

ALIDADE INCORPORATED

Information Age Combat Model

For 9th ICCRTS Copenhagen, Denmark September 15th, 2004

By: Jeffery R. Cares Presented By: David A. Jarvis

Originally prepared for OSD/Office of Net Assessment

Agenda

- Introduction
- Structure of an IACM
 - Basic Structure
 - Types of Cycles
- Dynamics
 - Measuring Networked Effects
 - Autocatalysis in a Combat Model
- Evolution
 - Core Shifts
 - Long Term Statistics

9th ICCRTS September 15th, 2004

Introduction

- Existing models focus on attrition and can not adequately represent proposed Information Age combat processes.
- Three views of a Distributed Networked System:
 - Structure
 - What are the links, nodes, boundaries and rules for connection?
 - Dynamics
 - Do actual or potential networked effects exist?
 - Evolution
 - What trajectories do the descriptive characteristics take?
 Do they converge, diverge or cycle?
- These three perspectives are used to create the Information Age Combat Model

9th ICCRTS September 15th, 2004

Structure

9th ICCRTS September 15th, 2004

Combat Network

Information Age Combat Model

9th ICCRTS September 15th, 2004

Two-Sided Simple Combat

Information Age Combat Model

9th ICCRTS September 15th, 2004

Allowable Connections

Information Age Combat Model

9th ICCRTS September 15th, 2004

Adjacency Matrix

Adjacency Matrix for Simplest, Complete Combat Network

	$\mathbf{S}_{\mathbf{x}}$	$\mathbf{D}_{\mathbf{x}}$	I _x	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{S}_{\mathbf{y}}$	$\mathbf{D}_{\mathbf{y}}$	l _y	Т _у
$\mathbf{S}_{\mathbf{x}}$	1	1	0	0	1	0	0	0
$\mathbf{D}_{\mathbf{x}}$	1	1	1	1	1	0	0	0
I _x	1	1	1	1	1	1	1	1
$\mathbf{T}_{\mathbf{x}}$	1	0	0	0	1	0	0	0
$\mathbf{S}_{\mathbf{y}}$	1	0	0	0	1	1	0	0
$\mathbf{D}_{\mathbf{y}}$	1	0	0	0	1	1	1	1
l _y	1	1	1	1	1	1	1	1
Т _у	1	0	0	0	1	0	0	0
row maps directionally to column $= 1.0$ otherwise								

row maps directionally to column = 1, 0 otherwise

9th ICCRTS September 15th, 2004

Combat Model Potential Complexity

September 15th, 2004

Dynamics

9th ICCRTS September 15th, 2004

Control Cycles

Information Age Combat Model

9th ICCRTS September 15th, 2004

Catalytic Control Cycles

Information Age Combat Model

9th ICCRTS September 15th, 2004

Catalytic Competitive Cycles

Information Age Combat Model

9th ICCRTS September 15th, 2004

Combat Cycles

Information Age Combat Model

9th ICCRTS September 15th, 2004

No Cycle

September 15th, 2004

9th ICCRTS September 15th, 2004

Autocatalytic Set

Information Age Combat Model

9th ICCRTS September 15th, 2004

Autocatalytic Set

Information Age Combat Model

9th ICCRTS September 15th, 2004

Autocatalytic Set

Information Age Combat Model

9th ICCRTS September 15th, 2004

Networked Effects

Information Age Combat Model

9th ICCRTS September 15th, 2004

Evolution

9th ICCRTS September 15th, 2004

Model

Core Shift Time Step 1

9th ICCRTS September 15th, 2004

Core Shift Time Step 2

ACS/Core S₁ S_2 0 1 S 0 0 0 0 1 \Box **S**₃ S_2 0 0 0 0 0 0 S_3 0 0 0 0 0 1 0 1 1 1 0 D 0 0 0 **1**2 0 0 0 1 0 I_1 0 0 0 I_2 0 0 1 0 0 0 $\lambda_{PFF} = 1.52$

Information Age Combat Model

©2004 Alidade Incorporated. All Rights Reserved

9th ICCRTS September 15th, 2004

Core Shift Time Step 3

Information Age Combat Model

9th ICCRTS September 15th, 2004

Model

Core Shift **Time Step 4**

9th ICCRTS September 15th, 2004

Information
Age Combat
Model

Thumb Rules Analysis and Experimentation

Property	Range	Effect			
Number of nodes, <i>n</i>	$n > \sim 100$	Network effects unlikely to occur with $n < 50$			
Number of links, <i>l</i>	$l < \sim 2n$	$l \ll 2n$, too brittle l >> 2n, too much overhead			
Degree distribution	Skewed	Adaptivity, modularity			
Largest hub	< 100 links	Hub appears, recedes by reconnection 5% of links			
Average path length	$\log(n)$	Short distances even for large networks (e.g., 10^4 nodes \rightarrow Average path length = ~4)			
Clustering	Skewed	Hierarchy, organization			
Between-ness	Skewed	Cascade control			
Path horizon	$\log(n)$	Self-synchronization			
Susceptibility/ Robustness	Low (random removal) High (focused removal)	Hubs should be kept obscure until needed, damage abatement/repair schemes			
Neutrality	High	Increased network effects, decreased susceptibility, tipping points			

9th ICCRTS September 15th, 2004

ALIDADE INCORPORATED

Complex Systems Research

Process Innovation & Analysis

Strategic Investment Advice

Future Concept Generation

Corporate/Government War Games & Events

Questions?