
From Garage-Band to World Tour: Technical, Security, and Scalability Challenges
of a Web-Based Program Management Tool from Workgroup-Level to Enterprise-
Class in 24 Months

Track: Information Superiority/Information Operations

Authors: Helen M. Rico
 Air Force Research Laboratory/ Information Directorate
 AFRL/IFGA
 525 Brooks Road
 Rome, New York 13441
 315-330-3432 (phone)
 315-330-1995 (fax)
 Helen.Rico@rl.af.mil

 Fred Hall
 Air Force Research Laboratory/ Information Directorate
 AFRL/IFGA
 525 Brooks Road
 Rome, New York 13441
 315-330-2306(phone)
 315-330-1995 (fax)
 Fred.Hall@rl.af.mil

 Michael J. Maciolek II
 Northrop Grumman IT
 525 Brooks Road
 Rome, New York 13441
 315-330-1459 (phone)
 315-330-1995 (fax)
 Michael.Maciolek@rl.af.mil

From Garage-Band to World Tour: Technical, Security, and
Scalability Challenges of a Web-Based Program Management Tool
from Workgroup-Level to Enterprise-Class in 24 Months

Helen M. Rico
Air Force Research Laboratory/ Information Directorate

AFRL/IFGA
525 Brooks Road

Rome, New York 13441
315-330-3432 (phone)

315-330-1995 (fax)
Helen.Rico@rl.af.mil

Fred Hall

Air Force Research Laboratory/ Information Directorate
AFRL/IFGA

525 Brooks Road
Rome, New York 13441

315-330-2306(phone)
315-330-1995 (fax)
Fred.Hall@rl.af.mil

Michael J. Maciolek II
Northrop Grumman IT

525 Brooks Road
Rome, New York 13441
315-330-1459 (phone)

315-330-1995 (fax)
Michael.Maciolek@rl.af.mil

Abstract

The Air Force Research Laboratory (AFRL) has a web-based application used for
program management which provides its scientists and engineers a clearer, more rapid
picture of their contractual and in-house R&D efforts’ financial and technical status, by
allowing the contractor to enter information directly into the tool. This web application,
called Jiffy, began as a tool developed by two engineers in AFRL’s Information
Directorate (IF) using ASP pages talking to a Microsoft Access database and was initially
used by a handful of people. Senior management saw Jiffy as a tool that would benefit
all of IF’s engineers and scientists (approximately 450 people). Jiffy became recognized
by AFRL as a best-practice and an effort was started to scale Jiffy up for use by all Air
Force Research Laboratory engineers (approximately 3000 users). In this paper, the
authors will describe the issues and solutions in migrating the application from an Access
database to an Oracle database (and the technical architecture used), how the security of
the application was improved, and how the application performance was enhanced to
allow the application to scale up from a handful of users to thousands of users.

Architectural Basics

The Jiffy application is web-based and can be accessed via any web browser capable of
128-bit (HTTPS) communication. The Jiffy architecture consists of two main parts; the
web server which handles user input and graphical display (along with some program
logic), and the database server which houses the information gathered from various AF
standard systems and electronic copies of documents related to specific research
programs. A logical diagram of the Jiffy system is shown in Figure 1.

FIGURE 1. Logical Representation of the Jiffy Architecture

https
 HTML Apps

 Desktop
Clients

Microsoft
IIS

Webserver

Windows 2003

Oracle Apache Webserver

Sun
Server

Jiffy Web
Server

Jiffy Database
Server

 Oracle
RDBMS

The two portions of the Jiffy system; web server and database server, can be housed on
the same physical hardware or can be hosted on separate hardware platforms. There are
advantages and disadvantages to each physical implementation that will become apparent
in the following sections describing the evolution of the architecture and security and
performance of the system.

Evolution of the Architecture

The Jiffy architecture has undergone major transitions over its short (approximately 2 ½
year) life span. The reasons can be better understood when you think about the fact that
the application went from being used in a work-group environment by a handful of users,
to a department-wide application with a few hundred users, to an enterprise-class
application with a couple thousand geographically-dispersed users.

When originally stood up as a work-group application, the Jiffy web server and database
server both resided on the same Windows-based computer (see Figure 2). The Jiffy ASP
application interfaced to a Microsoft Access database. Documents related to research
programs were stored in the Windows file system and information from AF standard
systems was stored in the database. Microsoft Access is not known for its scalability and
robust security in an enterprise environment, but for that period of time when network
information assurance was not as critical as today, and given the small number of users, it
was sufficient. It was also the easiest database for the two engineers and one programmer
who developed the first version of Jiffy to learn and use.

When first put into operation, Jiffy was accessed not only by the workgroup of AF
engineers in the .mil domain, but also by their contractors in the .com and .edu domains.
Because external connections to workgroup web servers were not allowed through the
firewall, the Jiffy hardware had to be placed in an extranet location outside the protection
of the base firewall as shown in Figure 2. This created potential security implications
which will be discussed in a later section of this paper. However, having the entire
system housed on one physical machine, coupled with the small user population, allowed
for good application performance. In addition, only one machine had to be administered
(patched, updated, etc) keeping operations and maintenance costs low.

Network Cloud at Local TDs

Internet to include
JIFFY Users outside .mil, and .gov

IIS & MS Access DB Server
(Jiffy)

Hub

Switched Device

Router

Switch

Hub

JIFFY Database

TD "User"
Firewall

Jiffy Client

Jiffy Client

Jiffy Client

Jiffy Client

TD Web
Site

FIGURE 2. Jiffy Workgroup Architecture

As the usefulness of the Jiffy application became apparent to more personnel within the
Information Directorate, the IF Director requested that the Jiffy application be made
robust to support the entire Directorate (a couple hundred users) along with an increase in
the security of the entire application architecture – all within nine months. A team was
assembled to make this happen. The Jiffy development team was increased from two
engineers and a programmer to two engineers, four programmers and two co-program
managers. In order to provide better support to the larger user base, a full-time
application support person (i.e. helpdesk) was hired.

Since all of the other IF Directorate-wide applications use Oracle databases on Sun
Solaris-based hardware, it was decided to migrate the Jiffy Access database to Oracle.
This meant the Jiffy application now required two hardware platforms; a Windows server
for the web portion, and a Sun computer for the Oracle database. For better security it
was decided to move the entire application architecture inside the base firewall as shown
in Figure 3. Firewall rules would be established to allow necessary HTTPS access to the
Jiffy application for non-.mil domain users. This new architecture increased the security
of the application, but initially adversely affected performance (as will be discussed later
in this paper). However, once steps were taken to optimize the application, performance
improved dramatically, and this architecture could easily support a few hundred users.

Network Cloud at Local TDs

Production
Subnet

Internet to include non-local TDs and
JIFFY Users outside .mil, and .gov

IIS Server
(Jiffy)

JIFFY DB
(Oracle Server)

Firewall

Hub

Switched Device

Router

Switch

Hub

JIFFY Database

TD "User"

TD Web
Site

Jiffy Client
Jiffy Client

Jiffy Client
Jiffy Client

FIGURE 3. Jiffy Directorate-wide Architecture

During the time the IF Directorate was deploying Jiffy, the Commander of AFRL was
looking for various applications that could be used across the entire laboratory to
establish a common corporate toolset and better align the Lab’s internal business
processes.

Jiffy was chosen to become the standard program management tool across all nine
technology directorates of AFRL. Therefore, the application had to scale up for use by
approximately 3,000 engineers deployed at geographically-dispersed sites across the
CONUS. The Commander wanted initial deployment of the application lab-wide in 11
months.

To accomplish this new tasking, a program office was formed with Government
oversight into the areas of development, architecture, security, test, etc. The team was
also bolstered with three additional programmers, two software testers, a QA person, and
a part-time software security person. During the course of development, application
performance issues arose which required bringing in a paid-consultant for recurring code
reviews.

For AFRL-wide deployment, the Jiffy architecture was moved from the IF Directorate
(Rome, NY) and hosted at AFRL headquarters at Wright-Patterson AFB, OH. New
server hardware was procured based on the projected user load of a few thousand people.
As shown in Figure 4, to increase security the web server was placed in a demilitarized
zone (DMZ) - essentially attached to the firewall with its own special rule-set to allow

necessary access. The diagram shows a somewhat simplified view - in actuality there are
three web servers, each hosting the Jiffy application for three of AFRL’s technical
directorates to balance the user load. These three web servers all connect to a single Sun
Solaris database server on the back end. In this deployment of Jiffy, the electronic
copies of documents have been moved from the Windows file system to the Oracle
database for improved security as will be explained later in this paper. This architecture
has proved to be superb at handling the current user load, and application response times
are excellent even for users located at AFRL locations in California or Florida.

Network Cloud at Local TDs

Production
Subnet

Internet to include non-local TDs and
JIFFY Users outside .mil, and .gov

IIS Server
(Jiffy)

JIFFY DB
(Oracle Server)

Firewall

Hub

Switched Device

Router

Switch

Hub

JIFFY Database

TD1 "User"
TD2 "User"
TD3 "User"

- - -
TDx "User"

TDx Web
Site

 - - -

TD3 Web
Site

TD2 Web
Site

TD1 Web
Site

Jiffy Client

Jiffy Client

Jiffy Client

Jiffy Client

FIGURE 4. Jiffy Enterprise Architecture

Security Considerations

The distributed nature of clients in web-based applications and the textual nature of the
web pages themselves forced the Jiffy team to address a wide range of security issues
when delivering sensitive information to users. The security aspects of Jiffy can be
grouped into several areas including server access, application access, user permissions,
and protection from hackers.

Server Access for .com/.edu Users

One of the advantages of the Jiffy application is allowing the contractors performing the
technical work on a program to log in and update their relevant financial and technical

status information on a regular basis, thus unburdening the engineer from this task and
capturing the information closer to the source.

The security issues arise in that most of the contractors reside in the .com or .edu
domains, while the Jiffy architecture is in the .mil domain. Today’s emphasis on network
security, along with AF policy, has to be balanced against the need of users from any
internet domain to be able to access the system.

As security policies and needs have evolved, so has the physical Jiffy architecture as
shown in the previous sections. In its initial workgroup incarnation, Jiffy was deployed
outside the base firewall, and all sensitive financial and technical information was stored
on the same machine as the application. To increase the security posture when deployed
Directorate-wide, the Jiffy servers were moved inside the base firewall with non-essential
services disabled and special firewall rules put in place. This was still a trade-off in that
it allowed access by outside domain users to machines behind the base firewall. In its
current configuration for enterprise-wide use, the Jiffy web server has been moved to its
own leg off the base firewall with special access rules. The database server stays behind
the firewall and the only machine allowed access to it is the Jiffy web server.
Additionally, electronic document storage, which was once part of the Jiffy web server
file system, is now done in the database (on the database server) making the documents
much less accessible to would-be hackers.

The team believes this current architecture balances the need for user access against the
possible security threats that may exist.

User Agreement for Application Access

The process for authorizing and activating accounts into the JIFFY application is a multi-
phased approach. The driving force for this process is because two-thirds of the users
(contractors) will never be physically seen by JIFFY Administrative personnel.
Therefore, the user account generation process uses a trusted-agent approach.1 To
become a Jiffy user, you must be nominated by a current Jiffy user. All users are
required to be citizens of the United States of America or hold a valid Green Card.
Approval for Foreign National Access must follow Table 3.1 "Approving Authority for
Foreign National Access" as provided in AFI33-202.

User Permissions

Once user access is granted to the application, the role-based permission system comes
into play. Every user that successfully logs into Jiffy is provided with a custom user
interface that corresponds with functionality based on that user’s role. Only features
expressly permitted for a user of their role will be present in the navigational menus of
Jiffy. The Jiffy developers also implemented an additional permission-based mechanism
for the data itself based on row-level access in the database. Users will only get data
returned to them that is permitted to them based on a combination of their user ID and

role. This double layer of protection ensures that users will only ever get access to pieces
of the application they should, and even if they were to navigate somewhere outside of
their intended scope, they will still be limited to only the data they have permission to
access.

Even if users operate only through allowed sections of the application, they may still
wish to compromise sensitive data through various hacking techniques. Jiffy has several
protection mechanisms in place to prevent such hacking and to help diagnose attacks
after the fact. Jiffy was written to minimize exposure to SQL injection hacks, anonymous
file system access, undesired execute privileges, and URL hijacking. Jiffy has both
client-side and server-side code to check for and disarm such attacks.

Jiffy also has an effective traceability system for users. This system tracks a user’s path
through the system and logs important actions they perform and the data they operate on.
This, along with system level web-server logs, allows system administrators to isolate the
cause of suspect data changes and to quickly reproduce the actions taken during such a
compromise. Jiffy’s traceability system is also very useful for day-to-day helpdesk level
support and debugging.

Scalability

Application performance can be measured in many ways based on criteria established for
that specific application, as well as by measuring generally accepted performance
metrics. The better the application performs, as measured by comparing response time
against concurrent users, the more scalable the application is.

The two main performance measures used to analyze web-based application performance
are response time and number of concurrent users. Response time is defined as the time
it takes for the web page to be completely returned to the client’s browser from the server
once requested. Another way to consider response time is to measure the average
number of requests per second that can be handled by the server. The faster the server
responses are, the faster it can serve up additional requests. The concurrent user metric
refers to the number of simultaneous users that can access and exercise the application at
the same time with acceptable server response times. The Jiffy team used automated
reliability and load testing tools to help take measurements. You can see in Figure 5
below that Jiffy’s original configuration and software allowed for a maximum of 10
concurrent users. The current enterprise level Jiffy version can easily accommodate 100
concurrent users driving maximum load to the web server. Jiffy can now handle, at that
maximum load, about 5 times the number of requests as the original version of Jiffy. (see
Figure 5) Under normal load it can handle many more requests per second.

The workgroup version of Jiffy did not suffer from systemic server response time issues.
This was an unintended benefit of having the database on the same physical platform as
the web server and the homogeneous software architecture (all Microsoft). The normal
cause of response time problems stems from poor coding practices that lead to
bottlenecks under concurrent usage. As shown in Figure 5, Jiffy had concurrent usage

FIGURE 5. Original vs. Current Performance Comparison

problems that generally prevented (masked) response time from becoming an issue. That
being said, a few portions of the application did suffer from non-concurrent usage related
poor response times. Those areas were targeted for code rewrites and their response
times improved accordingly.

Jiffy’s main performance problems stem from the early development of the application in
a workgroup environment without a guiding vision for the scalability required in an
enterprise application. The Jiffy development team’s job was to take the existing, very
successful workgroup application and turn it into an enterprise level application in both
functionality and performance. To that end they did many things correctly, made some
mistakes, but ultimately set themselves up for successful implementation of future
improvements to Jiffy.

Conversion of the Database

The first decision made to propel Jiffy to the enterprise level was to replace Microsoft
Access with Oracle as the database. Since Access was not designed to be an enterprise
level database it would seem that this move would be an instant-win situation. However,
the team had a significant learning curve interfacing Microsoft’s IIS Server with Oracle.
The initial solution used Microsoft’s generic Object DataBase Connectivity (ODBC)
drivers to interface with Oracle, but response times turned out to be unacceptable. The
better solution was to use Oracle’s Oracle Objects 4 OLE (OO4O) drivers for the

0

20

40

60

80

100

Max
Concurrent

Users

Avg
Requests Per

Sec

Workgroup Level

Enterprise Level

interface. Response times improved such that database calls are no longer considered to
be an issue.

Once a satisfactory interface to Oracle was in place the team decided to move as much of
the database interaction logic from application code into stored procedures that reside in
the database. Several benefits were gained from this decision. First, the team was better
able to consolidate the work the database had to do in one location. Since the application
can accept automatic feeds directly into the database, this allowed it to perform its
business logic no matter the source of the inputs. Secondly, since the data-related
business logic was being executed in the database the application had access to native
database routines for execution. The routines ran faster because of that tight coupling.
But speed meant nothing if the application could not remain operational.

The Jiffy team went through a particularly rough phase early on in the conversion. Jiffy
was prone to crash with very little logging to assist with debugging. A remedy that
seemed to lower the chances of a crash was to have a weekly (or sometimes more
frequent) reboot of the web server. For an application that was required to be online at all
times this was unacceptable. In any case, the weekly reboots did not prevent crashes as
desired. The Jiffy team sought the assistance of a Microsoft consultant in analyzing
binary-level crash dumps and he was able to help determine the problem. A fix was
quickly implemented and Jiffy has been crash-free ever since. Not all of the changes the
team tried to eliminate the crashes were successful, but the lessons-learned were
invaluable for later development.

Developing software is often a balance between delivering the desired functionality at all
costs versus developing code that is easy to maintain for the developers. Sometimes
those two goals go hand-in-hand. In the Jiffy application the development team made a
decision to encapsulate many of the web-based pieces of database interface access logic
into VBScript Classes. Those classes, in turn, would make the desired calls into the
OO4O layer. Even though this decision made the developer’s lives much easier, it
caused a noticeable performance hit. Every one of the tables in the database has a
corresponding VBScript class in Jiffy that is used to shuttle calls to it. Changing this is
one of the main items on the list of future performance improvements.

All changes to web-based applications should be done in the context of a performance
analysis. That is the only real way to know if the development was detrimental to the
overall system. The VBScript classes were ported into COM-based compiled classes
with robust logging capabilities. The port itself is not a major performance improvement.
However, the porting was used as a way to perform database access profiling for Jiffy.

The Jiffy team established an automated test environment which exercised the entire
system and generated a tremendous amount of COM Class logs. Developers used those
logs to identify system performance bottlenecks caused by all too frequent round trips to
the database. The Jiffy login sequence alone causes 54 database calls to execute for each
user, every time. Three other actions combined with the login sequence account for about
70% of all database accesses. The Jiffy team has targeted those areas for rewrite as

schedules allow. Performing this analysis means the team can focus development on four
out of 117 data access pages and get tremendous benefit in the shortest amount of time
(see Figure 6).

FIGURE 6. Percent of Total Database Access

Conclusion: Taking Jiffy from what was essentially a workgroup-level website to a
scalable, enterprise-wide application required a tremendous effort from the entire product
team. Occasionally decisions were made that turned out to be problematic, but the team
continues to refine their analysis and development skills so that they make fewer and
fewer mistakes. An important effort is to continue to automate the reliability and load
testing so that potential changes can be quickly tested before committing to them.

All of the effort of providing a full-featured, scalable application would be wasted if the
Jiffy team did not follow up with quality training and help desk support. All Jiffy users
have the opportunity to attend application level hands-on training. For questions after
that, they have the benefit of a multi-tiered customer support system. Jiffy is now
positioned to have a long life at the enterprise level.

% of Total Database Access

27%

21%

14%

7%

31%

NavigatePrograms.asp
Projects.asp
login2.asp
login.asp
Remaining DB Access Files

References:

1. “Challenges to Ensuring Secure .COM and .EDU Access to a Web-based Air Force
Laboratory Program Management”, Rico H., Hall F. et. al., Proceedings of the 2003
International Command and Control Research and Technology Symposium (ICCRTS),
June 2003.

