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OverviewOverview

• UAVs: Definition and Examples

• Complex Systems and Swarm 
Intelligence

• Agent-Based Modeling

• ABM for the control of UAV Swarms

• Conclusions and future work
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UAV: DefinitionUAV: Definition

A powered, aerial vehicle that does 
not carry a human operator, uses 

aerodynamic forces to provide 
vehicle lift, can fly autonomously 
or be piloted remotely, can be 

expendable or recoverable, and 
can carry a lethal or non-lethal 

payload.

Source: DoD UAV Roadmap 2002
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Many Types of UAVMany Types of UAV
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Controlling Multiple UAVsControlling Multiple UAVs

Problem Statement:

• Current UAVs require at least one operator 
per UAV

• Technological advances make multi-UAV 
missions a near-term reality

Need control strategies that allow one 
operator to monitor/control multiple UAVs
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UAV  Swarms as Complex SystemsUAV  Swarms as Complex Systems

A system is complex when:

1. It consists of a large number of 
elements

2. Significant interactions exist 
between elements

3. System exhibits emergent behavior: 
cannot predict system behavior 
from analysis of individual elements

Traditional “reductionist” approaches 
cannot cope with complex systems
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The Icosystem GameThe Icosystem Game
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The Icosystem GameThe Icosystem Game
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The Bad NewsThe Bad News

• Cannot predict emergent behavior from 
individual rules, even for such a “simple” 
complex system

• Individual participants are unaware of 
overall system behavior

• Small changes in rules lead to dramatically 
different emergent behaviors
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The Good NewsThe Good News

• It is possible to manipulate the behavior of 
a complex system by changing the rules 
that control individual elements

• We have developed a methodology to 
predict emergent behavior in complex
systems using bottom-up simulation

Agent-Based Modeling!
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Sample Complex SystemsSample Complex Systems
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Controlling Emergent BehaviorControlling Emergent Behavior

• How can we control emergence?
• How do we define individual behaviors 

and interactions to produce desired 
emergent patterns?

“Here is 
where we 
think the 

problem is...
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AgentAgent--based modelingbased modeling

• Shift viewpoint from system
(centralized) to individual elements (de-
centralized)

• Each agent follows local rules

• Behavior depends on interactions with 
other agents

• Overall system behavior emerges from 
local interactions
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Example: Flow SimulationsExample: Flow Simulations
• Traditional approach: mathematical 

description at macroscopic level.
• Example: fire diffusion in airplane cabin
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Limitations of Traditional Limitations of Traditional 
ApproachesApproaches

• Previous simulation requires extensive 
computation

• Any modification (e.g., number of seats, 
load, initial conditions) requires new 
computation

Compare to agent-based approach
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AgentAgent--based Flow Simulationsbased Flow Simulations

• The Game
• Boids
• Traffic
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Swarm Control of UAVsSwarm Control of UAVs
Supported by Air Force Research Labs SBIRSupported by Air Force Research Labs SBIR

• Create Agent-Based Model of UAV swarm

• Test various swarm control strategies for 
two mission types:
• Search (area coverage)
• Search, track and hit targets (SEAD)

• Measure performance systematically 
under various scenarios and conditions
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The UAV AgentThe UAV Agent--Based ModelBased Model

• Rectangular search area

• 3-D motion: thrust, pitch, yaw control

• GPS for localization

• Probabilistic ground/target sensor

• Circular collision sensor

• Pheromone emitter & probabilistic sensor

• Communications (noisy) to central control

• Stationary or moving targets
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Simulation: Area Coverage/SearchSimulation: Area Coverage/Search
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Navigation StrategiesNavigation Strategies

• Baseline: fly straight until border is 
detected, turn to stay within search area

• Random: inject small “jitter” in heading

• Repulsion: avoid UAVs within radius r

• Pheromone: avoid areas already covered 
(by self or others)

• Global Search: favor navigation toward 
unexplored sectors

(Strategies can be combined arbitrarily)



21

Sample Coverage PatternsSample Coverage Patterns

Repulsion (r=60) Pheromone
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Systematic EvaluationSystematic Evaluation

Goal: Understand impact of strategies, 
parameter choices and scenarios:

• 2000x2000 area, single UAV entry point
• 1000-sec simulation
• Swarm size (1-10, 10-110)
• Navigation strategies (individual & combo)
Metrics:
• Area coverage
• Swarm coverage efficiency
• Per-UAV coverage efficiency
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Total coverage increases
with swarm size...

...but per-UAV coverage 
efficiency decreases with 
swarm size.

Efficiency of Swarm Strategies
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Efficiency of Swarm Strategies
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Effect of random jitter 
is largely independent 

of swarm size

Effect of random jitter 
is largely independent 

of swarm size
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Pheromone StrategyPheromone Strategy

• Each UAV lays “pheromone”

• Each UAV can sense local
pheromone trace

• Navigation favors uncovered
areas

• Inspired by insect behavior

• Example of stigmergy (communication 
through the environment)

• Each UAV lays “pheromone”

• Each UAV can sense local
pheromone trace

• Navigation favors uncovered
areas (Urea Strategy?)
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Efficiency of Swarm Strategies
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Pheromone strategy 
is more effective for 

larger swarms

Pheromone strategy 
is more effective for 

larger swarms
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Combining StrategiesCombining Strategies

Efficiency of Swarm Strategies
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Even a relatively simple, decentralized strategy can 
yield significant improvement in swarm efficiency!

Even a relatively simple, decentralized strategy can 
yield significant improvement in swarm efficiency!
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Extending to Large SwarmsExtending to Large Swarms

Swarm coverage efficiency
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Additional Results: SEADAdditional Results: SEAD

• Allow targets to move randomly over 
search area

• Extend UAV behavior to track targets

• Modify simulator to carry out search and 
suppress missions

• Apply evolutionary computing to identify 
robust strategies, parameters
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Extended Simulator DemoExtended Simulator Demo
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Cumulative Hit Probability
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Future WorkFuture Work

• Systematic evaluation of other mission 
types, criteria, performance metrics

• Evolutionary design of control strategies

• Human-in-the-loop control

• Extend approach to Unmanned Ground 
Vehicles operating in urban scenario

• Commercialize these and other results


