Integrating Battlefield Objects CAISR Systems by Using CAP

Meng-chyi Harn Cheng-hang Wang

Integrating Battlefield Objects of C4ISR Systems by Using CAPS

Dr. Meng-chyi Harn Department of Information Management China Institute of Technology Taipei, Taiwan, R.O.C.

Col. Cheng-hang Wang Department of Computer Science and Engineering Yuan Ze University Taoyuan, Taiwan, R.O.C.

Requirements Description

Changed by

- National strategic thinking
- Commander's operational needs
- Battlefield resources allocations
- Hard to firm the user's requirements and specifications

Open Issues

- Capacity of a project leader and a system engineer
- Complexity of battlefield objects
- Formalization of military operation model
- Selection of a reliable and adaptive tool
- Additional issues in the system integration
 - Weapon system replacement
 - Real-time data communication
 - Business process reengineering
 - Command and control process changing

Our Solutions

The rapid prototyping method

 requirements analysis
 feasibility studies
 systematic development

 The formal model

 CAPS

Why CAPS

- Rapidly evaluating requirements for realtime control software using executable prototypes
- Testing and integrating completed subsystems through evolutionary prototyping
- Quickly developing functional prototypes by a code generator

How CAPS Works

Battlefield Objects

$- O = P \cup W \cup N \cup S \cup C$

- P denotes a set of military person objects

- W denotes a set of weapon system objects
- N denotes a set of navigation system objects
- S denotes a set of *platform* sensor objects
- C denotes a set of communication link objects.

Integration Mechanism of Battlefield Objects

Battlefield object Modified step Unmodified step

Evolution of Battlefield Objects

 $\neg O(i+1) = O(i) + \Delta O(i)$

- O(*i*+1) = P(*i*+1) ∪ W(*i*+1) ∪ N(*i*+1) ∪ S(*i*+1) ∪ C(*i*+1)
 O(*i*) = P(*i*) ∪ W(*i*) ∪ N(*i*) ∪ S(*i*) ∪ C(*i*)
- $\Delta O(i) = \Delta P(i) \cup \Delta W(i) \cup \Delta N(i) \cup \Delta S(i) \cup \Delta C(i)$ where
 - △O(i) = Oswap_into(i) Oswap_out_of(i) ∪ Omodified(i)
 - △P(i) = Pswap_into(i) Pswap_out_of(i) ∪ Pmodified(i)
 - △W(i) = Wswap_into(i) Wswap_out_of(i) ∪ Wmodified(i)
 - △N(i) = Nswap_into(i) Nswap_out_of(i) ∪ Nmodified(i)
 - ▲S(i) = Sswap_into(i) Sswap_out_of(i) ∪ Smodified(i)
 - △C(i) = Cswap_into(i) Cswap_out_of(i) ∪ Cmodified(i)
- $P(i+1) = P(i) + \Delta P(i)$ $W(i+1) = W(i) + \Delta W(i)$ $N(i+1) = N(i) + \Delta N(i)$ $S(i+1) = S(i) + \Delta S(i)$ $C(i+1) = C(i) + \Delta C(i)$

Evolution of Battlefield Objects

Software Product DemoProSoftware Product ImplementationPro

Production Program 1

Prototype n

Versions

- Software evolution component
- New user requirements component
- Legacy program that is a set of module components
- *Software evolution step*

Project Organization and Preparation

- The C4ISR system selected by our project is a huge-grain program [Luqi, 1997] involving module composition.
- We spent almost one year to conduct this project by nine project teams.
- Each project team had one project leader and 24 project members in charge of 25 *large-grain* programs that included one integrated metaprogram and 24 individual programs.

Preliminary Courses

```
1. Digitizing Battlefield Management
      Network Centric Warfare [Alberts et al., 1999]
      Understanding Information Age Warfare [Alberts et al., 2001]
      Power to the Edge [Alberts et al., 2003]
      Information Warfare and Security [Denning, 1999]
2. Development and Implementation of the C4ISR Systems
      Command and Control Theory
      Real-time Embedded Systems
      Requirement Engineering and Rapid Prototyping
      Computer-Aided Prototyping System
3. Evolution of the C4ISR Systems
      Relational Hypergraph Model [Harn, 1999a]
      Version Control and Configuration Management
      Automated Software Engineering
      Computer-Aided Software Engineering System [Harn, 1999a]
```

Operational Architecture

- Joint Operational Command and Control System (JOCCS)
- Decision Support System of Operation Area Commander (DSSOAC)
- Battle Command System (BCS)
- Intelligence Surveillance and Reconnaissance System (ISRS)
- Air Defense System (ADS)
- Fire Support and Coordination System (FSCS)
- Disaster Control System (DCS)
- Operational Service System (OSS)
- Personnel Information Integration System (PIIS)

The Battlefield Objects of Fire Support and Coordination System (FSCS)

Military People

 Fire-coordinating Officer, Fire-supporting Director, Artilleryman, Navy Liaison Officer, Air Force Liaison Officer, Chemistry Officer, Communication and Information Officer, Object-obtaining Officer, Object-analyzing Officer, Air Force Support Director, J2 Air Operational Officer, Air Control Director, Army Air Force Officer

Weapon Systems

 Field Artillery, Rocket Forces, Armor Forces, Gunnery, Fighterbomber, Hunting Helicopter

Navigation Systems

- CNS, Satellite Navigation GPS

Platform Sensors

 Battlefield Surveillance and Reconnaissance Radar, Coast Acquisition Radar, Searching and Ranging Radar, Weather Radar, ATHS

Communication Links

 High-rate Receive Links, High-rate Transmit Links, Low-rate Receive and Transmit Links, Tadiran Communications

Top-level of FSCS

Mainframe

Target Acquisition System

Fire Support System

Air Control System

Air Force Support System

Fire Coordination System

Definition of Operator

🛃 PS	Vertex Propert	bes		×	
File	N	ame : radar_2d_integra	ted Operat	tor 👻	
	Implementation Language : Ada 👻				
	Trigger : —				
		By All 👻	Stream List		
		If Condition		*	EXTERNAL
		Required By			EXTERNAL
	Timing : —			ID List	×
		Sporadic 🗸		Enter or Edit I	lDs
	MET :	50	ms 🔻	Regularia	
L					ID Imput Dislog
L	MCP:	200	ms 🔻	Request 18	
	MRT :	1500	ms 🔻	Requ	2 Enter new Id
		Output Guards	Exception Gu	ards	
	Exception List Timer Ops		s		
	Keywords Informal Desc Formal D			mal Dr	Cancel Add Delete Edit
		ок с	ancel Help		
	† г	adar_s			
Sauce	not required				\$

The PSDL Code of FSCS

	OPERATOR nlc 23		IMPLEM
	SPECIFICATION	-	GRA
•	INPUT radar : undefined_type		VEF
	INPUT object : undefined_type		Р
-	INPUT support : support		Р
•	OUTPUT objectradar : undefined_type	•	P
•	OUTPUT object : undefined_type		P
•	END		P
			Р
•	IMPLEMENTATION Ada nlc_23	•	P
•	END	•	P
			P
•	OPERATOR noc_26	•	P
•	SPECIFICATION	•	P
•	INPUT objectradar : undefined_type		P
•	OUTPUT radar : undefined_type	•	ED
•	MAXIMUM EXECUTION TIME 0 ms	•	P
-	END	· · · · · ·	P
		•	P
•	IMPLEMENTATION Ada noc_26	•	P
•	END		P
			P
-	OPERATOR sfcp_29		P
	SPECIFICATION		Р
-	INPUT object : undefined_type		P
-	OUTPUT radar : undefined_type	•	ED
	END		P
		-	P
-	IMPLEMENTATION Ada sfcp_29	-	P
-	END	-	P
-	OPERATOR bnlo_32	•	P
-	SPECIFICATION	•	P
	INPUT object : undefined_type		P
•	OUTPUT object : undefined_type	•	P
•	END	•	P
			DATA
		•	rada
		•	obje
			CON
			OP

IMPLEMENTATION
GRAPH
VERTEX nlo 34 0
PROPERTY $x = 278$
PROPERTY y = 205
PROPERTY radius = 35
PROPERTY color = 62
PROPERTY label_font = 5
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY met_font = 5
PROPERTY met_unit = 1
PROPERTY met_x_offset = 0
PROPERTY met_y_offset = -40
PROPERTY is_terminator = false
EDGE radar EXTERNAL -> nlo_34_0
PROPERTY id = 39
PROPERTY label_font = 5
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY latency_font = 5
PROPERTY latency_unit = 1
PROPERTY latency_x_offset = 0
PROPERTY latency_y_offset = -40
PROPERTY spline = " 77 87 "
EDGE object nlo_34_0 -> EXTERNAL
PROPERTY id = 46
PROPERTY label_font = 5
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY latency_font = 5
PROPERTY latency_unit = 1
PROPERTY latency_x_offset = 0
PROPERTY latency_y_offset = -40
PROPERTY spline = " 254 23 "
DATA STREAM
radar : undefined_type,
object : undefined_type
CONTROL CONSTRAINTS
OPERATOR nlo_34_0

END

Lessons Learned

 Building methodologies and tools:

 IDEF, UML, C4ISR Architecture Framework 2.0, System Architect V9.1, ARIS, Rhapsody

 Petri-Net
 swap_into, swap_out_of, modified and unchanged mechanism

Nonmilitary C4ISR systems