Making a C2 Information System Platform Independent
by Using Internet and Middlewar e Technologies

Gerhard Buhler & Heinz Fal3bender
Research Establishment for Applied Sciences
Research Ingtitute for Communication, Information Processing, and Ergonomics
Neuenahrer Stral3e 20
D-53343 Wachtberg-Werthhoven
Germany
Telephone numbers: (+49) 228/9435 376 & (+49) 228/9435 640
E-mail addresses. buehler@fgan.de & fassbender@fgan.de

Abstract

We describe the concepts and experiences we have made in an ongoing project by applying the
middleware standard CORBA and the internet programming language Java in redesigning the
experimental C2 information system EIGER for making the user able to use the EIGER system
from any platform which is connected to the world wide web and which consists at least of a
world wide web browser which, initsturn, is able to run Java applets.

1. Introduction

By an ongoing project of our institute we want to demonstrate that an experimental C2
information system which is totally platform dependent, because it is implemented on a sun
workstation under Solaris, can be redesigned by using

internet technologies as web browsers and Java applets [Java, 1999] and
middleware technologies as CORBA [CORBA, 1999]

in such a way that it becomes totally platform independent and hence, can be used on every
computer which at least consists of a world wide web browser which is able to run Java applets
and which is connected to the internet.

In the following we want to describe the ideas we have produced and the experiences we have
made in the described project and furthermore, we develop a genera strategy by which an
arbitrary platform dependent C2 information system or more generally a legacy system can be
redesigned in such a way that it can be used totally platform independently where only a very
small amount of system resourcesis required.

For this purpose, we have structured the paper as follows: We start with an overview over the
existing version of the experimenta C2 information system. After that, we motivate the
application of CORBA and Java, present the concepts which should be applied and finally, we
describe our experiences in applying these concepts to the experimental C2 information system.

2. The Experimental C2 Information System EIGER

In our department Command and Control Information Systems of our institute an experimental
distributed C2 information system caled EIGER, has been developed which can support the
work of head quarters of the German army. That means that the system has to satisfy the
informational and computational requirements of a large organization with an extremely
distributed area of responsibilities. In its turn, the organization consists of many units which are
distributed over alarge geographical area. Each unit has to manage a restricted but naturally non
digiunct amount of jobs and data.

As mentioned before, EIGER is not an operational system. It is an experimental system which, at
the moment, serves as test bed for functions which are needed as German part in the context of
the ATCCIS project (Army Tactical Command and Control Information System) of the NATO
[Wagner and Markmann, 1996] where replication in heterogeneous systems is the main research
aspect.

Nearly 90% of the system have been coded in Ada 83. The other 10% have been coded in C for
realizing the communication of the system’s components. For our current work, EIGER has been
changed so far that it can be compiled by an Ada 95 [Barnes, 1995] compiler which ensures that
more elegant and more time efficient mechanisms can be integrated into the system. We use the
Object Ada system from Aonix as development environment. The current version runs on Sun
workstations with Solaris. Since the kernel of the system can be compiled and linked by the
Object Ada system on Windows NT, we have realized the first step of transporting the complete
system to Windows NT.

Unfortunately, as mentioned before, the architecture of the existing version is totally platform
dependent. This means that EIGER can be only used on Solaris which extremely restricts its
applicability, in particular in the German army where the usage of Windows systems is rapidly
increased.

This grievance should be abolished by the new version. And in the following sections we will
discuss, how we will redesign the current system such that:

the system becomes totally platform independently and
we can use the internet for applying the system.

But, before we are able to do this, we have to discuss some basic aspects of the current structure
of EIGER.

EIGER consists of a finite amount of subsystems the communication of which is realized by a
communication system (cf. Figure 1). A subsystem consists of a finite amount of computers and
their operating systems where there are only few requirements with respect to the computers, the
operating systems, and their connections. In general, the computers of organization units with
common data are connected by alocal network. The subsystems of an organization unit form one
area.

Sub System

Sub System / Sub System

Communication System

Sub System / \ Sub System

Sub System

Figure 1. EIGER'’ s topology

The implementation of the communication system is not important for understanding the
redesigning mechanisms. For this purpose, we only have to understand, how a subsystem is
structured (cf. Figure 2).

GUI e GUI

MHS €¢——»| CONTROLLER |¢— DBS

Figure 2. Structure of a subsystem

With great foresight a subsystem has been structured as a multi tier process system. Without the
distribution and strong modularization of the subsystem the modification would be not as
efficient and ssimple realizable as it will presented in the following paragraphs.

The centra unit of a subsystem is the controller which controls the computations and
communications of the other components of a subsystem. This component is completely
implemented in Ada83.

The controller is connected to a relational data base system DBS which stores the data of the
organization corresponding to the underlying data model. The connection between the controller
and the DBS is redlized by a particular process system, because a connection by “embedded

SQL” isinvaluable, since this solution would not allow concurrent processes, i.e., the controller
would have to wait until the complete result is computed by the DBS. But the controller may
need this time for other acitivities. Furthermore, data base transactions may be run in parallel in
the controller and this functionality could be not controlled by “embedded SQL”.

Furthermore, the controller is connected to an X.400 message handling system MHS. This
connection is realized by a particular process system, too, where the reasons for the additional
process system are identical to those of the process system for connecting the controller to the
data base system.

As illustrated in Figure 2, the controller is connected to one or more graphical user interfaces
GUI which are produced by OSF/Motif and which realize the interface to the users of the system.
After a successful login, the user gets some objects on his screen. The central object is the
session which consists of

one basket which includes notes,
By this basket, the user receives system messages.

at least one basket which includes mails,
These baskets offer the basic services of amail system.

at least one entry basket,
By these baskets, the user receives some jobs he has to do

and at least one working basket.
These baskets include the jobs which are currently worked on by the user.

We stop the introduction of the existing EIGER system at this point, because we hope that the
short impression of EIGER’s structure is sufficient for understanding the concepts for
redesigning subsystems such that EIGER can be used on the internet totally platform
independently which will be discussed in the following sections.

A much more detailed introduction to the structure of EIGER is presented in [Buhler, 1998].
3. Conceptsfor EIGER’s Redesign

We integrate the following two concepts into the implementation of a subsystem for getting the
desired platform independence :

A graphical user interface shal be implemented as Java applet. Then it (and thus, the
complete EIGER system) can be applied on every computer system which is connected to the
internet and which includes at least a web browser which in its turn is able to run Java

applets.

The communication between the controller and the graphical user interfaces shall be realized
by a CORBA connection. This also supports the platform independent use of the system,
since CORBA, in opposite to DCOM [Sessions, 1998], is a system independent standard

which can be implemented on nearly every system for nearly every operating system and
nearly every programming language.

Integrating these two concepts leads to the following new structure of a subsystem which is
illustrated in Figure 3. Remark that we omit the connections to the data base system and to the
message handling system, because they are not changed in this first restructuring step.

GUIs CORBA CONTROLLER

Gz |1

Figure 3. Redesign of a subsystem
4. Problemsand Solutions

In this section, we discuss the problems which have to be solved for implementing the structure
which isillustrated in Figure 3, and present our solutions.

4.1 Reimplementation of GUI s as Java Applets

In the existing version of EIGER GUIs are implemented with OSF/Motif. Now, they have to be
implemented as Java applets.

This problem is completely solved by a new implementation of the GUIs as Java applets under
the system JBuilder2 from Inprise (Borland & Visigenic). For example, the first image on the
screen, namely the login screen, after starting the connection from the browser to EIGER by
loading the html-page is illustrated in Figure 4. Into this image, the user has to enter his user-id
(Benutzer-1D), his password (Pal3wort), and the kind of the system. After that, the user has to hit
the Ausfiihren-Button. Then the first transaction between the GUI and the controller is started.
This transaction will serve as an example for explaining the realization of the CORBA
connection in the following subsection.

4.2 Realization of the CORBA Connection

In the existing version of EIGER the GUIs and the controller are connected by a TCP/IP
connection with 47 defined protocol elements which are sent from the controller to the GUI or
vice versa. For example, we illustrate the behavior of the ORexisting system during the login
phase. If the user hits the Ausfiihren-Button in the login screen of the existing system, i.e. not the
screen as shown in Figure 4, but the screen which is produced by OSF/Motif which is defined
analogous to the Java applet screen, then the protocol element SST_OP_CONN_RQ (where SST
denotes the controller) and three parameters for the user-id, the password, and the kind of system
are sent from the GUI to the controller. After that, the GUI is waiting until it will get the protocol
element SST_OP_CONN_RS as response. Then the environment of the session, as described in
Section 2, is build up on the GUI by a sequence of protocol elements which are sent from the
controller to the GUI.

Begriikungsformat

EIGER

Benutzer-10: i |

Pakwort: ;

Systemauswahl

i® Einsatzsysterm { Uhunossysterm § 0 Testsystem

Ausfithren ; Abhbrechen 1 Hilfe i

Figure 4. The Login Screen

In the new implementation of EIGER, the previous behavior is realized by a function which is
defined in the Interface Definition Language (IDL) of the CORBA standard [CORBA, 1999] as
follows:

voi d Logi n_Conput ati on(

in IDL_Pers_lds Pers_1d,

in | DL_Nanes Passwor d,

in I DL_Systentypes Syst ent ype,

in GU _TO CONTROLLER Qui _Ref,

out | DL_Wbrking Baskets_Lists Wor ki ngbasket _Li st
out IDL_Entry Baskets_Lists Ent rybasket _Li st,
out IDL_Mail Baskets Lists Mai | basket Li st,
out | DL_Note Baskets Not ebasket) ;

The function Login_Computation has four in-parameters where the first three indicate the user-
id, the password, and the kind of system. The fourth in-parameter Gui_Ref indicates the
reference to the object which represents the GUI. This reference is needed, if the controller will
call services of the GUI, i.e. if the GUI offers server functionality. In this case, the reference
serves as indicator of the session.

The four out-parameters of the function Login_Computation indicate the contents of the baskets
of the session which are described in Section 2.

The function Login_Computation illustrates the main differences between realizing the
connection between the GUI and the controller as TCP/IP connection in the existing version and
the CORBA connection in the new version. In the existing version, the connection is realized by
sending protocol elements. In the new version, functions with in- and out-parameters are defined
in IDL. These functions which are aso called services in the following, have to be implemented
on server side (in the example, the controller) and can be caled from the client side (in the
example, the GUI). In particular, if the client and the server are implemented in different
languages, the programmer has not to take care of the transformation of data representations
between these two languages. Thisisrealized by CORBA. Furthermore, the client gets the pieces
of information delivered by the out parameters in one go, whereas it gets it asynchronously by
protocol elements in the existing version of EIGER.

In the definition of the IDL we have defined the following two interfaces:

GUI_TO_CONTROLLER
This interface specifies 18 services where the controller is the server and the GUI is the
client, e.g. it includes the function Login_Computation.

CONTROLLER_TO_GUI

This interface specifies 30 services where the GUI is the server and the controller is the
client, e.g. it includes a function Delete_Note which deletes a note in the basket of notes of
the session.

After giving this general impression of the CORBA connection, we discuss the specific solutions
in realizing the CORBA connection in our environment.

4.3 Connection of the GUI by a Java-ORB

As Java-ORB we use the Visibroker from Inprise which is integrated into the JBuilder2 Client
and Server Version. We have not had any problem for communications of Java applications. But
some problems arose for communications of Java applets. Nevertheless, by using the newest
version of Netscape these problems have also been solved.

In the implementation of the GUI an object GUI-object of the type CONTROLLER TO _GUI
(cf. previous subsection) is constructed. But, since this object only serves as secondary server for
the controller in the specific session, it is not directly connected to the naming service of the
ORB. Instead, as mentioned before, the object-id is sent to the controller as fourth parameter of
the function Login_Computation and the services of this object can be used by the controller by

using this object-id. The behavior that the main server, i.e. the controller can use services from
the client, i.e. the GUI is called Call-Back mechanism [CORBA, 1999].

Furthermore, in the other direction, the GUI can use services from the controller. Since the user
of the GUI shall not wait until the GUI gets the result from the controller before he can call
another service, the service calls are redized as threads [Java, 1999] which are concurrently
computed.

4.4 Connection of the Controller by an Ada-ORB

We use the ORBADA system from Top Graph’'X as Ada-ORB which works well after some
discussions with the hotline and some corrections from Top Graph’ X in a previous version of
ORBADA.

The connection of the Ada-ORB to the controller which is tricky, is redlized as follows:
Corresponding to the implementation of the GUI, an object CON-object of the type
GUI_TO_CONTROLLER (cf. Subsection 4.2) is constructed. But, in opposite to the object
which is constructed by the GUI and since the controller serves as main server, this object is
explicitly bound to the ORB. After that, the CORBA Main_Loop is started which is a procedure
that is waiting for demands of services and, after receiving demands, it calls the implementations
of the services and returns the results of the services to the demanding object.

This behavior is generaly usable and not very tricky. The tricky part of the solution is the
implementation of the services of CON-object which will be explained now.

Since EIGER is a distributed system, we have to manage parallel processes efficiently. In
particular, we have to ensure that the whole system does not stop because of waiting for the
result of a running process, if it could continue its work by running another job. This problem
has also arisen in the existing version of EIGER. There it has been solved as follows:

The controller performs an infinite loop for message handling which consists of the following
four steps:

Receive Message
where the messages can be received either from the data base system, the message handling
system, or from one of the GUIs.

Create Service Control Block
A service control block which contains the information of parameters and message code, is
constructed for every recelved message.

Delete Message
If the complete information which is needed, is stored in the service control block, then the
message is deleted.

Evaluate Service Control Block
The service which is demanded by the message, is evaluated now and its results are sent to
the calling entity of the subsystem by help of the corresponding service control block.

This mechanism works well in the existing version of EIGER and furthermore we think that it is
also the best solution for the new implementation. Hence, we do not want to change its
successful behavior. But, now we have to transport the messages by the CORBA-ORB and
therefore, we have to apply a concept which realizes a combination of the described mechanism
and the CORBA facilities. This concept works asillustrated in Figure 5.

In particular, every service (which is nothing else then a function) of the CON-object has to be
implemented. This is realized as follows. Since the implementation of the service still existsin a
form of a process which is evaluated by the process system, we need an adapter for this service
which transforms the service from the form which is called by the CORBA Main_Loop into the
process which can be evaluated by the process system.

service call
RBA B
CONTROLLER C.O result GUI
Main Loop <
message
service_control_ esult
block_evaluated service call
result
4 .
SYNC_TASK message._sent Service Adapter

Figure 5. Management of parallel processes.

Each of these adapters which are named by the corresponding service name, has the following
form:

send nessage to CONTRCLLER
SYNC_TASK. nessage_sent
send result to CORBA Main Loop

where the synchronization task SYNC_TASK which is started for every service cal, has the
following form:

accept service_control _bl ock_eval uat ed
accept nessage_sent

The synchronization task SYNC_TASK has two entries which realize the rendezvous principle
of Adad5, i.e. in this case, the service adapter wants to enter the entry message _sent after it has
been started by the CORBA Main_Loop and it has sent a message with the parameters and a
pointer to SYNC _TASK to the controller. Since message sent is the second entry, the service
adapter has to wait until the controller enters the first entry service _control _block evaluated. But

this entry is entered not before the controller finished the evaluation of the message and it has
sent the result to the service adapter. That means, the service adapter can continue its work by
sending the result to the CORBA Main_Loop not before it has got the result from the controller.

We have checked the validity of the presented concepts by implementing the service adapters for
some services which are offered by the CON_object.

4.5 Communication between Java-ORB and Ada-ORB

The applied CORBA systems work well together. So, we can state that they are CORBA
conform at least in the checked services.

5. Conclusions and Future Work

We have discussed the concepts and experiences we have made in redesigning an experimental
distributed C2 information system. By this experiment, we have shown that a large distributed
system which is coded in Ada83, can be restructured by applying Ada95, Java, and CORBA in
such away that it becomes totally platform independent.

Nevertheless, alot of problems which have had to be solved, have arisen, because the market for
Ada products is not as well as comparable markets for other programming languages. But, on the
other hand, we can summarize that the concepts of Adad5 are well suited for implementing a
distributed command and control information system. E.g., the management of parallel processes
can be realized extremely well by Ada9b.

In particular, we have realized an efficient call back mechanism by our implementation, since the
controller as well as the GUIs have server and client functionality, i.e., we have realized a binary
communication relation between GUI and controller.

In our future work, for transporting the system to Windows NT, we have to realize a new
connection between the controller and the DBS and MHS. The connection to MHS seems to be
simple, whereas we want to apply ODBC for realizing the connection between the controller and
the DBS. As afurther important research topic we have to ensure that the presented concepts are
efficient.

6. References:

[Barnes, 1995] John Barnes . Programming in Ada°95. Addison-Wesley, 1995.

[Buhler, 1998] Gerhard Buhler. Einsatz von Ada im Experimentellen Fuhrungsinformations-
system EIGER. in Workshop ,Entwicklung von Software-Systemen mit Ada‘, Bremen,
Germany, Ada Germany, 1998.

[CORBA, 1999] see http://www.omg.org.

[Java, 1999] see http://www.javasoft.com

[Sessions, 1998] Roger Sessions. COM and DCOM: Microsoft’s Vision of Distributed Objects.
Wiley, 1998.

[Wagner and Markmann, 1996] Karlheinz Wagner & Gunther Markmann. Interoperability
Aspects of Command & Control Information Systems with Respect to International Standards
and Emphasis on ATCCIS. Report No. 469 of the Forschungsinstitut fir Funk und Mathematik,
Wachtberg-Werthhoven, Germany, 1996.

