

 Systems and Capability Relation Management in Defence

Systems-of-System Context

Pin Chen, Ronnie Gori, Angela Pozgay

Defence Science and Technology Organisation
Department of Defence, Canberra ACT 2600 Australia

Pin Chen Ronnie Gori
Phone: 0061 2 62566181 0061 2 62566265
Fax: 0061 2 62566180 0061 2 62566180
pin.chen@dsto.defence.gov.au ronnie.gori@dsto.defence.gov.au

Angela Pozgay
Phone: 0061 2 62566275

Fax: 0061 2 62566180
angela.pozgay@dsto.defence.gov.au

Systems and Capability Relation Management in Defence
Systems-of-Systems Context

Pin Chen, Ronnie Gori, Angela Pozgay

Defence Science and Technology Organisation
Department of Defence, Canberra ACT 2600 Australia

Abstract

The increasing complexity of Defence System-of-Systems is a challenge
for not only capability and systems planning and management, but also
engineering disciplines such as System engineering, Software Engineering
and Information Systems. The defence requires an improved ability in
context-awareness of relations, impact and dependency between systems
and capabilities while consider changes or evolutions in various defence
capability and system planning, study and management activities. This
paper introduces concepts for and an approach to the defence systems and
capability management in conjunction with military scenario management
and defence architecture data management.

1. Introduction

“It is not the strongest of the species that survive, nor the most intelligent
but the one most responsive to change."

 Charles Darwin

Engineering activities in future defence systems and capability development vary, but
all result in evolutions that occur in a context of Systems-of-Systems (SoS) where a
defence organisation must maintain a sustained, sustainable and controlled SoS
evolution as a whole. Change in defence is inevitable. Defence has to embrace change
and manage it in order to survive and become more effective and responsive. The
concept of System-of-Systems (SoS) has been extensively examined [Maier, 1996;
Cook, 2001; Arnold, 2001; Sage, 2001; Kaffenberger 2001, Chen, 2003], and is
broadly acknowledged as a challenging issue because of its high inherent complexity.

For a SoS to achieve its desired functionality, its component systems will need to
interact in a prescribed and predictable manner. Modelling these interactions, their
dependencies, and the impact of changes to any system on the SoS is essential to
modelling the SoS. Therefore, an important component of managing development and
evolution within a SOS is managing the relations between the component systems.
The inherent complexity implied by SoS translates to a similar complexity to
managing relations within a SoS. The reality, that individual systems are continuously

developed and evolved, only adds to this complexity. Currently, Defence lacks the
capacity to manage relations systematically within a SoS during the analysis, planning
and development of systems and capabilities.

The responses from capabilities and systems to evolutionary change occurring within
a SoS context are determined by the ways that their relations are handled both
internally and externally. Relation management is also a critical issue to those
commonly used engineering disciplines and approaches, such as Systems Engineering
(SE) and architectural approaches (e.g. DoD C4ISR AF). However, it has not been
fully explored and addressed in terms of requirements, principles, methods or
solutions. Within a SoS context, the relation management of systems and capabilities
is an architecture issue that does not belong to individual systems or capabilities, but
is instead shared by all involved ones. As a result, it cannot be the responsibility of
developers of individual systems and should be addressed at the level of SoS or an
organisation [Chen, 2003].

This paper introduces an architecture-model based approach to systems and capability
relation management. It firstly classifies concepts and classes related to systems and
capability management, and then explicitly defines relations between these concepts
and classes. The definitions of concepts, classes and relations form a knowledge
schema for establishing a body of knowledge for defence capability and systems
management. The approach can let the defence develop an architecture management
system that can store and manage knowledge and information of capability, systems
and architecture products in context.

2. Background, Challenges and Issues

Constantly changing defence requirements, capabilities and systems are challenging
the ability of Defence to handle the complexity and relations of systems and
capabilities, and questioning its confidence in managing future planning, development
and operation. Defence experience in its efforts to achieve many new defence
concepts, such as Networked Centric Warfare (NCW) and Network Enabled
Capability (NEC), highlights the great difficulties in understanding, communicating,
and representing these concepts. There are further substantial difficulties in migrating
these concepts into operational and integrated systems and capabilities. Underpinning
many of these difficulties are the difficulties in managing the changing relations
between systems and capabilities, particularly within a SoS context. These difficulties
and challenges face all main Defence business areas from strategic planning,
capability study, acquisition and development to operation. Thus, there is an obvious
need for Defence to seek better solutions.

 2.1 What are relations between systems and capabilities?

A collection of systems, with an overriding mission or purpose, is generally regarded
as comprising a SoS. Various relations exist between these systems. Within a Defence
SoS context, systems and capabilities are related in the following possible basic
manners:
Structure-related

System A and System B are structure-related if System A has one of the following
relationships to System B:

• System A is a component of System B; or
• System A is a basis of System B.

Function-related
System A and System B are function-related if to perform its own functions,
System A requires certain functions or services delivered by System B.

Information-related
System A and System B are information-related if there are requirements for
information flows or information exchanges between two systems. In other
words, there is a connectivity and information reach-ability between them.

Operation-related
System A and System B are operation-related if they are both used in an operation
scenario to jointly fulfil a mission.

Generation-related
System A and System B are generation-related if System A will be a replacement
of System B.

Due to the features and complexity of systems integration and deployment, in addition
to these basic manners, there are other types of relations. These include indirect
relations, inheritance relations, dynamic relations, naming of relations and tightness of
relations. A system may have either the same relation or different relations to a
number of systems.

Relation issues exist throughout the whole life cycle of defence capability
management as shown in Figure 1. Different phases, stages or contexts of the life
cycle face different relation issues, and deal with different relation contexts in
different timeframes.

Figure 1. A variety of relations between systems and capabilities

As illustrated in Figure 2, relations between systems and capabilities change when
systems or capabilities evolve. A sustained, sustainable, controlled and managed
evolution of defence SoS will be difficult to achieve if capability and system relations
become unmanageable. Better relation management leads to better responses to
changes. To cope with the challenge of successfully managing continually evolving

capabilities and systems, Defence needs to develop its ability to manage context, as
well as managing relations between systems and capabilities, in terms of their
structures, functions, effects and information, but also the impacts generated from
their deployment, use, configuration and development plans.

2.2 Challenges and issues

The relations between systems and capabilities are complicated since they are
characterised by the following features:

• Managing system and capability relations is an issue concerning the whole life
cycle of SoS, including planning, development, management and operation,
from individual systems and capabilities to the whole SoS;

• The relations can be either conceptualised and represented explicitly or
implicitly understood in people’ perceptions;

• The relations can be either static and fixed or dynamic;
• The relations are kinds of binding with different degrees of looseness or

tightness;
• Architecturally speaking, the relations are determined by the interfaces

between systems or the manner by which they are integrated.

Figure 2. Scenarios of systems and capability evolutions
There are additional questions such as:

• Who should be responsible for definitions and management of the relations;
and

• Where and how the relations should be defined and managed.

There are a number of challenges in capability and systems relation management. The
first is the variety of contexts where issues of relation management arise and need to
be addressed, Relation management is salient to all business areas from strategic
planning, capability study, acquisition, systems development, from preparedness to
operations, and from individual capabilities or systems and various SoS contexts to
the whole force. Secondly, there is a high level complexity in capability and systems

relation management since it is not only a technical issue but also a cultural and
management issue. The third challenge relates to knowledge management.
Knowledge of capability and systems relations currently exist in people’s minds and
are described and represented differently in various planning and development
documents that are kept separately in different sites. This knowledge needs to be
captured and maintained in a form that is accessible to other potential users. Finally,
there are engineering methodologies or disciplines, such as Systems Engineering,
Information Management System, and Software Engineering, which deal with
relations of systems from mainly a single system development perspective but not
from a viewpoint of SoS management.

The relations between systems and capabilities are important for the whole life cycle
of defence capability management. Fundamentally speaking, these relations are
critical features and artefacts of the defence capability architecture. They are
complicated and dynamic because of the constant evolution of defence capabilities
and systems stemming from on-going technological development, changing defence
requirements and the increasing complexity of the defence environment. Without
specifications and representations of these features and artefacts, Defence will
experience great difficulties in evolving its organisation and its capabilities.

The investigation into the issues related to capability and system relation management
reveals two important facts. In the current practice, firstly, missing definitions and
specifications of these relations indicate that there are holes in the defence capability
and defence information environment architecture representation as a whole.
Secondly, Defence cannot at present systematically and effectively deal with
architecture features and artefacts of its whole capability because of inability in
handling relations between capabilities and systems.

In the current practice, these relations are, at best, fully defined by projects that
manage acquisitions of individual systems and capabilities. In other words, they are
handled mainly at a project level between individual systems and capabilities. They
are not considered as fundamental features of the whole defence capability
architecture and are not explicitly mandated and shared by other stakeholders.

 3. Relation Management Rationales

This exploration of the requirements, challenges and issues regarding capabilities and
systems relation management suggests a need to develop a method, drawn from both
engineering and management perspectives, that can help Defence systematically
manage relations of capabilities and systems, throughout their life cycles, in a context
of SoS. Such a method must first help classify, identify and define concepts and their
conceptual relations in the context of the planning, development and management of
capabilities and systems. The method then also needs to help capture, represent and
manage various these relations.

In order to address the requirements, challenges and issues, the relation management
for systems and capabilities is aimed to achieve seven main objectives:

• Concept management;
• Conceptual relation management;
• Systems relation management;

• Interface relation management;
• Provision of linkage and traceability of system (and capability) knowledge;
• Throughout the life cycle of SoS; and
• Being part of the architecture practice;

The high complexity of systems and capabilities’ architectures results from its diverse
applications in relation to various concepts, such as scenario, capability, platform and
system, and their use throughout the whole Defence Capability Systems Life Cycle
from planning, development, acquisition, operation, deployment and maintenance.
This makes the concepts and relation management be one of important components
and fundamental feature of defence architecture data/knowledge management.

These relations should be fully explored and managed at the enterprise level from the
following perspectives:

• Architecture relation
• Acquisition relation
• Operation relation

The relation management for capability and systems is established on a basis of two
components: concept and conceptual relation management, and object relation
management.

3.1 Concept and conceptual relation management

In the real world, all concepts (such as scenario, capability, platform, system,
architecture, project and document) are context-based. The context of a concept is
defined by the definition of its attributes and its relation to other concepts. A relation
between two concepts is a kind of conceptual linkage that somehow binds the
concepts together. Without context specifications, a concept can mean different things
to different people Understanding a concept means an understanding of its all
definitions of attributes and relations to others.

Any concept may have many “real world” instantiations. Using object-oriented
terminology, an object is an instance of a concept. The distinction between two
objects that belong to the same concept can also be made according to their contexts.
The context of an object is specified by its relations to other objects, and
understanding an object requires a full awareness of its attribute values and relations
in context.

A relation between two concepts is defined as a characterised linkage with a specific
meaning. A relation between objects is an instance of the relation defined between
two concepts, or, using object-oriented terminology, two classes). Knowledge of
conceptual relations is sometimes documented but often exists only in individual’s
minds, and is incomplete and inconsistent depending on their understandings. Given a
lack of suitable artefacts, methods or mechanisms, it is hard for people to share their
knowledge concerning these relations. There has been no method or mechanism to
manage them. Fundamentally speaking, concept management in large organisations
like Defence, is an issue of knowledge management.

There is, however, an important issue to address when considering concept

management. There are often situations where two real world objects, which are quite
different things, are mistakenly said to represent the “same” concept. The situation
often arises because of a lack of a suitably clear terminology and a general lack of
precision in the use of language. Within Defence, confusion often arises when
discussions are related to scenarios, capability, systems or architecture.

The approach to this issue is to introduce subclasses under the concept class. This
mirrors the situation in the real world, where, for example, a communications system
is a type of system, and Link 11 is an instance of a communications system. In other
words, a class representing a concept may have a number of subclasses;. Hence a
concept can be viewed as a super class for these classes. The motivation to define and
manage concepts as class hierarchies is to better capture the semantics within the
form of the concept model, through the exploration and definition of the attributes and
relations of the subclasses. For the remainder of the paper, a concept is treated as a
class in order to avoid possible confusion.

Concept modelling, therefore, needs to distinguish between different concepts (for
instance, a system and a project) and where necessary, to define different classes for
the same concept (for example, operational architecture view and system architecture
view are different classes of the same concept “architecture view”) in a concept
hierarchy. In other words, the initial stage of concept management requires the
establishment of concept taxonomies large concept hierarchies are organised into
class packages. There is an analogy with good software engineering practice. The
classes within a package should be cohesive, and the classes between packages should
only be loosely coupled.

3.2 Relation Management

In order for the relation management for capability and systems to succeed, the
relations between concepts/classes must be systematically studied, explored and
explicitly defined. The definitions of relations between concepts or classes can be
seen as the establishment of a kind of ontology among the taxonomical structures of
class definitions.

The class and relation definitions achieved in such a combination of taxonomical
structures and ontology linkage lay a foundation for relation management. This
approach makes it feasible to specify, maintain and systematically manage the
relations between classes, and that the relations between classes can eventually be
used correctly and successfully.

A requirement to achieve good relation management is the development of an
environment or system that can serve as a basis for: managing concepts and objects in
context; conducting analysis, synthesis and evaluation of values and relations of
objects; handling complexity; exploring and studying dependency; maintaining
traceability; and visualising concepts, objects and their relations and dependencies.

Hence relation management will be achieved through two main activities, that is,
conceptual (or class) relation definitions and object context management.

Class relation definition

The relations defined between the concepts of the conceptual models are explicit
descriptions and representations of organisational knowledge. They serve as an
ontology that underpins the overall conceptual model. Through knowledge
engineering of the concept relations, the conceptual model can become a knowledge
schema that can support organisation and management of architecture features and
artefacts concerning relations between capabilities and systems. Neither the
knowledge nor the resulting architecture features and artefacts are currently properly
captured and managed.

Through defining and modelling concepts and their relations, the conceptual model
becomes a foundation for a sharable body of defence capability architecture
knowledge. The model by itself, however, does not directly handle relations between
objects although they are defined in it.

Object context management

 From a modelling perspective, an object’s potential relations are defined according to
the relation definitions of the class that the object belongs to. They may be created
either when the object is created or subsequent to its creation. From a user’s
perspective, it must also be possible to modify an object’s relations when there is a
need.

Object context management requires an environment that is an object store, developed
on the basis of the elicited conceptual model that can enable the desired relation
management features. In such an environment, all stored objects require that their full
context descriptions, in terms of relations to other objects, are stored as well.

Through specifying the relations between capabilities and systems, these architecture
features and artefacts, which are currently missing in the defence capability and
defence information environment management as a whole, will be captured and
managed.

 4. Approaches to the Relation Management

Based on the investigation into the features, requirements, and rationales of the
relation management, this paper introduces a concept, called the Defence Architecture
Information Model (DAIM), which provides a model-based solution for Defence to
establish the relation management for systems and capabilities and enhance its
systems engineering, software engineering and architecture practice.

In order to ensure the success in the relation management, DAIM is designed, as
expected, to have a joint power of knowledge presentation and organisation that is
usually delivered from three separate methods, that is, taxonomy, ontology and meta-
data. The approach to DAIM development has been to use an object-oriented
modelling language that meets the requirements not only for concept and conceptual
relation management. It may also serve as the basis of an object context management
system based on the development of an object store that in turn may be based on an
object-oriented database.

A class is defined in DAIM because:
1) It represents a concept (e.g. scenario, project, system, and architecture) which there
are real world objects associated with, and
2) It has its unique features in terms of attributes, relations and methods or rules that
jointly defined its context in DAIM, and
3) A concept or class and its associated objects needs to be managed by DAIM, and
4) A class is considered to be useful in managing systems relation and architecture
data.
There are different ways to define and model real world concepts and classes even
using the same approach. In order to ensure that DAIM can play the roles discussed
earlier, the main objectives of the development team were:
• Firstly, class hierarchies defined in DAIM should cover all information /

knowledge entities related to major platforms, systems, scenarios, capabilities and
their requirements, projects and architecture resources. In other words, all these
concepts will be represented within DAIM such that objects of the relevant classes
can then be created to represent real world objects (or entities).

• Through DAIM, secondly, the relations between classes are defined explicitly
such that its objects can be linked to other objects defined in the relevant classes.

• Finally, DAIM was developed in the Unified Modelling Language (UML), to
serve as a logical data model for the architecture repository development.

Figure 3 shows the semantics, including the attribute and relation definitions, captured
in a class definition. DAIM consists of six main class packages represented in UML.

4.1Systems and SoS context

A system can be broadly defined as an integrated set of elements that accomplish a
defined objective. People from different disciplines or business interests have
different perspectives of what a “system” is. Due to a diversity of use of the term, it is
suggested that a system class in the DAIM is an abstraction of a real world system
with the following features:

• A clearly defined system boundary;
• Based on a grand design;
• With a system life cycle from planning to retirement/disposal; and
• Has the general features of a system (e.g. lifecycle, component systems,

interfaces).

The issues and interests concerned from a system perspective are:
• Internal design of a specific system;
• Interfaces to other systems;
• Development process.

 Figure 3. Attributes and relations captured in a system class definition

Because of different features and relations, that is, to model the Defence domain, the
System class is taxonomically further defined with a number of subclasses:
• Business system
• Military operation system
• Platform system
• Information-based system

- Business support system
- C2 support system
- Intelligence support system
- Reconnaissance system
- Surveillance system
- Infrastructure system
- Federation system

There are a variety of relations defined between these system classes. These relation
definitions will be used to help specify relations that exist between real world systems
when their associated objects are created in the object store. The relations specified
between real world system objects will fill a gap in current defence capability
architecture descriptions.

The federation system is a site-based federation of all C4ISREW systems, bound to
deliver joint functions. Such a site can be either a capability platform, like a warship,
or a command centre, where required C4ISR component systems work together. As a
communication infrastructure system, each individual C4ISR system , if it is a
distributed systems, can be used or integrated into different federation systems on
different sites. In other words, a federation system is structured-related to individual
C4ISR systems. Or, individual C4ISR systems can be part of a federation system or
many different federation systems. Capturing these system relations should enable
and support many system and architecture analysis activities.

Also included in the System Package is a SoS Context Class. There are a lot of
debates on whether a SoS should be considered as “a system”.

In DAIM, we choose to define a SoS context that has the following features. It:
• Has a context of interests;
• Involves a collection of systems, nodes and objects;
• Has no grand design;
• Has no life cycle for the context, but each system has its own life cycle;
• Has a common purpose or function when all involved systems, nodes and objects

are working together;
• Has a context evolution resulting from systems evolution;
• May be described in the form of an architecture.

Unlike the systems classes, the issues concerned from a SoS context perspective
include:
• Joint effects
• Interoperability levels and analysis
• Information sharing;
• Planning, coordination and management of systems evolution.

There are sub-classes of the SoS Context class. These include:
• Force operation environment;

o Force domain (e.g. Army, Navy, ..);
o Operation domain;
o Region domain;

• Capability information environment;
• Business information environment;

There are strong and important relations between instances (or objects) of System
Class and SoS Context Class. A system instance is:
• defined and studied;
• operated, used and deployed;
• managed and maintained;
• planned, evolved, improved, designed and developed
in the context of one or more objects of SoS context class.

A SoS context object is about:
• a shared understanding or common interests among
• shared requirements for
• a joint effort or function/ capability of;
• a shared environment/situation of;
• an agreement among
a number of systems involved in the context.

A system class object can be associated with a number of objects in different
subclasses of the SoS context class.

A SoS context (object) can be considered as a system if:
• all relations among involved systems are defined and stable; and
• all involved systems share a common life cycle; and
• there is an authority of control or ownership; and
• there is a need.

4.2 System classes and relations management
The System and SoS context class hierarchies, together with relation management,
should strengthen architecture management for the Defence capability process. It has
the potential to capture the supplementary system knowledge regarding SoS
architectures required to support Defence’s architecture activities and concurrent
engineering practice.

The taxonomical structure captured in the System Package can help users to identify
system types and their relations to other system objects in the context of capability
and system development. The exercise of creating system objects with its context
information and managing this information throughout a system’s life cycle can
significantly improve the awareness of its relations and impact on other components
of DAIM.

 The DAIM-based repository will have a rich repertoire of systems relations,
including pattern-with, component, based-on, part-of, interoperate-with, and used-by.
These relation often have different impacts on evolutions of SoS and require different
strategies in development and management. The pattern-with relation, for example,
defines a binding or collaborative relation of two systems that is not as strong as the
interoperate-with relation, which requires detailed specifications and interface design.

The System Class package is one of the six main class packages included in the
DAIM. As a result, the relation management achieved through the DAIM is
established across all these class packages. All knowledge relating to the core
concepts (scenario, capability, system, architecture and project) can be integrated
through relation management and form a body of knowledge on systems and
capabilities throughout their life cycles. With the support of such a systematically
established body of knowledge, capability planners, analysts and other stakeholders
can, as shown in Figure 4, easily and effectively access relevant information and
knowledge linking strategic scenarios, operation or exercise scenarios, capability
development scenarios, to systems, capabilities or platforms involved. In the current
practice, unfortunately, these relations across concepts are not defined, specified and
managed. They are also missing components of SoS architecture.

In traditional practices of Systems Engineering and architecture development, systems
relations are addressed in the activities of design and development. In the phase of
design, systems relations must be fully investigated and defined. The issues related to
interfaces and composition then need to be addressed through design and represented
in the form of architecture that guides the implementation and evolutions of SoS. The
relation management can effectively enhance the applications of Systems Engineering
and architecture practice.

Figure 4. The relation management across concepts

5. Benefits and Applications

The DAIM is a foundation to generate an integrated architecture capability for
planning and managing Defence capability and its information environment. Through
using the well-developed mechanism for the relation management, DAIM can play a
number of important roles in defence capability knowledge engineering and
supporting systems and capability management.

With the established knowledge schema that can manage complicated relations among
concepts such as operation scenarios, capabilities, systems, and architectures, and
their real world objects, DAIM provides the basis for a solution for enterprise-wide
architecture knowledge integration and management, that addresses three important
issues, that is, defence scenario management, systems and capability relation
management, and architecture data management, in an integrated manner.

As discussed earlier, relation management requires an object store as a solution for
implementation of the object context management. DAIM can then be used as a data
schema for architecture repository development. Based on an object store, it would
provide a facility to enable traceability, dependency analysis, synthesis, visualisation,
simulation, SoS analysis and experimentation, and capability analysis and
development. The repository can provide context descriptions of all DAIM objects
and can help generate, understand and synthesize “big pictures“ of various SoS
contexts of interest from capability and systems planning and development.

The dependency is a kind of relations that exists between two objects of the same
class or different classes. Dependencies can be classified into the following
categories:
• Function dependency;
• Structure dependency;
• Information dependency
• Effect dependency;
• Time dependency; and

• Financial dependency.

One of the great challenges in planning, managing and developing SoS is to develop
an ability to handle traceability when dealing with “big pictures” of defence capability
in various contexts and for different purposes. The establishment of mechanisms for
the relation definition and object context management provides a basis and support for
highly desirable functions or activities in relation to analysis and visualisation of
dependence and traceability. The traceability, as one of main benefits from the
relation management, hopefully achieved through the DAIM and its associated object
store is characterised as follows:
• Captured in an architecture repository (an object store);
• In a context of the whole defence capability and system architecture space or

across concepts, projects and business areas, including:
o Inter-system
o Inter-capability
o Inter-project
o Inter-architecture
o Inter-process
o Inter-business area.

With the ability to effectively handle dependency and traceability in the whole
defence information environment (DIE) SoS context through relations defined
between concepts (or classes) and specified between objects, DAIM offers an
opportunity to develop a knowledge management system and process for Defence
capability architecture practice. The benefits to Defence’s many business areas should
be substantial, enabling knowledge to be captured, applied at the appropriate time and
reused. The consequence should be that Defence should derive substantial additional
benefits from its architecture investments.

Through systematic definitions of concepts and relations, in summary, DAIM
becomes a conceptual model that describes the entire architecture space of capability
and systems It provides:
• A method for concept management (taxonomies and an ontology for scenarios,

capabilities, projects, systems and architectures).
• A method also for relation management that covers

o Scenarios relations;
o Systems relations;
o Capability relations;
o Projects relations;
o Architecture relations; and
o Relations across concepts.

• A foundation to enable important architecture activities, such as:
o Architecture planning;
o Architecture analysis and evaluation; and
o Architecture management.

• An environment to deal with issues concerning “big pictures” of defence
capability and DIE. It will, in a SoS Context, support :

o Traceability;
o Visualisation;
o Dependency analysis;

o Interoperability analysis.

With the mechanism of concept and relation management in the architecture
repository, capability planners, analysts, architects, developers or even war-fighters
can query, search and trace various relations and dependencies. As illustrated in
Figure 5, all real world objects captured in the repository are searchable with their
attributes and relations and can be visualised with its full context in terms relations to
other objects in the same class or different classes. If the relation definitions can be
further formalised, it should be possible to explore more semantics and rules that can
be used to develop automatic reasoning functions related to capability and system
relation analysis, synthesis and visualisation.

Figure 5. Object context visualisation through DAIM

Another advantage of developing the systems and capability relation management
solution in the context of DAIM is that it allows the extension of the relation
management coverage to include other related concepts, such as scenarios, projects,
architecture and references. Consequently, it also supports the traceability of relations
and dependence to be linked with associated scenarios and architecture descriptions.
Theses advantages prove the improvement of integrated knowledge management for
the defence systems and capability management as a whole.

6. Conclusions

Dynamic changes of defence war-fighting requirements and constant evolutions of
technologies require systematic and effective relation management for its systems and
capabilities. The approach discussed in this paper presents both concepts and solutions for
achieving the relation management that enables context-aware systems and capability
planning, development, deployment and management. The systems and capability relation
management is introduced as part of the defence architecture data management solution. It
adds a new element to the architecture of defence SoS, which is currently missing and
difficult to manage. Through systematic and effective capability and systems relation
management, a defence organisation can become more confident and capable in the evolution
of the organisation and its capability and systems.

Acknowledgement
The authors would like to thank Norman Ferguson and Martin Hamilton of Codarra
Advanced Systems, and Michael Isgro and Fung Wong of Swinburne University, for their
contributions to both developing DAIM and the DEAL concept demonstrator.

References

S. Arnold and P. Brook, Managing the Wood not the Trees  The Smart Acquisition Approach to
Systems of Systems, In Proceedings of the 11th annual Symposium of INCOSE, July 2001.

B. S. Blanchard, System Engineering Management, 2nd ed. John Wiley & Sons, Inc. 1998.
P. G. Carlock and R. E. Fenton, System-of-Systems (SoS) Enterprise Systems Engineering for

Information-Intensive Organisations, Sys. Eng 4 (4) 2001, 242-261.
P. Chen. and A. El-Sakka., Context Analysis and Principles Study of Architecture Practice, DSTO

Technical Report, DSTO-CT-0151, 2000.
P. Chen and A. Pozgay, Architecture Practice: A Fundamental Discipline for Information Systems,

Australasian Conference on Information Systems (ACIS) Dec. 2002. 441-451.
P. Chen and J. Han, Facilitating Systems-of-Systems Evolution with Architecture Support, Proceedings

of International Workshop of Principles of Software Evolution (IWPSE), Vienna, Austria, 2001.
130-133.

S. C. Cook On the Acquisition of Systems of Systems, In Proceedings of the 11th annual Symposium
of INCOSE, 2001;

H. E. Crisp and P. Chen, Coalition Collaborative Engineering Environment, INCOSE INSIGHT, Vol 5
(3), Oct. 2002. 13-15.

C4ISR Architecture Working Group, Levels of Information Systems Interoperability, US DoD, 1998.
C. Dickerson, Using Architecture Analysis for Mission capability Acquisition, In Proceedings of the

International Command and Control Research and Technology Symposium (ICCRT) 2002.
J. O. Grady, System Engineering Planning and Enterprise Identity, CRC Press, 1995.
ISO/IEC 15288: Systems Engineering  System Life Cycle Process, Nov. 2002, Web site at

http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
R. Kaffenberger and J. Fischer, Designing Systems of Systems Without Getting Trapped in the

Subsystem Maze, In Proceedings of the 11th annual Symposium of INCOSE, July 2001.
J. Leonard, Systems Engineering Fundamentals, Defence Systems Management College Press,

December 1999;
H. W. Lawson, A Map of Systems and Systems Engineering, Technical Report of Syntell AB, 2000.
A. H. Levis and L. W. Wagenhals, Developing a Process for C4ISR Architecture Design, Syst Eng

3(4), 2000, pp. 314-321.
M. W. Maier, Architecting Principles for Systems-of-Systems, Proceedings of the 6th Annual

Symposium of INCOSE, pp. 567-574, 1996.
A.P. Sage and C. D. Cuppan, On the Systems Engineering and Management of Systems of Systems and

Federations of Systems, Information • Knowledge • Systems Management 2 (2001), pp. 1-21.
S. A. Sheard and J. G. Lake, Systems Engineering Standards and Models Compared, Software

Productivity Consortium, 1998, Web site at http://www.software.org/pub/externalpapers/
SE Handbook Working Group, Systems Engineering Handbook, Version 2.0, International Council on

Systems Engineering (INCOSE), July 2000, Web site at http://www.incose.org.

