Model
reference

Model name Essential or
supporting

General nature

ES1 System
security

Essential Security mechanisms that support the security
policies

Table 8: Security Architecture in Engineering Viewpoint

3.6.2 Node Distribution Architecture

The node distribution architecture uses the distribution model in the enterprise viewpoint, and
refines this to include specifications of how the distribution concerns are addressed. The
distribution architecture illustrates how the RM-ODP distribution transparencies used in the
other viewpoints (information and system) are supported. The following transparencies should
be addressed: access, location, failure, migration, relocation, transaction, persistence, and
replication.

Support for each of the distribution transparencies can be specified as general patterns of solution
using collaboration diagrams in UML. These patterns can then be deployed in single instances in
the solution using collaborations as patterns in UML. This is specified in ED1.

In addition to specify how the distribution issues are addressed, the node distribution architecture
also refines the distribution model as specified in the enterprise viewpoint (EV5) to include
physical nodes, that is, computational units where the components reside. This is reflected in
ED2. After the nodes have been identified, one needs to map components from the systems
viewpoint down to these physical nodes. A mapping from the system architecture as specified in
SV1 to the physical distribution nodes is done in ED3.

Model
reference

Model name Essential or
supporting

General nature

ED1 Distribution
patterns

Supporting General solutions to distribution transparencies

ED2 Physical nodes Essential Distribution units refined into physical nodes

ED3 Component
node

Essential Components from system view mapped to physical
nodes

Table 9: Distribution Architecture in Engineering Viewpoint

Note the differences between the table and Figure 4 in that the node distribution architecture in
the engineering viewpoint in the figure comprises ED2-3 and the system security architecture in
the figure is defined in ES1. ED1 is not represented in Figure 4.

3.6.3 Engineering Viewpoint in C4ISR-AF

Model
reference

C4ISR-AF
Architecture
Products

Comment

ES1 OV-7 Security policies related to information only.

ED1 Not addressed in C4ISR-AF

ED2 SV-2

ED3 OV-2, SV-2

Table 10: Models in the Engineering Viewpoint

3.7 Technology Viewpoint

Model
reference

Model name Essential or
supporting

General nature

TV1 Standards Essential Use of standards and infrastructures

TV2 Architecture
extension

Essential Extensions to architecture (CV1) for chosen
technology

TV3 Data storage Essential Physical data model on chosen platform

TV4 Implementation Essential Hardware, code and documentation

Table 11: Models in the Technology Viewpoint

The Technology viewpoint, as the name suggests, is concerned with describing the technological
viewpoints of the system. This includes a wide variety of aspects.

Note that the actual system is part of this viewpoint, TV4 represents the running code and
infrastructure for the system.

3.7.1 Technology Viewpoint in C4ISR-AF

Model
reference

C4ISR-AF
Architecture
Products

Comment

TV1 TV-1, TV-2

TV2 Not represented in C4ISR-AF

TV3 SV-11

TV4 Not represented in C4ISR-AF

Table 12: Correspondence between Technology Viewpoint and C4ISR-AF

4. Example

The intention of this example is to show some of the different models presented in this paper and
how they correspond. The area of concern is to model how an Artillery fire mission is
accomplished and to provide a Fire Direction System for the user.

The first step is to understand the domain and how the system to be developed will help the
users. The figure below shows the actors involved in a fire mission, and then a brief description
of them follows.

Sensor

Fire Direction System

Fire Direction Center (FDC)

Sensor commander Weapon

Figure 5. EV1 - Overview and Summary

• Sensor: a sensor can be a forward observer, artillery hunting radar or a special forward
observer (artillery hunter). Their job is to describe a target as specifically as possible and
then send a call for fire to their Sensor commander.

• Sensor Commander: When a call for fire is received, the sensor commander will control
it against the own troops’ positions, fire co-ordination lines and areas, and relevant orders
and directives, in order to determine whether the call for fire should be acted upon or not.
If not denied, the call for fire is evaluated to decide which Fire Direction Center (FDC) it
should be sent to.

• FDC: The artillery has several FDCs; one for each battery, battalion and one in the
artillery regiment. A FDC is selected to be the lead FDC for the specific fire mission,
depending upon the fire power necessary to fight a target.

• Weapon: Guns and MLRS-launchers receive fire missions from their respective FDCs.

An organization model often helps the understanding of the domain. Figure 6 indicates the
different organization elements and the role they play. The lines indicate communication
between the different elements. The figure does not say how many elements of each type that
exist in the organization. Note that domain-specific symbols are used. Domain experts are used
to expressing their domain models using these symbols, and these symbols are used here to
facilitate communication with them.

FO FSCO/Bn

I I I

Arty Rgt CP

I I

Arty bn CP

I

Arty btt CP Gun

Special FO SFO platoon HQ

MLRS btty CP

I

MLRS
platoon HQ

MLRSAHR AHR platton HQ

Sensor Sensor commander Fire Direction Center Weapon

Figure 6. EV4 - Organization Model

After understanding the domain, the main activities, and the basic organization, an enterprise
process model can be made. In this case a UML activity diagram is used, see Figure 7. EV2
represents the business processes that lay within the scope defined in EV1.

1.1
Make call for fire

Call for fire
[from sensor]

1.2
Control

call for fire

1.3
Evaluate

call for fireCall for fire
[from sensor
commander]

1.4
Select weapon,

shooting pattern and
ammunitionFire mission

Figure 7. EV2 - Enterprise Process Model

When both EV2 and EV4 are modeled, it is fairly simple to model EV6 (Figure 8). Nevertheless,
it is essential to remember the importance of these models. When more details about the
activities in EV2 are revealed, these models should be used to evaluate whether the distribution
of work makes sense. The user should be heavily involved in the making of these models, but an
experienced analyst should suggest changes when it is obvious that the workload is unsuitable.
However, it is important to avoid detailed descriptions of each activity. The focus is to get a
good understanding of the high-level business processes and to identify the information flow
between the different processes.

Sensor FDC WeaponSensor commander

Make
call for fire Call for fire

from sensor
Control

call for fire

Evaluate
call for fire

Call for fire
from sensor
commander

Select weapon,
shooting pattern
and ammunition

Fire mission Fire

Figure 8. EV6 - Role Activity Model

The next thing to do is to combine the roles already combined with the activities (EV6), with the
units of distribution. We can do this using an UML package diagram. Figure 9 demonstrates the
distribution model between the sensor commanders and the FDCs. The area of concern is a fire
mission, thus the dependency is from the sensor commander to the FDC since the sensor
commander triggers further response in a FDC.

Figure 9. EV7 - Distribution Model (Sensor Commander and FDC)

Similar models should be made for distribution between the other roles in focus.

Based on the previous models and other relevant requirements given by the user, EV9 can be
made. There are several ways to model requirements, but it can be useful to start with UML use
case diagrams as shown in Figure 10 and Figure 11.

To narrow the example, the focus is on the role “sensor commander”, specifically FDC/bn who
receives call for fires from his forward observers.

FDC/Arty

FDC

FDC/Arty bn

FDC

FDC-OPS/
Arty btty

FDC

FDC/MLRS

FDC

FSCO/b AHR pl HQ SFO pl HQ

FDC-OPS/
MLRS pl HQ

FDC

SensorSensor comdSensor

Figure 10. EV9 – Requirements Model

The use case “Evaluate call for fire” is marked because it is elaborated further in another use
case diagram, see Figure 11.

Sensor commander
FSCO/bn

Perform simplified analysis of effect

Decide best fit FDC

Send call for fire to FDC

Figure 11. EV9 – Requirements Model: ”Evaluate call for fire”

The models above are the essential models in the enterprise view for this specific example. Now
we can begin to describe the computational objects and their interactions. The first step is to find
reasonable system components that are necessary to meet the system requirements summarized
in EV9. These components are displayed in an UML sequence diagram, see Figure 12. Note that

Sensor Commander
FSCO/bn

Control call for fire

Evaluate call for fire

Report status

Area of concern

Control call for fire
against own troops’
posistion,
fire support cooordination
lines and areas, and
relevant
orders and directives.

these components will support the sensor commander role in the node FSCO/bn, other system
elements that may be in this node are not elaborated in this example.

MsgDispatcher Controller
Effect

analyser

Control call for fire

compute effect data

Chooser

Find best fit FDC

Send call for fire

Sensor(FO)FDC Call for fire

Call for fire

System border

Figure 12. CV1 - Architecture Model: FSCO/bn (automatic mode)

The Computational viewpoint and the Information viewpoint are closely related. The
Information viewpoint is based on the information processing and information needs of the
components in the Computational viewpoint. Likewise, the Computational viewpoint is based on
the concepts set by the description in the Information viewpoint. Hence, iterations between the
different descriptions are necessary. Here we choose to focus on the MsgDispatcher and model
what we need in order to send a message to another node. Figure 13 shows the classes and
methods involved in sending a message.

<<Type>> Address

+getBestCarrier()

<<Type>> MsgDispatcher

+send(msg : Message)
+addSent(msg : Message)
+addUnsent(msg : Message)

<<Type>>Carrier

+send(ph : physical address, msg : Message)

1

*

<<Type>>AddressBook

+findAddress(to : Names) : listOfAddresses

1
1

1

1..*

*

*

Figure 13. CV3a – Service Model, UML class diagram (send outgoing message)

The next step is to write down the pre- and post-conditions for the send-operation on the
MsgDispatcher:

pre: for each msg recipient // may have multicast messages
one carrier must be the preferred one

post: for each msg recipient
if all carriers are down (not available)

add msg to the list of unsent messages
else

add msg to the list of sent messages
and send it on the preferred carrier using the physical

 address of the recipient

Pre- and post-conditions add semantics to the operation specification and can be viewed upon as
a contract specification between the service provider and the service user (client). When the set
of operations along with their pre- and post-conditions are agreed upon on one level of
abstraction, each component providing the services can be further refined without affecting the
overall system.

It can be wise to use a sequence diagram to make sure that what we have been thinking makes
sense. A UML sequence diagram for sending a message is shown in the figure below.

: MsgDispatcher a: AddressBook

send(msg : Message)

adr : Address c : Carrier

a := findAddress(msg.Header.to)

*[for each address in a]c:=adr.getBestCarrier()

*[for each c] {if c != null} c.send(adr.location, msg)

*[for each c] {if c != null} addSent(msg) else addUnsent(msg)

Figure 14. CV3b – Service Model, UML sequence diagram

Parallel with modeling CV3, we model IV2. The result can be viewed in Figure 15.

Message

Header

-to : ListofRec
-from : Node
-dTG : Dato

MsgDispatcher AddressBook

Address

-name : String
-location : Physical address

Carrier

-name : String
-status : Boolean
-priority : Integer

1
1

1

*

sent

*

1

unsent

1

1

1..*

1

*

* {ordered by priority}

Figure 15. IV2 – Information Model, Invariant Schema

To which level of abstraction one chooses to model depends on both domain and application.
Hence, it is important to decide how detailed the models represented in architecture needs to be
before detailed design of each individual component can begin.

This example illustrates the use of MACCIS by modelling a small subset of a “call for fire” use
case. Although presented sequentially, the work on the example was iterative and different
models were developed during the work process, only the final results are presented here.

5. Conclusions and Future Work

Using C4ISR-AF to build the first iteration of the Norwegian Army Tactical Command Control
and Information System Architecture revealed certain deficiencies. These shortcomings can be
summarized as the lack of an information architecture, distribution architecture, security
architecture, role-modeling, and requirements model. We propose to include these aspects in
MACCIS as presented here, and we also suggest dividing the architecture into five viewpoints
instead of three.

The basic ideas of the MACCIS framework have been discussed with representatives from the
C4I domain from USA and UK within the Object Management Group (OMG) special interest
group for C4I (C4I DSIG). Through these discussions it was found that work with the same goal
as MACCIS is underway both in USA and in the UK. The discussions on architectures and
frameworks will continue within this community and will bring valuable input to future versions

of MACCIS. It is also a goal to establish more formal cooperation with the parties from USA
and UK.

Acknowledgements. Major Per Trygve Gundersen and Captain Ole Øyvind Stensli from Norwegian Army Material
Command and research scientist Audun Jensvoll from Norwegian Defense Research Establishment have provided
valuable input to this work.

6. References

[Department of Defense, 1998], Department of Defense. Joint Technical Architecture, v 2.0,
DoD.
[ISO/IEC JTC1/SC21, 1995], ISO/IEC JTC1/SC21. Basic reference model of open distributed
processing, part 1: Overview.
[Neple, T., Aagedal, J. Ø., Bjanger, B. W. and Berre, A.-J., 1999], Neple, T., Aagedal, J. Ø.,
Bjanger, B. W. and Berre, A.-J. MACCIS - Minimal Architecture for CCIS in the Norwegian
Army, SINTEF Telecom and Informatics, Oslo, pp. 48.
[OMG, 1996], OMG. CORBAServices: Common Object Services Specification, Object
Management Group.
[Reenskaug, T., et al., 1996] Reenskaug, T., Wold, P. and Lehne, O. A. (1996) Working with
Objects - The OOram Software Engineering Method, Manning Publications.

