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ABSTRACT 
This paper reviews the assumptions underlying extant Industrial Age combat models and 
discusses limits to their use in the Information Age.  Recent attempts at modern combat 
models are reviewed.  An Information Age Combat Model is introduced and the 
mathematics of its structure, dynamics and operational evolution are presented.  Policy, 
doctrine and acquisition implications are explored and tutorial of relevant mathematics is 
appended 
 
 

1 INTRODUCTION 
Significant recent research has focused on the 
structure of distributed networked systems.  This 
research is providing new insight into the structure, 
dynamics and evolution of such systems as X, X, X 
and X.  Through this work, new classes of network 
structure have been identified and new catalog of 
statistics and metrics describing their most important 
characteristics has been developed. 
 
This research pertains exclusively to distributed 
networked systems in non-military contexts.  This 
paper, however,  
 
 

2 COMBAT MODELING 
The basis of most combat modeling techniques used 
today comes from descriptions of the physical world 
that are over 100 years old.  Not only is there 
evidence that these techniques never adequately 
explained data from actual combat at any time in the 
modern era,1 they do not describe command and 
control (C2) processes that exist today nor will they 
adequately describe the projected future C2 processes 
in Information Age warfare. 
 
This section will focus on the assumptions and 
underlying philosophy of existing combat models.  
Not only will the assumptions and philosophy of 
contemporary combat modeling be explored, but the 
discussion will also demonstrate the unsuitability of 
existing techniques to describe Information Age 
warfare and suggest the characteristics that will be 

required of models that better describe and support 
Information Age combat  processes. 
 

2.1 Traditional Attrition-Based Combat Models 
There are two basic types of combat model in use 
today, deterministic (closed-form equations) and 
stochastic (probability-based) combat models.    
 
Deterministic Models.  The most famous example of 
a deterministic model are the eponymous Lanchester 
Equations, first published by a Victorian-era engineer 
who developed a mathematical force-on-force theory 
of combat in 1914.2  This model is the basis for most 
of the current attrition-based combat models in use 
today.  In brief, Lanchester’s theory was that each 
side in a combat duel degrades the other side at some 
rate proportional to its own remaining size multiplied 
by the firing rate of an average shooter.  Using 
differential equations, Lanchester could theoretically 
predict such results as the ultimate winner of a 
contest between combatants, the time required for the 
duel to conclude or the size of each force remaining 
(or destroyed) at the duel’s conclusion.    
  
Stochastic Models.  In another common class of 
attrition-based model are stochastic models.  These 
models typically represent combat as a chain of 
events, each with their own probability of occurrence 
or as sets of basic interaction equations with random 
variables representing operational processes.  These 
models must be run a “statistically significant” 
number of times so that random behaviors will 
collectively converge on some stable, aggregate 
mathematical values. 
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Assumptions in Traditional Models.  There are some 
very important underlying assumptions that impact 
the form and application of traditional deterministic 
and stochastic attrition-based models.  The most 
important of these are: 
 
• Command and control assumptions: C2 is rarely 

represented explicitly but rather implied by such 
devices as the relationships between variables or 
the sequence by which random variables are 
drawn. 

 
• Regulation of random events: When random 

variables are used in traditional models it is 
assumed that the distribution of outcomes for a 
variable is not so skewed that a relatively small 
number of model runs will mitigate variation in 
the random variables.    

 
• Monotonicity: This assumption requires that 

grossly non-linear outcomes should not be 
triggered by small changes in any input variable. 
For example, doubling a rate of fire or doubling 
the size of a force should roughly double the 
damage done to an adversary, not, say, triple the 
losses to one’s own force. 

 
• Independence: This assumption requires that 

complex chains of causality in the operational 
processes being modeled are inconsequential and 
that most processes can be modeled as either 
independent events or as chains of simple 
causality.     

 

2.2 Recent Attrition Models 
Traditional attrition models describe continuous fire 
combat, where one side erodes the combat power of 
another at some fixed rate over time.  In the late 
1980’s Hughes developed an attrition model that 
described both the exchange of striking power during 
the Battle of Midway and the character of combat 
power exchanges in the “Missile Age”.  His salvo 
exchange model described combat as a “pulse” of 
offensive combat power designed to instantaneously 
penetrate an adversary’s active defenses and to cause 
damage to the adversary’s platforms3.  Although this 
model has important descriptive power its two major 
drawbacks are that it only holds for homogeneous 
forces and it is strictly deterministic.  These shortfalls 
were later addressed by introducing a version for 
heterogeneous forces and a stochastic variant4.  
Although these two variants were never combined 

into a stochastic, heterogeneous salvo model, such an 
exercise would be largely academic and not of 
practical use.  The reason is that although the 
stochastic version allowed exploration of a more 
dynamic range of inputs, the heterogeneous variant 
required a high-dimensional “matching matrix” to 
define the interactions between elements of offensive 
combat power, defensive combat power, and staying 
power.  In short, a full description of the matching 
matrix would be tantamount to an a priori description 
of the all the combat behaviors and supercede the 
need for the model to begin with. 
 
One powerful feature of the salvo model is explicit 
calculation of “combat entropy” as a very normal 
condition of warfare.  Combat entropy is one aspect 
of the uncertainty or “fog of war” that holds, in part, 
that there will often, if not always, be a sub-optimum 
assignment of combat power to targets.  Later work 
explained the extent to which combat entropy and the 
sub-optimal assignment of combat power affects 
combat outcomes5. 
 

2.3 Command and Control (C2) and Combat 
Modeling 

Most Department of Defense (DoD) combat models 
are some variant of traditional models with additional 
C2 parameters (in the case of deterministic models) or 
the addition of C2 statistical terms (in the case of 
stochastic chains).  Newer efforts (The Joint Warfare 
System (JWARS), for example) have attempted to 
more explicitly capture the most important command, 
control, communications, computers, intelligence, 
surveillance, and reconnaissance (C4ISR) operations.  
However, the underlying philosophy has not departed 
from embellishing traditional attrition models with 
C4ISR parameters or processes. 

2.4 Network Centric Warfare Modeling 
The concept of Network-Centric Warfare (NCW) 
was pubicly introduced by Vice Admiral Cebrwoski 
and Mr. John Garstka in 1998.6  Cebrowski and 
Garstka describe how the military must shift from 
platform-centric to network-centric warfare, drawing 
a parallel in warfare to the use of information 
technology in the business sector, a process of 
shifting from platform-centric computing to network-
centric computing.  They describe the power of 
network-centric warfare as being governed by 
Metcalfe’s Law, such that the “power” of a network 
is related to the number of connected nodes in a 
network (specifically to the square of the number of 
nodes in a network).  The power comes from the 
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“information-intensive interactions” between the 
nodes.  Cebrowski and Gartska describe how NCW 
results in an increase in speed of command, self-
synchronization of forces, and higher situational 
awareness. 
 
Each of the services and the Joint Staff have their 
own operational vision relative to NCW: Ship-To-
Objective Maneuver (STOM – Marines), Future 
Combat System (FCS – Army), FORCEnet (Navy), 
Effects Based Operations (EBO – Air Force), and the 
Joint Vision document series (Joint Vision 2010, 
Joint Vision 2020 – Joint Staff).  Early attempts to 
model NCW used metaphors and thumb rules taken 
from the information technology (IT) industry or 
attempted to re-cast traditional models as NCW 
models.7  In general, the NCW literature has never 
graduated beyond metaphor or the type of “glittering 
generalities” that motivated Chase to develop his 
attrition-based models.8  In no case are the 
mechanisms for advantage of NCW or Information 
Age warfare articulated with enough specificity to 
produce meaningful research, scientifically valid 
experimentation or rigorous concept development. 
 
Some NCW modeling efforts to date include the 
following: 
 
• Use of IT industry models.  The most prevalent 

of these is on page 250-256 of the basic NCW 
text, which suggests that warfare will be 
conducted according to “Metcalf’s Law”.9  
Recent research into network theory show that 
this is a naïve assumption – networked behavior 
is far more complex then a simple count of 
potential connections.   

 
• Textual Descriptions:  In another example from 

the same book, an attempt is made to describe 
self-synchronization in detail.  The text asserts 
that a rule set and shared awareness produces 
self-synchronization.  Counter to this assertion, 
however, is research that mathematically 
describes self-synchronization occurring without 
a common ruleset and without shared awareness.  
Like for to many similar examples, the textual 
model of desired behavior does not hold up 
against more formal mathematic treatment.  

 
 
• Booz-Allen & Hamiltom Entropy Based Warfare 

Model™.  At its core this model consists of 
Lanchester’s attrition-based equations with 
additional tuning parameters.  This model 
provides a poor representation of combat entropy 

and is, in essence, still a traditional attrition-
based model with Industrial Age assumptions.  
Ironically, if one knew the value of the tuning 
parameters there would be little need for the 
combat model. 

 
• RAND studies on NCW measures of 

effectiveness (MOEs) for the Army and Navy 
suffer from the same deficiency as Effects Based 
Warfare (EBW) work: they attach Information 
Age tuning parameters to what is essentially an 
Industrial Age model.10 

 
• Description of Netwar by Arquilla and 

Ronfeldt.11  Although this work is valuable in its 
description of networks as metaphors, we will 
see later how this approach inadequately 
describes the dynamic behavior of warfare 
networks. 

2.5 Transformation and Modeling Philosophy 
All of the models described in the previous sections 
are inadequate in describing Information Age 
warfare, because they all have the same underlying 
philosophy: they rely on mathematics that represent 
combat activities as independent processes and 
identically distributed variables, that the world is 
reducible, that variables of combat can be isolated for 
sensitivity analysis and that the performance of 
individual entities is well aggregated by average 
global behavior.  Substantial evidence to the contrary, 
however, shows that combat processes are not 
independent.  Many concepts for Information Age 
warfare show physical objects in “grids” where their 
relative positions to other objects are trivialized.  
Moreover, it has been long known that combat 
performance is better represented by skewed, rather 
than regular, distributions.12  Ironically, EBO and 
NCW operations are said to capitalize on that fact. 
 
Requirements for an effective Information Age 
combat model must include the following: 
 
• Capture attrition 
 
• Capture the search and detection process 
 
• Explain how arrangements of entities contribute 

to combat outcomes 
 
• Explicitly represent interdependencies 
 
• Capture skewed behavior of human performance 
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In summary, such a model would be a transformation 
in combat modeling philosophy, and would represent 
a true Information Age combat model. 
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3 Structure of the Information Age Combat 
Model 

3.1 Mathematical Structure of Complex 
Networks 

As discussed in Section 2, combat models currently 
used in the DoD are insufficient models of network 
processes.  In addition to the reasons previously 
given, they fail to contain the mathematics of 
network operations.13 
 
One starting point for this discussion is the size of 
combat networks.  Traditional network research and 
understanding is based on networks with relatively 
few nodes; today, however, networks easily consist 
of thousand or even millions of nodes.*  In such a 
network it is not relevant to discuss the effect on 
removal of a single node, but rather to discuss the 
removal of a percentage of the nodes.  In addition, 
with networks this large it is not possible to 
physically represent them, as in a diagram; instead, 
methods of statistical analysis are being developed to 
represent the structure and interactions of the 
network.14  
 
A discussion of the general properties of networks 
and a determination of the type of properties an 
Information Age combat model would have is 
included in an appendix to this paper. 
 

3.2 Basic Model Structure 
An Information Age Combat Model should have a 
structure similar to the mathematical structure of 
complex networks.  These basic networked structures 
consist of nodes connected by arcs.   

3.2.1 Nodes 
Nodes consist of sensors, decision points, influencers, 
and targets. Sensors receive phenomena from the 
environment.  A decision point receives information 
from sensors and makes decisions about the present 
and future arrangement of other nodes.  Influencers 
interact with other nodes in an attempt to affect the 
state of those nodes.  A target is a node that has value 
(sensors and decision points can appear as targets 
because they have inherent value, but their primary 
                                                           
* JEFF: Do you want to present an example of this?  
A combat aircraft or a networked infantryman, for 
example?  People might not see the largeness of the 
number intuitively., especially if they are still 
thinking about platforms… 

function and attributes determine their classification 
as sensors and decision points).  In addition, all nodes 
have a characteristic called “side” (i.e., blue, red, 
orange; friend, foe, neutral; etc.). 
 
Nodes can be contracted into a single node.  For 
example, a single node can contain the attributes of a 
sensor, influencer, a decision point and a target as 
well.  In fact, contracting sensors, decision points, 
influencers, and targets into a single nodes leads to 
the interesting result that network mathematics and 
interactions replicate Lanchester’s equations. The 
technique of contraction, however, removes the 
networked character of the model.  For this reason, 
traditional models cannot be used to represent 
networked combat. 
 

3.2.2 Arcs 
Nodes are linked to each other by directional 
connections known as arcs.  Arcs are directional 
since information flows in one direction at a time.  
For example, targets give off phenomenology that 
travels to and is detected by a sensor.  Examples 
include radio frequency (RF) energy, infrared signals, 
reflected light, communications, and acoustic energy, 
to name a few.  Sensors give off phenomenology, 
which is why they can also be thought of as targets.  
Active sensors (radars, active sonars, etc.) give off 
energy, and passive sensors give off visual cues, 
magnetic signatures, etc.  Decision points give off 
phenomenology, such as RF energy, communications 
traffic, visual cues, acoustic energy, etc. (a key 
assumption here is that a decision node must 
physically exist).  Finally, influencers give off 
phenomenology and interact with other nodes, 
typically in an effort to destroy or render useless 
those nodes.  Examples include weapons, jammers, 
and decoys. 
 
There are multiple types of arcs, or links, in a 
network.  Targets generate phenomena into the 
environment that is received by sensors.  Sensors 
relay information to a decision point.  Decision points 
give positioning orders to sensors, targets, and 
influencers, and engagement orders to influencers.  
Finally, influencers interact directly with targets.  
Figure 1 presents the graphical representation of the 
most basic combat network, while Figure 2 
represents what a two-sided system might look. 
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Figure 1 - Simplest Possible Combat Network 
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Figure 2 - Simplest Possible Two-Sided Combat 
Network 

To clarify the relationships in Figure 1 and Figure 2, 
assume Combat Models have the following 
characteristics: 
 
• Sensor logic does not equate to decision-making 

capability.  That is, any logic within the sensor 
that governs sensor operations does not mean 
that it has the de facto capability of a decision 
node. 

 
• All sensor information that passes to an 

influencer does so through a decision point; 
“sensor to shooter” is allowed, “sensor to bullet” 
is not.  Take, for example, the case of an acoustic 
homing torpedo that has an active or passive 
sensor onboard that provides positional 
information on the target.  The targeting logic 
within the weapon is considered the decision 

point (enabled, by the way, by another decision 
point, the platform that launched the weapon).  
This is, of course, an example of a contracted 
node, where both the decision point and the 
influencer have been collapsed into a single 
node. 

 
• Targets could be vehicle platforms, without 

sensing, influencing or decision making 
capability, and therefore have “maneuver logic.” 

 
• Targets provide information (locator data, for 

example) through sensors; there is no direct path 
from targets to their side’s decision points. 

 
• Sx, Dx and Ix all have independence, locomotion 

and communications capability, but can forfeit 
independence and locomotion under contraction.  
For example, a single platform that contains all 
three removes the independence of each and 
accounts for their locomotion, but 
communication must remain between the three 
or they become targets. 

 
• IY can influence Sx independent of Tx.  An 

example of this is a jammer or an anti-radiation 
missile that renders the sensor impotent without 
otherwise destroying the target. 

 

3.2.3 Simplest Complete Information Age 
Combat Model 
 
Figure 3 represents the simplest complete Combat 
Model.   
 

T X T y

S X

D X

I X

S y

D y

I y

S: Sensor I:  Influencer
D: Decision Maker T:  Target

Simplest complete combat network

 
 

Figure 3 - Simplest Complete Combat Network 
 
This model represents all the ways that sensors, 
decision nodes, influence mechanisms, and targets 
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meaningfully interact with each other.  The two 
dimensions of the surface of this paper obscure the 
inherent complexity of even this simple model: there 
are 36 different dimensions in which this model 
operates. 
 
In the adjacency matrix, a 1 indicates that there is a 
connection between the nodes in that row and 
column, and a 0 indicates that there is no direct 
connection between those nodes.  Note that the 
connections are also directional in nature, and that the 
column headers represent reception of information.  
For example, Ix can receive information from its own 
side decision node (Dx), itself, and the enemy 
influencer (Iy), but not from its own side sensor (Sx) 
or target (Tx) or from the enemy sensor (Sy), decision 
node (Dy), or target (Ty). 
 
Recall that this is the simplest complete model.  One 
could, for example, include many more targets, 
sensors, decision nodes, and influencers.  In general, 
the number of different subnetworks possible that can 
be created from an N x N matrix is 2(N2).   This 
number gets very large for even small values of N.  
Figure 4 is a plot of 2(N2).   
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Figure 4 - Plot of 2(N2) 

 
For purpose of illustration, values of N larger than 20 
can create more possible subnetworks then there are 
particles of matter in the known universe.  There is 
some relief, however, in that the adjacency matrices 
created by the combat networks that have been 
researched to date are in a class called “sparse 
matrices.”  This means that for the simplest complete 
combat network only a small fraction of the 
1,844,670,000,000,000,000,000,000 subnetworks that 
are possible are actually formed.  These subnetworks 

are in 4 general types.  The first type is a control 
cycles that represents direct control of one side’s 
assets.  Figure 5 displays three of the eight possible 
control cycle types.  
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Figure 5 – Control Cycles 

 
A is an example of the first type of control cycle, 
where the decision node, D, implements direct 
control of sensor S2, and S1 receives information 
from S2 and reports it to D.  B is a representation of a 
control cycle where a sensor S receives information 
from a target T and passes that information to a 
decision node D, which initiates contact with T.  In 
the third example, D initiates an influencer I which 
receives information from a sensor S, which 
communicates back to D. 
 
The second type of subnetwork consists of catalytic 
control cycles that represent control of one side’s 
assets based on information about the state of other of 
the side’s own assets.  Figure 6 shows three of the 50 
possible catalytic control cycles. 
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Figure 6 – Catalytic Control Cycles 

 
In catalytic control cycle A, D controls sensor S2, 
while S1 receives information from both S2 and target 
T and reports it to D.  In B, decision node D controls 
influencer I.  Sensor S receives information from 
both I and target T, and relays this information to D, 
which communicates with T.  In the final example, 
decision node D1 communicates with D2 and controls 
influencer I.  Sensor S receives information from 
both D2 and I and relays information to D1. 
 
The third type are catalytic competition cycles that 
represent control of one side’s assets based on 
information about one’s own assets and the other 
side’s assets.  Figure 7 shows <TBD> of the 4,950 
possible catalytic competition cycles. 
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Figure 7 – Catalytic Competitive Cycles 

 
In catalytic competitive cycle A, Dx communicates 
with Tx and Ix, and Sx receives information from Sy 
and relays it to Dx.  In example B, Sy receives 
information from Tx, Sx, Ix, and own-side influencer 
Iy, and communicates with Dy, which controls Iy. 
 
The fourth type are combat cycles that represent 
application of combat power from one side to the 
other.  Figure 8 represents two of the 14 possible 
combat cycles. 
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Figure 8 – Combat Cycles 

 
In combat cycle A, sensor Sy generates information 
that is received by Sx.  Sx relays information to Dx, 
which communicates with target Tx and initiates 
influencer Ix.  Sx receives information from Tx and Ix, 
as Ix interacts with Sy.  In example B, sensor Sy 
receives information from Tx, Sx, and Ix, and relays 
this information to decision node Dy.  Dy controls Iy 
which then interacts with Ix and generates 
information that is received by Sx. 
 
Calculating the relative frequency for each of the four 
types of subnetworks suggests that Information Age 
combat is focused much more on creating 
competitive arrangements of the elements of combat 
power to engagement than the actual application of 
that combat power.  In the case of the simplest 
complete combat model, combat represents less than 
0.28% of the allowable subnetworks.   
 
Another important point one can immediately 
conclude is that network models previously proposed 
that have maximally connected networks overstate 
the required connectivity by many orders of 
magnitude.  In the case of the simplest complete 
combat model, there are approximately 1024 more 
subnetworks connected in the 264 maximally 
connected subnetworks than the ????? sparsely 
connected network. 
 
The “snapshot” subnetwork structure of this model 
does not fully describe the potential for network 
effects in the IACM.  The next section will define 
and describe the dynamics of the IACM. 
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4 DYNAMICS 
 
The essence of networked behavior comes from the 
fact that dynamic behaviors are not contained in the 
static structural property, but are contained in 
dynamic interactions of arcs and nodes.  If there is to 
be advantage in using networked forces it must arise 
from these dynamic network effects.  Current NCW 
literature and contemporary combat models do not 
describe these effects. 
 

4.1 Matrix Representations of Networks 
 
Networks with directional flows can be represented 
as a matrix of 1’s and 0’s (an “adjacency matrix”) for 
mathematical manipulation.  Figure 9 is a matrix that 
describes the simplest complete combat network. 
 

Tx

Ty

Sx

Dx

Ix

Sy

Dy

Iy

Tx Ty

Sx

Dx Ix Sy

Dy

Iy

101

11111111

11 111

111

11

11111111

11111

111

00

000

00000

000000

000

00000

000

row maps directionally to column = 1, 0 otherwise

Adjacency Matrix for Simplest, Complete Combat Network

 
 

Figure 9 - Simplest Combat Network Adjacency 
Matrix 

4.2 Mathematical Manipulation of Matrices 
 
Once a network has been converted to a matrix 
representation, various mathematical operations can 
be performed.  A very rich and formal field of 
mathematics exists to perform these operations. 15  
One of the most useful operations is the calculation 
of eigenvalues.16  An eigenvalue, usually denoted by 
the Greek symbol λ, is a measure of the value of the 
networked system described by the adjacency matrix. 
 

4.3 Measuring Networked Effects 
 

The adjacency matrices that describe the IACM are 
of a particular type, “sparse non-negative matrices”, 
that have an important property that allows for 
measurement of networked effects.  The Perron-
Frebonius theorem states that for matrices with this 
property, there exists at least one real non-negative 
eigenvalue larger than all others.*  In addition, since 
the entries in an adjacency matrix are 1’s and 0’s, the 
Perron-Frebonius eigenvalue (PFE) will have three 
distinct ranges of values which correspond to three 
distinct values of networked effects: the absence of a 
cycle, the presence of a simple cycle, and the 
magnitude of networked effects. 
 
The left side of Figure 10 shows a network without a 
cycle, indicated by the absence of a path from any 
node that returns to that node.  The right side of the 
figure is the adjacency matrix that describes that non-
cyclical network.  The PFE for the adjacency matrix 
is 0.  By definition, an adjacency matrix with a PFE 
of 0 represents a network with no cycles.   
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Figure 10 - Network with No Cycles 

Figure 11, by contrast, contains a simple cycle.  The 
PFE of its adjacency matrix equals exactly 1.  By 
definition, an adjacency matrix with a PFE of 1 
represents a network with a simple cycle.  A network 
with a simple cycle has no networked effects. 
 
Figure 12 shows additional network structures, over 
and above the simple cycle in Figure 11.  Such 
additional arcs and nodes add value to a network and 
are the mechanism by which networked effects 
accrue.  The PFE of the matrix representing such an 
adjacency matrix measures the magnitude of 
                                                           
* As with any multi-variant mathematical problem, 
there can be more than one eigenvalue that represents 
the value of a matrix. 
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networked effects and can be used to compare the 
topologies of various networks with respect to their 
potential for dynamic networked effects.  These 
networks are called autocatalytic sets (ACS) because 
the additional structure creates feed-forward and 
feedback linkages that create networked effects. 
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Figure 11 - Network with a Single Simple Cycle 
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Figure 12 - Network with an Autocatalytic Set 
(ACS) 

 
Figure 13 shows how the PFE increases with 
additional linkage.  Not all additional linkages, 
however, contribute to networked effects.  Figure 14, 
for example, shows how the addition of an arc and a 
node to the basic structure in Figure 12 does not 
change the value of the PFE.  Figure 12 is the “core” 
process of the network in Figure 14.  A core process 
is the set of arcs and nodes that contains all the 
mechanisms for networked effects in a network.  
Additional arcs and nodes that do not contribute to an 

increased PFE are called “peripheral” arcs and nodes.  
In larger networks, however, it is possible to have 
more than one core. 
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Figure 13 – ACS with Additional Linkages 
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Figure 14 – Network with Peripheral Arc and 
Node 

 
 
 
Figure 15 shows the different ways that networked 
effects can accrue.  (Jeff: Not sure why Fig 15 
doesn’t show up on my PC). 
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Figure 15 - TBD 

 
This section has described the mechanisms by which 
networked effects accrue.  What is more important 
for competition between networks, such as is 
represented by the IACM, is long timescale 
dynamics, or “network evolution”, discussed in the 
next section. 
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5 EVOLUTION 
 
USS Shallow Water, a littoral combat ship (LCS), 
equipped with an anti-air warfare combat systems 
package, is operating in a hostile littoral 
environment providing anti-air support to a mine 
countermeasures vessel.  Shallow Water is operating 
a phased array air and surface search radar, a 
surface navigation radar, maintains a visual lookout 
via a mast-mounted video camera, and communicates 
tactical data to the mine countermeasures vessel via 
Link 16.  Suddenly the video camera operator spots 
three small combat raider rubber craft (CRRC) 
approaching at high speed, and reports their bearing 
to the Tactical Action Officer (TAO).  At the same 
time the Weapons Coordinator reports that the 
phased array radar has established a fire control 
track on the approaching craft and has locked onto 
them.  The TAO orders the CRRCs engaged with the 
Shallow Water’s close-in gun system (CIG), which 
receives tracking data from the phased array radar 
and quickly blows the approaching craft out of the 
water.  The entire engagement is automatically 
reported to the mine countermeasure ship via Link 
16. 
 
This section describes the growth and evolution of 
complex networks, the exploitable properties that 
arise from these processes, growth and evolution, and 
the long-term statistics that arise in evolved complex 
networks. 

5.1 Punctuated Growth in Complex Networks 
 
As complex networks are formed for purpose (Jeff: 
FORCEnet Engagement Packs!), ACS’s create a 
punctuated growth in networked connectivity (or for 
networks such as the IACM in which work is done 
between arcs and nodes, a punctuated increase in 
networked effects. 
 
A simple thought experiment demonstrates that even 
a random arrangement of arcs and nodes can result in 
good connectivity.  Imagine that there are 400 
buttons and many pieces of string on a table.  A 
button a piece of string are selected randomly from 
the table, picked up, tied together a piece of string 
and placed back on the table.  This process is 
repeated indefinitely.   
 
Figure 16 is a plot of the number of buttons 
connected to other buttons and the ratio of strings to 
buttons.   
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Figure 16 - Buttons and Strings 

 
The resulting curve shows that as the ratio of strings 
to buttons approaches 0.5, the connectivity of the 
buttons dramatically increases.  The curve flattens 
quickly, however, and each additional string adds 
only marginally fewer buttons to the network.  
Obviously, a connected network is not guaranteed by 
this method (the curve is asymptotic to the maximum 
number of buttons) but the method clearly displays 
the nature of the transition from an unconnected 
group of nodes to a highly connected network.17 
 
Although the buttons and strings is a purely random 
process, other complex networks experience the same 
type of punctuated growth. 
 

5.2 Learning and Adaptation in Complex 
Networks 

 
The part of the connectivity curve in Figure 16 to the 
left of the tipping point at 0.5 is more important than 
the tipping point itself.  This is because it represents 
latent connections that must be present for the tipping 
point to occur.  In complex networks that are formed 
for purpose, particularly an IACM with sensors, this 
point of the curve represents two distinct behaviors.  
The first behavior is a kind of learning, in the sense 
that arcs and nodes that are initially placed inform the 
placement and connection of subsequent arcs and 
nodes.  As additional arcs and nodes are added, the 
network evolves from one with no cycles to one with 
multiple simple cycles, and finally to one with ACS’s 
and networked effects. 18  These mature networks can 
then be used for intended purposes if networked 
effects can be exploited.  If the environment or 
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competition changes substantially, it is possible that 
the arrangement of arcs and nodes and, therefore, the 
networked effects become irrelevant to the 
competition or environment until such time as 
feedback or feed-forward results in reconfiguration of 
the network for its new relevant purpose. 
 
The second behavior is adaptation.  While subtlety 
distinct from the first behavior, reactive learning, 
adaptivity exploits the presence of additional latent 
arcs and nodes to help the network morph smoothly 
to respond to environmental or competition changes.  
A simple chain of arcs and nodes can not be a 
complex network; a complex network, however, can 
invoke simple chains within it.  Complex networks 
can adapt by chaining portions of simple chains by 
drawing out of latent structure.  Indeed, one measure 
of adaptivity is the amount of latent structure (an 
additional use of the PFE). 

5.3 Core Shifts in Complex Networks 
 
Section 4.3 talked about the presence of cores in 
complex networks.  As competition unfolds or the 
environment changes, learning or adaptation can 
profoundly affect the evolution of complex networks.  
One of the most profound types of change is the 
“core shift”.  In a core shift the central mechanisms 
of networked effects can move from one subset of 
arcs and nodes to another.  We should expect to see 
core shifts in the normal course of military operations 
in the IACM as a combat network moves from 
sensing a group of targets to attacking those targets.  
Figure 17 through Figure 20 mathematically describe 
just such a core shift.  In Figure 17 the core portion of  
the adjacency matrix is outlined by a box.  The 
portion of the adjacency matrix outside of the box 
represents the presence of the two peripheral nodes 
(I1 and I2), as well as a target node (T). 
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Figure 17 - TBD 

Figure 18 shows the sensor S1 reacting to T (i.e., 
reporting positional information to the decision node, 
D), and the decision node passing targeting 
information to two influencers (i.e., weapons), I1 and 
I2.  In addition, I1 and I2 have identified themselves to 
the sensors for tracking during the coming attack.  
Note that the core (outlined by the box in the 
adjacency matrix portion of Figure 18) has expanded 
to include the influencers, and the PFE has changed 
as a result. 
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Figure 18 - TBD 

In Figure 19 the network has initiated an attack on T.  
In addition, sensors S1 and S2 have been re-allocated 
away from the immediate problem, as they no longer 
serve any direct role in the attack.  As a result the 
core has shifted and is now represented by the 
portions of the adjacency matrix in the lower right 
corner and along the left side and top.  The portion of 
the adjacency matrix in the center represents the fact 
that S1 and S2 are now peripheral to the network.  
Again, the PFE has changed with this shift in the 
core. 
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Figure 19 - TBD 

In Figure 20 the attack is underway: the influencers 
are approaching T, and their progress is monitored by 
sensor S3 which communicates data to the decision 
node D, which in turn sends additional guidance data 
to I1 and I2.  Note that while the underlying structure 
of the adjacency matrix has not changed (i.e., there 
has been no further core shift), the additional network 
interactions have resulted in a new PFE. 
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Figure 20 - TBD 

 

5.4 Long Term Structure of Complex Military 
Networks 

 
As complex networks grow and evolve their long 
term statistics converge on a growing number of 
important characteristic statistics.  These statistics 
have been the subject of intense study over the last 

five years.  This research suggests ththe long term 
statistics should pertain to complex military 
networks.  At a minimum, the following properties 
and their proposed ranges of values should be used as 
thumb rules for information age analysis and 
experimentation. 
 
Number of nodes, n.  Although some future concepts 
contain, for example, references to “network-centric 
warships”, networked effects depend greatly on the 
presence of a large number of nodes.  In general, 
significant networked effects are unlikely to be 
realized in a network of fewer than 50 nodes.  The 
steepness of the generic connectivity profile in Figure 
16, for example, is precisely a function of the number 
of buttons: the more buttons, the steeper the curve.  
One of the claims of some network-centric military 
concepts is that the numbers count.  There is ample 
evidence in the science of complex networks to 
support this claim.   
 
Number of links, I.  Just as important as the number 
of nodes is the number of links.  Early NCW 
presentations and some of the existing literature 
suggested that all nodes should be directly linked to 
al other nodes, claiming that the power of the 
networkis equal to the square of the number of nodes 
(Metcalf’s Law). 19  As Figure 16 shows, very good 
connectivity can be achieved with many fewer links 
than this.∗  Networks in which every node is directly 
connected to every other node have the same 
complexity portrayed in Figure 4.  Such networks, 
then, needlessly incur extraordinarily excessive 
overhead.  As a general rule, the ratio of links to 
nodes in complex networks should be about, on 
average, two. 
 
Degree distribution.  The average number of links to 
nodes, however, observes what is essentially an 
adaptive property of complex networks, their degree 
distribution.  A node’s degree is a measure of the 
number of links connected to it.  In complex 
networks, there is a skew distribution of degree. +  A 
skew distribution means that there are a very small 
number of highly connected nodes, a moderate 
number of moderately connected nodes, and a very 
large number of minimally connected nodes.  It is 
this property that creates flexibility, adaptability, and 
modularity. 
 
                                                           
∗ In addition, refer to Sections 8.1.1 and 8.1.2 
+ In many networks this is represented by a power 
law distribution; see Section TBD for additional 
information. 
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Properties of the largest hub.  In most complex 
networks the skewed degree distribution creates a 
very small number of very well connected nodes.  
The largest hub, typically containing fewer than 100 
links, has a remarkable property: it appears, recedes, 
and then re-appears in a different part of the network 
with the receiving of only about 5 to 10% of the links 
in the network. 
 
Characteristic path length.  Although there are a very 
large number of minimally connected nodes and only 
about two links per node, the median of the mean of 
the lengths of all shortest paths from each node to 
every other node is nonetheless relatively short.  This 
value, the characteristic path length, grows only by 
the order of the number of nodes in the network.  In 
other words, a network of 104 nodes has a 
characteristic path length of 4 links. 
 
Clustering.  Just as important to network topology 
and behavior as degree distribution is the distribution 
of the measure of local node cohesion, the clustering 
coefficient.  The clustering coefficient measures the 
number of a node’s direct neighbors that are also 
direct neighbors of each other.  In complex networks 
this distribution is also skewed.  This means that not 
all nodes in a cluster of mutually supporting nodes 
interact directly with nodes outside the cluster.  The 
distribution of the clustering coefficient is a formal 
definition of the adaptive organization of the 
structure of hierarchy in a complex network. 
 
Between-ness.  Between-ness is a measure of a 
node’s importance to dynamic behaviors in a 
complex network.  Between-ness measures the 
number of shortest paths that pass through a node.  A 
node need not be the most well connected node (the 
largest hub) in order to have the highest between-ness 
value.  Between-ness can be used to identify the 
highest value nodes in a network, to control cascades 
of pathological behaviors in a network, or to identify 
potential bottlenecks. 
 
Path horizon.  Path horizon is a measure of how 
many nodes, on average, that a node must interact 
with for self-synchronization to occur.  Only in very 
simple environments can each node successfully 
interact with all other nodes.  Clearly interacting with 
no other nodes can prevent self-synchronization. ∗  
As a general rule, good self-synchronizing behavior 
occurs when the path horizon is approximately the 
order of the number of nodes in the network.  For 

                                                           
∗ This is a contra-positive. 

example, a network with 102 nodes will work best 
with a path horizon of about 2. 
 
Susceptibility.  Susceptibility is a measure of the 
number of links or nodes that can be removed before 
networked effects begin to break down.  This 
breakdown can be measured in the loss of all of the 
previously listed properties. 
 
Neutrality.  Neutrality is a measurement of the 
amount of additional, latent structure in a complex 
network.  This additional latent structure, where 
properly configured with the properties above, is 
exactly the source of networked effects, adaptability, 
and modularity in complex networks. 
 
Figure 21 summarizes these thumb rules for analysis 
and experimentation. 
 

<Figure TBP> 
 

Figure 21 - Thumb Rules for Analysis and 
Experimentation 

 
Although we can describe statistically the long term 
behaviors of complex military networks, we fall short 
of being able to use our IACM to describe the 
evaluation of complex military networks.  The best 
tool for further study of these networks is an agent-
based model which can translate the model into a 
dynamic, evolving system that achieves the above 
statistics.  Such an effort is already in progress by the 
author for the Office of the Secretary of Defense. 
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6 IMPLICATION 
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7 CONCLUSION 
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8 APPENDIX -  COMPLEX NETWORK 
PRIMER 

The research supporting this paper included an 
extensive examination of Network Flows and Graphs 
(including very recent research into scale free 
networks, much of which is still developing), 
Diffusion Models, Social Network Analysis, Multi-
scale Representations, Complex Control Theory and 
the Physics of Information.   
 

8.1 Network Theory 
What is commonly called a network is actually a 
graph.  A graph is a simple collection of arcs and 
nodes.  When values are assigned to the arcs and 
nodes, a system with its own logic is created and this 
system is properly called a network.∗  Networks are 
typically used to mathematically model flows, 
analyze network circulation or evaluate costs in a 
dynamic, distributed system.  Properties that help 
characterize the performance of networks include: 
 
• Robustness: The extent to which a network can 

avoid catastrophic failure as arcs are removed.  
The opposite of a “robust network” is a “brittle 
network.”20 

• Characteristic Path Length (CPL):  The median 
(middle value of ranked values) of the average 
distance from each node to every other node in a 
network.  A short CPL means that commodities 
proliferate without passing through too many 
nodes.21   (I'm not sure I understand how path 
length is calculated: does the length of the arcs in 
a path make a difference, or is it just the number 
of nodes in a path?  I believe it is the number of 
arcs it takes to get from one node to a given other 
node.  Is that correct?  And if so, how does arc 
length figure into CPL (L)?) 

• Clustering:  A measure of local cohesion in a 
network.  The clustering coefficient, γ, is the 
ratio of the number of arcs between neighbors to 
the number of possible arcs between neighbors.  
Highly clustered networks tend to have pockets 
of connectivity, which can increase the 
connectivity and redundancy of the whole 
network.22 

• Scale:  A measure of the distribution of arcs 
among nodes in a network.  If the distribution is 

                                                           
∗ For the purposes of this exposition the values can 
be removed, greatly simplifying the discussion 
without a loss of validity. 

uniformly or normally distributed, then the 
network is said to have a definite scale.  If the 
distribution belongs to the family of skewed 
distributions similar to the distribution of wealth 
in some societies, then the network is said to be 
scale free.  Formally, a scale free network has 
arcs distributed according to a Power Law, 
where the probability that a node has exactly k 
links is P(k) ∼ k –b, where b is called the degree 
exponent.23 

 

8.1.1 Minimally Connected Networks 
A connected network is one in which every node, n, 
is attached to the network by at least one arc.  A 
minimally connected network is one in which the 
nodes are all connected with the minimum number of 
arcs possible, i.e., n – 1 arcs.  Figure 22 shows a 
minimally connected network with 16 nodes and 15 
arcs.  In general, a minimally connected network 
contains 

Σ
i

i
n - 1

 
different sub-networks.  The number of subnets in 
Figure 22 is 120.  Minimally connected networks 
have fewer arcs and fewer subnets than any other 
connected network and are therefore the cheapest and 
simplest connected networks, but they have less 
redundancy and commodities take much longer to 
proliferate among the nodes.  Note, for example, the 
relatively high CPL, which is also dynamically 
represented by the table entries listing the average 
number of nodes reachable from each node in n steps.  
Even after 4 switches, each node on average can 
reach only 9 nodes (including itself).  Also note the 
graph in the lower left, which portrays the number of 
arcs attached to a node (horizontal axis) and the 
number of nodes in each category (vertical axis).  
This graph defines the scale of the network, which in 
this case is very close to two, because the great 
majority of nodes are connected with only two arcs.  
Note also that the clustering coefficient is zero, which 
indicates that there is very little local network 
structure. 
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Figure 22 - Minimally Connected Network 
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Figure 23 - Maximally Connected Network 

8.1.2 Maximally Connected Networks  
A maximally connected network is one in which 
every node is directly connected to every other node 
by one arc, i.e.,   

Σ
i

i
n - 1

 
arcs.   Figure 23 shows a maximally connected 
network with 16 nodes and 120 arcs.  A maximally 
connected network contains n! different sub-
networks.∗  The number of subnets in Figure 23 is 
over 20 trillion.  Maximally connected networks have 
more arcs and more subnets than any other type of 

                                                           
∗  n! = n(n - 1)(n – 2)(n – 3) … (1).  n! (spoken, “n 
factorial”) is the highest level of “computational 
complexity” in network mathematics.  

connected network and are therefore the most 
expensive and complex connected networks.  They 
have more redundancy and commodities are 
proliferated more quickly to the nodes (that is, they 
have the shortest possible characteristic path length).  
The fundamental drawback of maximally connected 
networks is that the number of subnets can easily 
overwhelm attempts to use them efficiently (that is, 
each flow calculation for the network in Figure 23 
requires over 20 trillion calculations).  The scale is 
fixed at 15, and the network is maximally clustered.  
(I'm having difficulty understanding the difference 
between "scale" and "degree"; the terms seem to be 
used almost interchangeably.   Also, in Figure 23 it is 
said that the "scale is fixed at 15", but that appears to 
be the "number of arcs attached to a node" 
(horizontal axis definition), not the "measure of the 
distribution of arcs among nodes in a network" (scale 
definition).) 

8.1.3 Random Networks 
Minimally connected and maximally connected 
networks represent the extremes of network 
connectivity.  For most warfare network applications, 
neither of these two extremes are useful.  Figure 24 
shows such a randomly connected network.∗  The 
ratio arcs to nodes in this network is 2 (that is, there 
are 32 arcs, about twice as many as the minimally 
connected network in Figure 5 yet only about a 
quarter of the maximally connected network in 
Figure 6).  The characteristic path length of this 
network is about halfway between the minimally 
connected network and the maximally connected 
network.  The random network therefore, is more 
redundant and commodities are proliferated more 
quickly than the minimally connected network yet the 
number of arcs and subnets is dramatically lower 
than the maximally connected network.  Two 
drawbacks arise from the random connection of arcs 
and nodes.  The first is that the network is irregular in 
the sense that L has a large variation from node to 
node.  The second is that the network is irregular in 
the sense that there is a large variation in the number 
of nodes that are immediate neighbors to each other.  
Irregularity in L and γ can cause great 
unpredictability in networks.  Note that the scale of 
the network seems to spread out with a peak at about 
3.  If more nodes were added, a smoother bell-curve 
(Normal distribution) would emerge (although the 
peak would move more to the right).  This portrays a 

                                                           
∗ To be technically accurate, this network is actually 
pseudo-random, since true random sequences cannot 
be guaranteed by computer algorithm (see note 20). 
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property of random networks: the arcs are distributed 
with a Normal distribution with the network scale 
defined by the peak of the resulting bell curve.24 
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Figure 24 - Erdos Random Network 

8.1.4 Regular Networks 
Figure 25 shows a completely regular network 
(otherwise known as a “lattice”) that has the same 
ratio of arcs to nodes as the irregular, random 
network.  Although the clustering of this network is 
much more regular than the random network, the 
characteristic path length increases significantly 
(although L becomes more regular).  The scale of this 
network is set at 4.  Note that the maximally 
connected network is a special case of a regular, 
lattice network.  Note also the dramatic difference in 
arc distribution between the regular and random 
networks, although the number of arcs and nodes is 
identical. 
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Figure 25 - Regular Network (Lattice) 
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Figure 26 - Small World Network 

8.1.5 Small World Networks 
A minor "re-wiring" of the regular network can create 
a "Small World" network with a high degree of 
regularity, good clustering and a shorter characteristic 
path length.  In a Small World network, remote 
clustered groups share members with other remote 
groups so that the average number of links 
connecting all members remains small (just like 
handshakes in its cultural counterpart).  Figure 26 
shows that a regular network (as in Figure 25) can be 
re-wired to create a Small World network. 

8.1.6 Random Network with Growth 
For many decades, Graph Theory research depended 
on two assumptions that were in fact obstacles to the 
development of the more advanced network 
structures needed to understand Information Age 
processes.  These two assumptions were that, first, all 
the nodes in a theoretical network should be 
prescribed before analysis or theoretical investigation 
began and, second, that links were always added 
according to a fixed distribution.  The network in 
Figure 27 shows what happens when analysis is not 
constrained by the first of these assumptions.  This 
network experiences growth, in that new nodes are 
added to the network as the number of links grows.  
An obvious result of networks with growth (in this 
case, with random connections) is that the oldest 
nodes are most likely to have the highest degree 
because there are more opportunities for 
connection.25  In other words, it is impossible to 
connect to nodes that don’t yet exist, while the very 
first node in the network has n connection 
opportunities by the time the nth node is added.∗  
Note that the network is about as clustered as the 

                                                           
∗ This might very well explain one source of “first 
mover advantage” in Information Age marketplaces. 
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random network, yet the scale has started to become 
less defined – one might just as well say that the scale 
of this network is 1 as they might say it is 2.  Also 
note that with only half the links of the random, 
lattice and Small World networks, the network still 
has a fairly good clustering and the CPL grows by no 
more than about 50%. 
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Figure 27 - Random Network with Growth 

8.1.7 Scale Free Network with Preferential 
Attachment 
If one removes the constraints of both assumptions, 
so that the connection of nodes is somehow unbiased 
and the network is grown, then a class of networks is 
created that quite well represents very many real 
world networked structures.  The network in Figure 
11 was grown by iteratively attaching each new node 
to a node in the network based on the number of links 
each node already possesses.  Technically, this was 
achieved by weighting the probability that a node is 
selected by the degree of the node.  This rich-get-
richer scheme is mimicked in many Information Age 
processes that experience what economists call 
“network externalities,” as well as the distribution of 
connections to routers in the internet, the distribution 
of links to web pages on the world wide web, and a 
host of other adaptive, dynamic network topologies.26  
The statistics of this network are a bit different than 
the previous examples (the network cannot be as well 
clustered as the others with so few links and the CPL 
is almost as long as the lattice) but it has one very 
nice property that marks it as a very adaptive network 
– it is a scale free network.  Indeed, if this network 
were to be filled out with more arcs and nodes, the 
scale of the distribution would completely disappear 
and be best represented by a skewed curve (like the 
one approximated above the histogram in Figure 11).  
The generic form of the equation defined by these 

curves is the “Power Law.” ∗  A scale free 
distribution of arcs defined by a Power Law would 
have very many nodes with a very small degree, a 
moderate number with a moderate degree and a very 
few with a very high degree. 

8.2 Analysis 

8.2.1 Network Statistics 
Table 1 is a summary of the statistics from the 
networks described in Section III.  These statistics are 
the number of arcs, the number of nodes, the ratio of 
arcs to nodes, the characteristic path length L, the 
average number of nodes reached by traversing some 
number of arcs (or the number of “switches”, listed 
for 1 to 4 arcs) and the clustering coefficient γ .   
The minimally connected network has a low ratio of 
arcs to nodes, yet the characteristic path length is 
high.  This is because the average number of 
additional nodes reached for each additional arc 
length traversed increases only by two for each 
additional arc.  L = 1 in the maximally connected 
network, yet the overhead incurred is an order of 
magnitude more arcs and a factorial number of 
additional subnets.  The minimally connected 
network has no clustering and the maximally 
connected network is maximally clustered. 
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Figure 28 - Preferential Attachment 

 
Random connection of arcs and nodes with an arc-
node ratio of 2 can connect all nodes in only about 3 
switches, L is low (1.9) and clustering is also better.  
Although the random network provides better 
                                                           
∗ A Power Law is an equation of the form P[x = X] ~ 
x-a.  To more fully appreciate the behavior of these 
functions, the reader is encouraged to experiment 
with the Power Law using easily available software 
like MicroSoft Excel and sample values of x and a. 
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performance than the minimally connected network 
and avoids the overhead of a maximally connected 
network, the network is irregular.  One measure of 
regularity of a system is the standard deviation of the 
measurements within the system.1  The standard 
deviation of γ listed in Table 1 for the random 
network means that some nodes may have values of γ 
similar to the minimally connected network.  
Arranging the same number of arcs and nodes in a 
more regular network, however, reduces the 
irregularity γ but L gets more irregular.  The regular 
network also has a longer L (that is, commodities 
proliferate much more slowly in the network in 
Figure 22).   
The Small World network uses the same ratio of arcs 
to nodes in a network that is fairly regular and 
clustered yet still proliferates commodities quickly.  
In other words, the Small World network uses as few 
nodes as possible to perform as well as the random 
network while retaining some regularity.   
The preceding analysis demonstrates that the 
arrangement of arcs and nodes affects the behavior 
and performance of a network.  Operational 
requirements determine this arrangement.  Some 
theories of Information Age refer to "fully-netted" 
forces; Section III shows that confusing "fully-
netted" with maximal connectivity will produce 
unnecessary cost and complexity.  Minimal 
connectivity, however, will not produce satisfactory 
network performance and redundancy.  Therefore, 
the connectivity of warfare networks must be at some 
"sufficient" level.  Table 1 suggests that Small World 
networks are simpler, perform better and require 
lower overhead than other networks.  

8.3 Conclusion 
This paper has presented a variety of networks, 
network behaviors and network statistics.  The 
networks listed here are mathematical abstractions of 
real-world phenomena.  In real-world networks, the 
operational requirements for which a network is 
designed define how the network will be configured.  
Moreover, the rational behind the design is derived 
from organizational principles and organization 
theory.  Therefore, the best configuration for a 
network should be an extension of the purposes and 
intent implied by the function, roles and behavior of 
the agents that operate the network, the nature of the 
tasks required of the networked group and the 
physical restrictions that may impact the logical 
connections. 

 

                                                           
  

• Minimally Connected Network 
- Too brittle, long CPL, poor clustering, 

simple pattern, simple control, scaled 
• Maximally Connected Network 

- Robust, short CPL, too clustered, simple 
pattern, complex control, scaled  

• Regular Network (Lattice) 
- Robust, long CPL, high cluster, simple 

pattern, simple control (<k> < 5), scaled 
• Erdös Random Network 

- Brittle, short CPL, low cluster, random 
pattern, complex control, scaled 

• Small World Network 
- Robust, short CPL, high cluster, 

complex pattern, complex control, less 
scaled  

• Random Network with Growth 
- Less brittle, short CPL, low cluster, 

random pattern, complex control, less 
scaled 

• Network with Preferential Attachment  
- Robust, short CPL, low cluster, complex 

pattern, complex control, scale free 
• Networks do not connect randomly 

- But Random Assumption was still status 
quo in 1999 

• “Scale Free” Networks  
- Hubs distributed by Power Law 
- Short path lengths 
- Good Connectivity 
- VERY robust 

• Complex Networks (e.g., diffusion, scale 
free, etc.) 
- Steepness of profile, shape a function of 

structure 
• Seed structure, critical mass, spreading rate, 

inflection points 
- Scale-Free Networks have some of the 

steepest curves 
• Hubs can disappear/reappear with +/- very 

few arcs 
• Patterns can disappear/reappear with +/- 

very few arcs 
 

8.3.1 Desirable Network Properties 
You use a number of terms in the "Desirable Network 
Properties" section that have not yet been defined: 
autocatalysis, neutrality, reconfiguration, tipping 
points, resiliency. 
Most ongoing research focuses on the statistics of 
particular types of networks, such as the World Wide 
Web or the structure of a particular data set from 
sociology.  One of the aims of this paper is to answer 
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the obverse question: if we could choose the type of 
Combat Network we should design, what properties 
should it possess? 

8.3.1.1 Node and Link Types and Properties 
The combat model will have many different types of 
nodes and links.   

8.3.1.2 Flow 
Combat Networks should expect to capitalize on the 
existence of cycles and the properties of autocatalysis 
and neutrality.  The should therefore be directed 
networks.  

8.3.1.3 Number of Nodes 
Most of the more important and exploitable network 
effects do not occur unless a network contains at least 
about 100 nodes.  Combat Networks that possess 
fewer than 50 nodes will not likely have robust 
behaviors such as rapid reconfiguration, tipping 
points and resiliency. 

8.3.1.4 Number of Links 
Although early Network Centric Warfare concepts 
suggested that each node should be directly linked to 
every other node for best performance (that is, about 
N2 links for every N nodes), most adaptive, complex 
networks have only about 2N links per N nodes 
without suffering noticeable degradation in 
performance.  Indeed, having fewer links provides a 
kind of economy that limits network overhead 
(including protection of links and nodes) without 
adversely affecting performance.  Combat Networks 
should have about two links for every node.  

8.3.1.5 Degree 

8.3.1.5.1 Degree Distribution 
The most adaptive, re-configurable and resilient of all 
networks known to date is the Scale Free Network.  
As stated earlier, these networks have very many 
nodes with have very few links, a moderate number 
of nodes with a moderate number of links, and very 
few nodes with very many links.  These networks 
contain powerful hubs, which can be adaptively 
reconfigured.  Combat Networks should be Scale 
Free Networks. 

8.3.1.5.2 Mean Degree 
Since Scale Free Networks do not have a meaningful 
“average” number (or “scale”) of connections per 
node, mean degree is not a useful measure of Combat 

Networks.  A better measure is the degree 
distribution. 

8.3.1.5.3 Maximum Degree 
In Scale Free Networks, the maximum degree is 
roughly proportional to N0.5 for N nodes.  The Figure 
29 plots maximum degree against number of nodes. 
 

M aximum D egree, Scale F ree N etwo rk

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

N umb er o f  N o d es

 
Figure 29 - Maximum Degree, Scale Free Network 

8.3.1.5.4 Degree Correlation 
It is not necessary that Scale Free Networks contain 
highly correlated high degree nodes.  Recent research 
indicates scale free degree distributions can occur in 
networks that even have a negative correlation 
between high degree nodes.  This is a desirable 
characteristic; since if an adversary can locate a hub, 
one would not want the existence of adjacent “hubs” 
that could be put at risk as well. 

8.3.1.6 Geodesic 

8.3.1.6.1 Mean Geodesic 
As shown in Figure 30, the mean geodesic in chains 
grows on the order of n/4k, where n is the number of 
nodes and k is the mean degree.  The mean geodesic 
in random graphs grows proportional to log n/log k 
and in Small World and Scale Free networks 
proportional to log k or slower.  Combat Networks 
should therefore have mean geodesics on the order of 
log k or shorter.  This means that for networks as 
large as 10,000 nodes, one would expect the average 
distance between nodes to be no more than about 4. 
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Figure 30 – Mean Geodesic Network Growth 

8.3.1.6.2 Component Sizes  
For sound military reasons, namely that no node 
should be isolated during military operations, the size 
of the giant component in Combat Networks should 
be about the size of the entire network.  Smaller sub-
components are advisable for certain tasks, such 
service specific operations in a joint environment or 
independent special operations.  In addition, since 
Scale Free Networks have a great deal of neutrality, 
Combat Networks should have a great deal of 
neutrality as well.  For example, typical Scale Free 
Networks can realign links to create high-degree 
nodes by rearranging only about 5 percent of the total 
number of links in the network. 

8.3.1.7 Clustering Coefficient 
Combat Networks, like other Scale Free Networks, 
will have low clustering coefficients.  At face, this 
seems to violate military values such as coherence 
and mutual support.  Clustering Coefficients, 
however, are measured globally over an entire 
network; Scale Free Networks can still have good 
clustering properties in the localities of the largest 
hubs.  This local clustering provides the type of 
cohesion and mutual support that military operations 
will mandate for the most important nodes in a 
network. 

8.3.1.8 Resilience 
Figure 31, [Newman, 2003], plots the mean geodesic 
against the fraction of nodes removed in a Scale Free 
Network.  Random removal provides almost a 
horizontal line (no growth, meaning good connection 
properties remain), whereas removal by degree rank 
(highest first) shows a rapid growth.  This is intuitive 
because there are many more low rank nodes in a 
complex network than high-rank nodes and a random 

selection of nodes should favor low degree nodes 
over those with high degree.  Combat Networks, 
since they should be Scale Free Networks, should 
therefore be extremely resilient to random attack.  
Figure 31, of course, also tells the opposite story, that 
Combat Networks can be very susceptible to attack.  
This is true so long as adversaries are allow to know 
the location of all links and nodes as well as the 
detailed structure of the network.  Since Scale Free 
Networks have a great deal of neutrality, it is very 
possible – in fact it is a fundamental property of such 
networks – to obscure the detailed structure of a 
Combat Network until it is ready to be configured for 
use. 
 

 
Figure 31 - Measure of Resilience 

8.3.1.9 Diffusion Rates 
Figure 32 shows the type of diffusion patterns typical 
of complex networks, including Scale Free Networks.  
As discussed earlier autocatalysis and neutrality 
contribute to the “S” shape of these diffusion curves.  
These “tipping points” are useful in a military context 
because they can obscure the “hub” nodes to an 
adversary, and therefore the specific purpose for 
which the network is formed, until such time as 
friendly commanders desire to rapidly and adaptively 
align the network for purpose.  
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Figure 32 - Generic Diffusion Profiles: Complex 
Networks 
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Figure 33 - Erdos Connectivity Profile 
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Figure 34 - Generic Diffusion Profiles: TBD 
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Figure 35 - Generic Diffusion Profiles: TBD 
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Figure 36 - Generic Diffusion Profiles: TBD 

 
 

Network 
# of 
Arcs 

# of 
Nodes 

Arcs / 
Nodes 

 

L 1 Arc 
(Nodes) 

2 Arcs 
(Nodes) 

3 Arcs 
(Nodes) 

4 Arcs 
(Nodes) 

γ 

Minimally 5 16 0.94 5.7 3 5 7 9 0 
Connected          
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Maximally 
Connected 

20 16 7.5 1.0 16 16 16 16 1 

Random 2 16 2 1.9 5.1 12.1 15.9 16 0.17 
          

“Regular” 32 16 2 2.3 5 9 13 16 0.25 
          

Small 
World 

32 16 2 1.9 5 12 16 16 0.25 

          
Random 

with 
Growth 

5 16 0.94 3.0 2.8 5.9 9.4 12.3 0.12 

Preferential 
Attachment 

5 16 0.94 2.5 2.9 8.0 13.9 15.8 0 

Table 1 - Network Properties 

I don't understand the "1 Arc" through "4 Arc" columns in the network statistics table.  If I traverse one arc 
(by definition the connection between two nodes), I will have only reached one node, won't I? 

 

 
 
 
                                                           
1 Lanchester critique reference here. 
2 James G. Taylor, Lanchester-Type Models of Warfare, (Monterey, CA: U.S. Naval Postgraduate School, 
1980). 
3 Wayne P. Hughes, “A Salvo Model of Warships in Missile Combat Used to Evaluate Their Staying 
Power,” Warfare Modeling, (Danvers, MA: John Wiley & Sons, Inc., 1995), pp. 121-143. 
4 TBD Johns, TBD, (TBD: TBD, TBD), p. TBD. 
5 TBD Ho, TBD, TBD, (TBD: TBD, TBD), p. TBD. 
6 Arthur K. Cebrowski, and John J. Garstka,; “Network-centric warfare: it’s origin and future”, (U.S. Naval 
Institute Proceedings, January 1998). 
7 David  S. Alberts, John J. Garstka, and Frederick P. Stein, Network Centric Warfare:  Developing and 
Leveraging Information Superiority, (Washington, DC:  National Defense University Press, 1999).  See 
also 2d ed. Rev., 2001.  Available online:  <http://www.dodccrp.org/NCW/NCW_report/start.htm> ; and 
David S. Alberts, John J. Garstka, Richard E. Hayes, and David A. Signori, Understanding Information 
Age Warfare, (Washington, DC: CCRP Publication series, 2001), p. TBD.  Available online:  
http://www.dodccrp.org/NCW/NCW_report/start.htm. 
8 Bradley A. Fiske, The Navy as a Fighting Machine (rev. ed.), (Annapolis: United States Naval Institute, 
1988), pp. 375-376. 
9 Alberts, et al, pp. 250-256. 
10 Richard Darilek, Walter Perry, Jerome Bracken, John Gordon, and Brian Nichiporouk, Measures of 
Effectiveness for the Information-Age Army, (Santa Monica, CA: RAND, TBD), p. TBD.; and Walter 
Perry, Robert W. Button, Jerome Bracken, Thomas Sullivan, and Jonathan Mitchell, Measures of 
Effectiveness for the Information-Age Navy: The Effects of Network-Centric Operations on Combat 
Outcomes, (Santa Monica, CA: RAND, 2002), p. TBD. 
11 David Ronfeldt and John Arquilla (Ed’s.), Networks and Netwars: The Future of Terror, Crime, and 
Militancy, (Santa Monica, CA: RAND, 2001). 
12 Bill Marchuck (sp?), TBD 
13 In this paper, the word “network” refers to graph theoretic (arcs and nodes) representation of systems, not 
necessarily to information technology (IT) network structures. 
14 Newman, M.E.J.; “The structure and function of complex networks”, (TBD). 
15  



 
FEBRUARY 2004 

 

 
 

 2004 Alidade Incorporated, All Rights Reserved. 

27

                                                                                                                                                                             
16  
17 Kauffman, At Home in the Universe, p. 54-7. 
18  
19 Alberts, et al, p. 256. 
20 See http://www.santafe.edu/sfi/research/focus/robustness/index.html, accessed 11 Oct 2002, for a 
deeper technical treatment of robustness. 
21 Watts, Small Worlds. 
22 Ibid. 
23 Barabasi, Linked: The New Science of Networks, Chapter 6. 
24 Ibid, Chapter 11.  
25 Ibid, Chapter 6. 
26 See Oz Shy, The Economics of Networked Industries, (Cambridge University Press, New York, 2001), 
and Barabasi, Chapter 7. 


