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Abstract 
 

One of the greatest difficulties in developing a fusion process is determining the type, 
quantity, and quality of the information provided. Even when this is accomplished, the 
utility (relationship) of the information is often difficult to establish. For the problem of 
combat identification (Combat ID or Combat ID) this is especially taxing. Often 
numerous sources provide information, but relationship guidelines are not well 
developed, or are ambiguous or inconsistent. This deficiency leads to poorly constructed 
fusion architectures and methodologies because information is either ignored or 
improperly combined in the fusion process. Using the Joint Directors of Laboratories 
(JDL) information fusion model as a guide, this paper will address the movement of 
attribute information across multiple hypothesis classes as it relates to developing the 
identification of different objects, and how it can be combined both within and between 
JDL fusion levels. The result of this analysis will lead to an information architecture that 
is naturally adaptive to information regardless of quality, level, or specificity. Such a full 
Combat ID architecture must be able to facilitate a broad range of information at various 
levels.  In this paper we provide examples for taxonomies, multiple hypotheses, and the 
recognition of tactical elements to illustrate the relevant issues and present an 
architectural model.  Further, implementation of such an architecture may facilitate a 
power to the edge approach to decision-making when edge units are provided with 
Combat ID information at the level of recognizable “tactical elements” for which 
decisions are made. 

I. INTRODUCTION 
The Joint Directors of Laboratories (JDL) information fusion model provides an excellent 
basis for parsing information according to discrete levels. For the combat identification 



 

(Combat ID or Combat ID) problem encountered by military forces, a straightforward 
mapping into the JDL model exists. From this, an additional mapping of Combat ID 
categorizations can be gleaned from various operational specifications (such as 
Operational Specification (OS) 516) to further refine information categories for each JDL 
level. However, the relationship between information categories both within each JDL 
level and between JDL levels must be defined in order to maximize information available 
for a fusion process. This paper explores an architecture definition process that represents 
Combat ID information movement between hypotheses within an individual JDL level 
and between JDL levels 1, 2, and 3. Defining this architecture will involve an 
investigation into detailed taxonomic relationships between information sets and their 
subsequent canonical mappings. From this a definition of a response mapping, which 
allows the interpretation of elements from one taxonomy in terms of another taxonomy, 
can be made. Concepts are then tied into multi-hypothesis structures based on the JDL 
model. This model of Combat ID fusion is constructed in the context of Situational 
Awareness (SA). Of particular interest is the relationship of level 3 information and its 
complexities. For the purposes of this paper, the problems associated with Combat ID for 
air objects provide an instructive example, although the model is fully extensible to the 
general Combat ID problem. 
 
To maximize the agility of the fighting forces (edge units as described by Alberts & 
Hayes [1]), there exists a critical need to provide these units with Combat ID at the intent 
level (Level 3). This Combat ID discernment capability requires a situational 
understanding of opposing units at the decision level rather than the observable individual 
platforms. This results in a need for a distributed Combat ID architecture to support 
modeling of upper echelon intent. Implementation of such an architecture may facilitate a 
power to the edge approach to decision-making when edge units are provided with 
Combat ID information at the level of recognizable tactical elements for which decisions 
are made. 

II.  TAXONOMIC RELATIONSHIPS DEFINED 
A taxonomy is a classification scheme for objects of interest, which parallels the study of 
ontologies.  It is a set of mutually exclusive labels. An example is the classic Combat ID 
(Combat ID) taxonomy {Friend, Assumed Friend, Neutral, Pending, Unknown, Suspect, 
and Hostile}. The Nationality taxonomy is {US, Russia, UK, France, Iraq, Iran, 
Zimbabwe, …}. Other examples are the Category taxonomy {Space, Air, Surface, 
Subsurface, Land}, the Platform taxonomy {Fighter, Bomber, Transport, …}, the Type 
taxonomy {F-14, F/A-18, F-22, Typhoon, Viggen, E-3, …}, and the Class taxonomy 
{F-14A, F-14B, F-14D, F/A-18A, F/A-18B, F/A-18C, F/A-18D, …}. The Category, 
Platform, Type and Class taxonomies are successive refinements of predecessor 
taxonomies. Given a Class label, a Type label can be inferred, given a Type label, a 
Platform label can be inferred, and given a Platform label, a Category label can be 
inferred. (There are some exceptions, for example a C-130 might be an attack aircraft or a 
transport.) More precisely, taxonomy A is an f-refinement of taxonomy B if f is a function 

BAf →:  such that if 21 bb ≠  then ϕ=∩ −− )()( 2
1

1
1 bfbf , where ϕ = empty set.  An 

example is given in figure 1, in which it can be seen that 
ϕ=−∩− −− )18/()16( 11 AFfFf .  If f is an obvious function, as it is for example for the 



 

taxonomies Type and Class, we say simply that taxonomy A is a refinement of taxonomy 
B.  Other collections of taxonomy do not show such a relationship—an F/A-18 might 
have any of a dozen or more Nationalities, and each Nationality can have many different 
aircraft Types. 
 

If a taxonomy A is an f-refinement of taxonomy B and a ∈  A, b ∈  B, and f(a) = b, we say 
that a is an f-refinement of b. If f is an obvious function, we say simply that a is a 
refinement of b. For example, F/A-18A in the Class taxonomy is a refinement of F/A-18 
in the Type taxonomy. 
 
Given a set S of objects, a taxonomy imposes a partition on the set. Each element of the 
partition is the set of all elements of S for which a single element of the taxonomy is the 
appropriate name.  An example of an element of the partition imposed on aircraft by the 
Type taxonomy is the set of all F-15s. Another is the set of all 747s. A taxonomy T1 is a 
refinement of another taxonomy T2 if the partition imposed by T1 is a refinement of the 
partition imposed by T2. Figure 2 shows the f-refinement of figure 1 as a partition 
refinement. 

A taxonomic refinement series is a set of taxonomies, { } n
iiT 1= , such that Ti+1 is a 

refinement of Ti. An example is the series Category, Platform, Type, and Class. The 
problem of interest is how to use information about an object from different taxonomies 
to categorize the object in one of those taxonomies, or in another, completely different, 
taxonomy.  It is a practical problem since some sensors categorize an object in the 
context of one or more taxonomies. For example, an ELINT sensor might be able to 
discern that the object might be an F-14 or an F/A-18D on the basis of emission 
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Figure 1. f-refinement Taxonomy Example 

F - 16

F/A-18 747

Mig-29

A340

F/A-18FF/A-18E

F - 16A 
F - 16B

F - 16C 
F - 16D 

F/A-18A

F/A-18D

F/A-18B

F/A-18C
F - 16

F/A-18 747

Mig-29

A340

F/A-18FF/A-18E

F - 16A 
F - 16B

F - 16C 
F - 16D 

F/A-18A

F/A-18D

F/A-18B

F/A-18C
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characteristics. The information is from both the Type and Class taxonomies. It can be 
used to infer that, in the Type taxonomy, the object is either an F-14 or an F/A-18. It can 
be used to infer that the object is an Air object in the Category taxonomy, and that it is 
not a Chinese aircraft in the Nationality taxonomy. Canonical mappings provide a way to 
exploit these taxonomic relationships. 

III. CANONICAL MAPPINGS 
As can be seen in figure 3, two taxonomies might be related through mappings in more 
than one way. Figure 3 shows how sets T6 and T3 are related through both the mapping m3 
and the composite mapping m2*m1. Since these mappings in general will not be equal for 
any particular application, a set of canonical mappings must be defined between any two 
related taxonomies (the canonical mapping from a taxonomy to itself is, of course, the 
identity mapping). In the case of a collection of taxonomies that are successive 
refinements, the canonical mappings reflect the hierarchical nature of the taxonomies 
themselves. 
 

It is conceivable to have multiple canonical mappings between two sets, and to maintain 
parallel state information for both. This may allow better quality results by combining the 
two states, since each mapping is an expression of domain information. Thus a state 
arrived at with one canonical mapping encapsulates background information that the 
other lacks. More significantly, it is conceivable that the two states might be in conflict. 
This might indicate an inconsistency in the sensor inputs used to infer the two states, but 
it also could reflect varying uses or ambiguous interpretations of the observations. The 
gain from using more than one canonical mapping might or might not be worth the extra 
complexity. 

IV. RESPONSE MAPPING 
Response mapping is a way to interpret a response with elements from one taxonomy in 
terms of another taxonomy. It also provides a means of interpreting a response with 
elements from more than one taxonomy in the various referenced taxonomies. Level 
expansion, which is a case of response mapping among the taxonomies, is of particular 
interest because of existing sensors that yield a response with elements from both the 
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Figure 3. Non-Canonical Mapping Example 



 

Type and Class taxonomies. The objective is to make it possible to maintain parallel 
states in multiple taxonomies.  As each response is received, it is interpreted in the 
taxonomies of interest. The state for each taxonomy is then updated. 
 

 
Referencing figure 4, let R be a response from a source of information.  It is composed of 
a set of attributes, potentially from several different taxonomies. Let the canonical 
mapping from taxonomy Ti to taxonomy Tj be mij. Each taxonomy potentially has 
elements that are part of the response (R1 and R2 in the figure), as well as elements that 
are the images, under a canonical mapping, of elements in other taxonomies (m12(R1), 
m21(R2), m13(R1), m23(R2) in  figure 4). 

V. JDL BACKGROUND 
For the purpose of brevity, we assume the reader has some familiarity with the JDL 
model. However, a purposeful description is needed here to clarify some concepts. An 
excellent resource for further information on the JDL information fusion model is found 
in Hall and Llinas [2] and Steinberg, et al. [3]. Figure 5 provides a graphical description 
of the model. 

 
Figure 5. JDL Fusion Process Model 

Figure 4. Response Mapping in a Refinement Series 
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The problem of parsing and fusing Combat ID information falls within JDL levels 1, 2, 
and 3. Level 0 information includes such operations as coherent signal processing of 
measurement data, centroiding and filtering of kinematic data, IFF code degarbling, 
emitter classification, association and tracking, etc. This level of processing is generally 
performed entirely within individual sensors. Level 4 processing is a metaprocess, which 
is a process that monitors and optimizes the overall data fusion performance via planning 
and control, not estimation as in JDL levels 1 through 3. In the context of Combat ID, the 
following discussion defines the type of information processed by the remaining JDL 
categories. 
 
JDL Level 1 – Object Refinement. This processing level combines information from the 
results of level 0 processing within sensors. Level 1 fusion combines information about 
the location and attributes of objects so as to detect, locate, characterize, track, and 
identify these objects. This level of processing involves information 
assignment/correlation, determination of position and what is defined as taxonomic 
Combat ID. The OS 516.2 designations for this are category, platform, type, class, unit, 
and nationality – although nationality is often considered as a level 3 category. Examples 
of level 1 declarations include tank, M-1 Abrams, fighter, DDG, 737-300, etc. The goal 
therefore of JDL level 1 processing is to determine exactly what an object is, not its 
relationship to the identifying platform. Three specific areas that taxonomic Combat ID 
processing embodies include: (1) Information alignment such as time synchronization, 
and gridlock and bias removal (2) Information correlation (platform-platform, type-
platform, class-type, etc., according to OS 516.2 object categories), and (3) 
Probabilistic/evidential attribute estimation (Bayesian, Dempster-Shafer, etc.). Generally 
speaking, in order to fuse information at this level, multiple hypotheses must be tracked. 
This is because taxonomic Combat ID information from Intelligence-Surveillance-
Reconnaissance (ISR) sources will be available at many different levels. Automating the 
fusion and declaration decision process flexibly across these levels, as information is 
available, without throwing away valuable information and context is challenging. 
 
JDL Level 2 – Situation Refinement. This processing level includes the ability to establish 
contextual relationships of objects declared in level 1 processing with their environment. 
This includes situation refinement using some sort of assessment to declare an object as  
(1) Friend, (2) Assumed Friend, (3) Neutral, (4) Suspect, (5) Hostile, and (6) Unknown. 
The taxonomic identification produced by the level 1 process generally does not imply 
the state of an object. Level 2 processing uses some sort of decision methodology such as 
if-then logic, or voting fusion to derive the object state and establish the Combat ID. As 
an example, if an object is determined to have a high confidence taxonomic Combat ID 
of an F-16, this in itself offers no information on whether it is friendly towards the 
platform performing the identification. However, inserting a level 2 assessment decision 
will enable the proper Combat ID declaration to occur based on such rules as country-of-
origin, flight profile, intelligence information, etc. In this example, doctrine could derive 
a Combat ID of Assumed Friend if no hostile entities were known to have any F-16s in 
their inventories. Some sensor/source information may also be directly fused at this level 
such as secure Identification Friend-or-Foe (IFF) modes and data link associations, if 



 

available. The presence of this type of secure information can be directly associated with 
the existence of a Friend, although the lack of it does not normally imply a Hostile or 
Unknown designation. It is important to note that level 2 categories are drawn from a 
single taxonomy, so the structures for fusion will be different from the ones best suited 
for the multiple taxonomies of level 1. 
 
JDL Level 3 – Threat Refinement. This processing level attempts to interpret a situation 
from a dynamic behavior point-of-view and involves evaluating hypotheses concerning 
the future actions of an object and the potential consequences of those actions. This 
includes threat analysis and the assessment of intent. Conceptually, this is similar to a 
mind reading exercise to determine what the object will do, under what circumstances 
will it happen, and with what motivation. For Combat ID, this processing level can take 
the results of levels 1 and 2, in addition to independently processing information, and will 
determine if the identified object is a candidate for engagement. For example, using a self 
defense scenario, if an object is positively identified as a Hostile, but is flying away from 
any defended assets and poses no threat, then the object’s intent may not be threatening 
and the identifying platform may choose not to engage it. Depending on the refinement in 
the level 1 processing, if platform type, class, unit, nationality, and/or activity are known, 
then this may be used along with the Combat ID for level 3 processing. As an example, if 
an object is identified as Hostile, with a taxonomic identification of a military 
reconnaissance aircraft on a surveillance mission, then that object may not qualify for 
engagement because it has no offensive weapons capability (again depending on doctrine 
and situation). Bayesian and neural networks are two methods of fusing information at 
this level. 

VI. MULTI-HYPOTHESIS STRUCTURES 
An information model for multi-hypothesis structures is shown in figure 6.  
 

Figure 6. Multi-Hypothesis Structures with JDL Levels  
 
This figure stipulates that there are six hypothesis categories for level 1, one for level 2 
(that has six possible states), and three for level 3. The level 4 structure is included for 



 

completeness, but will not be referenced in this discussion. Each of these hypotheses is 
populated from various possible fusion methods, some of which were discussed in 
section 2. Not all hypotheses will be populated all the time. This will be determined by 
the amount and type of information present for every object associated with a track store 
(or file). Figure 6 represents the following: 
 

•  Each hypothesis category has an associated probability distribution that is derived 
as a function of the observed sensor/source parameters. Information primarily 
moves between hypotheses within an individual level (horizontal bars) with some 
information moving between levels 1, 2, and 3. Level 4 primarily accepts requests 
for optimization and provides feedback to levels 1, 2, and 3.  

•  Each hypothesis category has a unique threshold value for declaration that is 
dictated by mission, doctrine, and available information. Some means to automate 
a decision threshold is required which is the subject of future work. A good level 
2 example is the decision between a declaration of Hostile or Neutral. Obviously 
the Neutral ID hypothesis will require less information to declare than the life-
critical Hostile ID, so a higher decision threshold for a Hostile declaration will 
probably be required. 

•  Each hypothesis structure requires decision logic to determine how to arrive at a 
decision given a set of observed sensor/source parameters.  

•  Each hypothesis declaration is made taking into account the probability of a 
wrong decision (or non-decision) and its consequences. 

 

JDL Level 1 Structures 

The Level 1 structure is quite different from the level 2 and 3 variants. The level 1 
hypothesis structures of category, platform, type, class, form a taxonomic refinement 
series, while unit and nationality are related to all four of the taxonomies in the series. 
Figure 7 illustrates this example. 

Every sensor type that produces information will provide information that spans both the 
three JDL levels and the hypothesis categories within these levels. As an example, 
suppose we receive the following sets of level 1 information from two very good sensors: 
 

•  Sensor 1: F-14, F-15, F/A-18 
•  Sensor 2: F-14A, F-15E, F/A-18C, F/A-18D 

 
Sensor 1 is providing type information while sensor 2 is providing class information. 
However, both sensors are proving information that will help all the hypothesis 
structures, especially sensor 2, which is providing specific subsets of objects declared by 

Category  Platform    Type       Class       Unit    Nationality

air        fighter       F-14      F-14D    VF-101      U.S.

Category  Platform    Type       Class       Unit    Nationality

air        fighter       F-14      F-14D    VF-101      U.S.

Figure 7. CID Level 1 Information Flow 



 

sensor 1. Sensor 2 has defined one instance of object F-14, one instance of object F-15, 
and two instances of object F/A-18 related to sensor 1. So that both hypothesis structures 
can be supported, object mappings can be performed between them. 
 

For the case of sensor 1 type 
information table 1 represents the 
possible maps to the class information 
provided by sensor 2. So sensor 1 
provides 3 objects to the hypothesis 
structure of sensor 2 for F-14, 5 objects 
for F-15, and 6 for F/A-18. The 
probability of each new possible class 
element is the probability of the class as 
reported (or derived) from the sensor 
divided by the number of possible 
objects (i.e. 3, 5, and 6 in this case) 
available in the a priori database. Since 
sensor 1 can only report to the type 
level in this case, in the absence of 
additional information, entropy requires 
that all classes within that type be 
equiprobable. For the opposite case 
where sensor 2 can contribute to a type 
hypothesis, a mapping can occur 
between the declared aircraft 
highlighted in table 1, and their 
respective type. So F-14A with its 
associated probability confidence 

(which is equiprobable to F-15E, F/A-18E, and F/A-18F) can be mapped to F-14 and 
processed with the type hypothesis. Both of these cases will occur regardless of whether 
there are common elements between the hypothesis structures or sensors. 
 
A more comprehensive relationship between level 1 object structures can be seen in the 
following Bayesian network example in figure 8 from Paul [4] built using the Netica® 
software package from Norsys. In figure 8, the relationships between the various level 1 
structures are immediately clear. The relationships between entities in this network were 
constructed from various open sources and entered into the model, which is how the 
discrete probabilities were obtained. Figure 8 therefore represents the a priori state of the 
universe for F-14, F-16, F/A-18, and Boeing 737 aircraft. The assumption in this example 
is that a series of aircraft object classes are returned by a set of unbiased attribute sensors. 
For this example, we have a high quality, complex Bayesian sensor that returns 
information that an object is a fighter (0.85) or a commercial aircraft (0.15); and that it is  
 
 
 
 
 

Table 1. Sensor Type vs. Class Reporting 

TYPE POSSIBLE 
CLASS 

CLASS 
ELEMENTS 

F-14 F-14A 3 

 F-14B  

 F-14D  

F-15 F-15A 5 

 F-15B  

 F-15C  

 F-15D  

 F-15E  

F/A-18 F/A-18A 6 

 F/A-18B  

 F/A-18C  

 F/A-18D  

 F/A-18E  

 F/A-18F  



 

 
Figure 8. Taxonomic ID Bayesian Network After Information Processing 

 
either from Israel (0.7), the US (0.1), Indonesia (0.1), or Spain (0.1). The resulting 
Bayesian network is shown in figure 9. 

 
Figure 9. JDL Level 1 Taxonomic ID Bayesian Network 

 

 
 

ID
F 1 4 A
F 1 4 B
F 1 4 D
F 1 6 A
F 1 6 B
F 1 6 C
F 1 6 D
F A 1 8 A C
F A 1 8 B D
F A 1 8 E
F A 1 8 F
B o e in g 7 3 7 2 0 0
B o e in g 7 3 7 3 0 0
B o e in g 7 3 7 4 0 0
B o e in g 7 3 7 5 0 0
B o e in g 7 3 7 7 0 0
B o e in g 7 3 7 8 0 0
B o e in g 7 3 7 9 0 0

8 .7 8
0 .5 7
0 .5 7
2 0 .0
3 .4 0
2 9 .5
1 5 .3
1 2 .9
4 .0 0
0 .4 3
0 .4 3
0 .3 2
0 .5 0
0 .6 5
1 .1 4
0 .5 0
0 .4 2
0 .5 6

T yp e
F 1 4
F 1 6
F A 1 8
B o e in g 7 3 7

9 .9 2
6 8 .2
1 7 .8
4 .1 0

C a te g o r y
A ir   1 0 0

C la s s  
F 1 4 A  
F 1 4 B  
F 1 4 D  
F 1 6 A  
F 1 6 B  
F 1 6 C  
F 1 6 D  
F A 1 8 A C  
F A 1 8 B D  
F A 1 8 E  
F A 1 8 F  
B o e in g 7 3 7 2 0 0  
B o e in g 7 3 7 3 0 0  
B o e in g 7 3 7 4 0 0  
B o e in g 7 3 7 5 0 0  
B o e in g 7 3 7 7 0 0  
B o e in g 7 3 7 8 0 0  
B o e in g 7 3 7 9 0 0  

8 .7 8  
0 .5 7  
0 .5 7  
2 0 .0  
3 .4 0  
2 9 .5  
1 5 .3  
1 2 .9  
4 .0 0  
0 .4 3  
0 .4 3  
0 .3 2  
0 .5 0  
0 .6 5  
1 .1 4  
0 .5 0  
0 .4 2  
0 .5 6  

N a t io n a lity  
U S  
B e lg iu m  
D e n m a rk  
E g y p t 
In d o n e s ia  
Is ra e l 
N e th e r la n d s  
N o rw a y  
P a k is ta n  
P o rtu g a l 
S in g a p o re  
T a iw a n  
T h a ila n d  
V e n e z u e la  
B a h ra in  
G re e c e  
K o re a  
T u rk e y  
U n ite d A ra b  . . . 
C a n a d a  
A u s tra lia  
K u w a it 
F in la n d  
S w itz e r la n d  
M a la y s ia  
I ra n  
A rg e n t in a  
C h in a  
E n g la n d  
J a p a n  
P o la n d  
G e rm a n y  
P h il lip in e s  
M o ro c c o  
S a u d iA ra b ia  
S w e d e n  
A fr ic a  
B ra z il 
F ra n c e  
S p a in  

6 7 .6  
   0  
   0  
   0  

0 .2 5  
3 0 .9  

   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  
   0  

1 .2 6  

P la tfo rm
F ig h te r
C o m m e rc ia l

9 5 .9
4 .1 0

 
 

ID
F 1 4 A
F 1 4 B
F 1 4 D
F 1 6 A
F 1 6 B
F 1 6 C
F 1 6 D
F A 1 8 A C
F A 1 8 B D
F A 1 8 E
F A 1 8 F
B o e in g 7 3 7 2 0 0
B o e in g 7 3 7 3 0 0
B o e in g 7 3 7 4 0 0
B o e in g 7 3 7 5 0 0
B o e in g 7 3 7 7 0 0
B o e in g 7 3 7 8 0 0
B o e in g 7 3 7 9 0 0

7 .1 1
0 .4 1
0 .4 1
1 7 .3
4 .0 7
2 3 .4
6 .1 0
1 2 .2
4 .0 7
0 .3 0
0 .3 0
2 .0 3
2 .0 3
3 .0 5
9 .1 5
2 .0 3
3 .0 5
3 .0 5

T yp e
F 1 4
F 1 6
F A 1 8
B o e in g 7 3 7

7 .9 3
5 0 .8
1 6 .9
2 4 .4

C a te g o r y
A ir   1 0 0  

C la s s  
F 1 4 A
F 1 4 B
F 1 4 D
F 1 6 A
F 1 6 B
F 1 6 C
F 1 6 D
F A 1 8 A C  
F A 1 8 B D  
F A 1 8 E  
F A 1 8 F  
B o e in g 7 3 7 2 0 0  
B o e in g 7 3 7 3 0 0  
B o e in g 7 3 7 4 0 0  
B o e in g 7 3 7 5 0 0  
B o e in g 7 3 7 7 0 0  
B o e in g 7 3 7 8 0 0  
B o e in g 7 3 7 9 0 0  

7 .1 1  
0 .4 1  
0 .4 1  
1 7 .3  
4 .0 7  
2 3 .4  
6 .1 0  
1 2 .2  
4 .0 7  
0 .3 0  
0 .3 0  
2 .0 3  
2 .0 3  
3 .0 5  
9 .1 5  
2 .0 3  
3 .0 5  
3 .0 5  

N a t io n a li t y  
U S  
B e lg iu m  
D e n m a rk  
E g y p t  
In d o n e s ia  
Is ra e l 
N e th e r la n d s  
N o rw a y  
P a k is ta n  
P o r tu g a l 
S in g a p o re  
T a iw a n  
T h a i la n d  
V e n e z u e la  
B a h ra in  
G re e c e  
K o re a  
T u rk e y  
U n ite d A ra b  . . . 
C a n a d a  
A u s tra lia  
K u w a it  
F in la n d  
S w itz e r la n d  
M a la y s ia  
I ra n  
A rg e n t in a  
C h in a  
E n g la n d  
J a p a n  
P o la n d  
G e rm a n y  
P h il lip in e s  
M o ro c c o  
S a u d iA ra b ia  
S w e d e n  
A fr ic a  
B ra z il 
F ra n c e  
S p a in  

6 1 .4  
2 .0 9  
0 .8 9  
2 .6 5  
0 .3 3  
3 .2 0  
3 .2 4  
0 .8 9  
0 .9 4  
0 .2 1  
0 .6 8  
1 .7 8  
0 .7 4  
0 .2 5  
0 .2 6  
1 .8 2  
2 .2 6  
3 .3 4  
1 .0 1  
1 .6 3  
1 .5 1  
0 .4 9  
0 .7 0  
0 .3 7  
0 .6 0  
0 .8 4  
0 .1 8  
0 .4 3  
0 .4 3  
.0 6 5  
0 .2 1  
0 .8 3  
.0 5 6  
0 .3 7  
0 .1 6  
1 .0 4  
0 .1 7  
0 .6 2  
0 .3 7  
0 .9 0  

P la t fo rm
F ig h te r
C o m m e rc ia l

7 5 .6
2 4 .4



 

The shaded areas of Nationality and Platform in figure 8 represent where the new sensor 
information was read. The ID node in both figures 8 and 9 is a mirror of the class node in 
this example, however it can reflect any node of interest. There are many complexities 
with building a tactical Bayesian network for air object taxonomic ID that are beyond the 
scope of this paper. This includes assigning probabilities to large amounts of information 
and handling ambiguous or corrupted information. However, this example demonstrates 
the necessity of developing relationships between JDL level 1 information structures in 
order to minimize information loss. 
 
JDL Level 2 Structures 

Unlike level 1 constructs, each level 2 entity has little (or no) relationship to other level 2 
entities because level 2 information is really contained within a single hypothesis 
category. If an object were declared Hostile via level 2 hypothesis, this hypothesis would 
have no contribution to a level 2 Friend hypothesis, other than to test for conflicts. 
Referring to figure 6, level 2 information is both measurement based and derived from 
level 1 information. Measurement based level 2 information is only provided from secure 
sources of information that usually involve cryptologic methods to convey trusted 
information that is resilient against spoofing and compromise. Regardless, only direct 
evidence of a Friend is possible with these systems. No other Combat ID declaration is 
“directly” measurable. So the Combat ID declarations of Assumed Friend, Neutral, 
Suspect, Hostile, Unknown, and Pending are all derived states, because no positive 
measurement information exists beyond a perfectly cooperating friendly object via secure 
information transfer. 
 
Derived level 2 information providers include all level 1 information sources. The level 1 
information discussed in the previous section can be used to declare an ID of Friend, 
Hostile, etc., after the application of doctrine or equivalent processing techniques. For 
example, a detected emitter that is correlated to an adversary’s platform would be a 
candidate for refinement to Suspect or Hostile after application of ID doctrine. 
 

One way to view the internal 
relationships of JDL level 2 
information is to construct a biased 
Combat ID transition matrix. An 
example of this matrix is shown in 
table 2. The numbers in this matrix 
represent the number of hypothesis 
transitions that are required to go from 
one Combat ID state to another in this 
taxonomy. For example, to move from 
Friend (Fr) to Assumed Friend (As 
Fr.) requires two state transitions – one 
to go to Unknown (Unk) and one to go 
to Assumed Friend. Downgrades of 

hypotheses like this generally require two transitions. Some upgrades, notably Assumed 
Friend to Friend and Suspect to Hostile only require a single hypothesis transition while 

Table 2. JDL Level 2 Transition Matrix 
 Fr As 

Fr. 
Neut Sus Hos Ukn 

Fr 0 2 2 2 - - 

As 
Fr. 

1 0 2 2 - - 

Neut 2 2 0 2 2 - 

Sus 2 2 2 0 1 - 

Hos - - 2 2 0 - 

Unk 1 1 1 1 1 0 



 

all others must first be downgraded to Unknown. Some state transitions are not allowed 
such as the movement from Friend to Hostile due to the ramifications of making this type 
of designation. Generally, the object of interest must be completely re-evaluated before 
this transition is allowed. 
 
JDL Level 3 Structures 

Referring to figure 6, level 3 information is both measurement based and derived from 
level 1 and 2 information. Level 3 information consists of an object’s activity (ASW, 
Intel, CAP, etc.), intent (threat, non-threat, etc.), and threat level (lethality). The 
capability to estimate with accuracy the future actions of an opponent and the possible 
consequences of those actions is the primary goal of an application of the JDL level 3 
structures. As discussed previously, this is similar to a mind reading exercise that, on the 
basis of recent literature on the subject, has had problematic development at best. The 
JDL level 3 Threat Refinement structures provide more than a means to look at hostile 
forces, but also provide for a clear assessment of all theater forces including those that are 
friendly and neutral. Therefore it is the goal of this level to provide the following 
capabilities, derived from Hall [5]: 
 

•  Estimation of aggregate force capabilities – includes hostile, friendly, and neutral 
forces as determined by level 2 processes 

•  Identification of threat opportunities – includes the mission planning process, 
force vulnerabilities, and probable hostile force actions and scenarios. 

•  Prediction of hostile intent – includes analysis of information, actions, events, and 
communications. 

•  Estimation of implications – For every hypothesized force (friendly and hostile) 
action, estimates of timing, prioritization, and opportunities can be made. 

 
This task as described above represents a classical fusion of inferences drawn from 
dissimilar sources based upon direct observation. As the taxonomy addressed for Combat 
ID is fused based on both the physical characteristics of the target itself as well as its 
behavior (including actions, missions, and apparent intent), there exist essentially two 
basic forms of reasoning and information available for situational awareness (SA) for 
JDL level 3 threat refinement.  These two forms are: 
 

•  Observation Driven SA Reasoning provides an evaluation of the situation based 
upon direct observation.  This represents situational awareness based upon what a 
potential threat is doing. 

•  Mission Driven SA Reasoning provides an evaluation of the situation based upon 
how well it matches to a specific anticipated threat mission.   

 
Level 3 fusion requires both activities to be performed in concert.   

VII. COMBAT ID IN SITUATIONAL AWARENESS 
Combat ID in the context of SA is invariably referenced, but far less often is 
implemented into Combat ID algorithms as an explicit taxonomic process. Hanson and 



 

Harper [6] demonstrate that situation assessment (for threat refinement) is strongly 
related to data fusion. A general definition of SA from Endsley [7] is: Situation 
awareness is the perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the projection of their status in the 
near future. In terms of levels, this definition can be structured in a way analogous to the 
JDL hierarchy: 
 

•  Level 1 SA: Perception of the environmental elements – The identification of key 
elements of “events” that, in combination, serve to define the situation. This 
serves to semantically tag key situational elements for higher levels of abstraction 
in subsequent processing. 

•  Level 2 SA: Comprehension of the current situation – This combines level 1 
events into a comprehensive holistic pattern (or tactical situation). This serves to 
define the current status in operationally relevant terms to support rapid decision-
making and action. 

•  Level 3 SA: Projection of future status: projection of the current situation into the 
future, so as to predict the course of an evolving tactical situation. Time 
permitting, this supports short-term planning and option evaluation. 

 
A direct comparison of these three levels of SA and JDL data fusion show that the 
functions are clearly distinct at level 1, since JDL data fusion focuses on the numeric 
processing of tactical elements to provide identification and tracking, whereas SA focuses 
on the symbolic processing of these entities, to identify key “events” in the current 
situation. At level 2, the definitions are virtually identical, to yield the conventional 
definition of SA (that of generating a holistic pattern of the current situation). At level 3, 
the SA definition is more general than a pure data fusion definition, since the former also 
includes projection of ownship/aircraft/battalion/etc. and friendly intent, and capability in 
addition to threat intent and impact assessment. 
 
Although Mission Driven Awareness focuses on Level 3 Situational Awareness, due to 
the desirability of a concurrent multi-layered data fusion/situational awareness approach, 
mission driven awareness can be used to accelerate level 2 SA and hence focus the fusion 
process more quickly.  Such a benefit may be crucial in the common case of time critical 
targets of interest. 

VIII. RECOGNITION OF TACTICAL ELEMENTS 
Mission Driven Awareness allows us to infer from the results of lower level knowledge 
fusion the mission (or activity) component of Combat ID as specified in the Combat 
Identification Capstone Requirements Document [8]. Such identification of the mission 
or activity implies a situational awareness of the decisions made by both sides of an 
adversarial encounter. This Combat ID capability is not only essential to generate a 
needed Predictive Situational Awareness (PSA) to minimize fratricide, but is also broadly 
characteristic of the class of fusion algorithms which can recognize behaviors and project 
from those behaviors the intent and probable Courses of Action (CoAs) available to 
hostile commanders. In short, these fusion algorithms may be represented in the familiar 



 

JDL Fusion Model (Figure 5) as Level 3 Fusion to address Threat Refinement (Impact 
Assessment) both predictively and deductively: 
 

•  Predictive Situational Awareness projects CoAs to determine potential impacts 
(evaluate utility of CoAs to a hostile commander in terms of the impact achieved), 
and 

•  Determination of Intent deduces the hostile commander’s intent from the 
evaluation of the CoAs that best corroborate observed behaviors. 

 
However, these decisions are not generally made at the level of the unit observed 
(typically a platform such as an ‘aircraft’, ‘vehicle’, etc.), but rather at a higher decision 
element that is tasked to perform a given tactical mission. Therefore, to enable decision 
fusion at an actionable level, recognition of the tactical elements that represent the 
decision-level, units (often an organizational entity such as an ‘armored column’, ‘flight 
of aircraft’, ‘convoy of vehicles’, ‘terrorist cell’, etc.) becomes essential. 
 
This suggestion is based on the observation that although newly developed Combat ID 
algorithms show great promise for target identification and classification, their utility for 
determination of intent is limited by their focus on track fusion (JDL levels 1 & 2). Use 
of a Combat ID architecture structured hierarchically helps implementation of inference 
processing for Level 3 fusion (figure 10 as modified from the 2000 Data & Information 
Fusion Group [9]). 
 

Figure 10. Tactical Elements Employed by Fusion Level 
 
As may be suggested from Figure 10, to reproduce the decision-making process, it is 
desirable for the decision-fusion to be able to recognize and characterize not only 
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individual physical objects (bottom of figure), but also the organizations, events, tactics, 
objectives, missions and capabilities (middle to top of figure). Most of these recognition 
schemes are domain specific and typically either require or at least benefit from use of a-
priori information (i.e., ‘intelligence’). 
 
Accordingly, the JDL model is reorganized in Figure 11 to show information flow with 
the inference level increasing from bottom up. This corresponds loosely to the techniques 
typically used as discussed in this paper and shown on the right side of the figure. 
 

 
Figure 11. Aggregate of Proposed Level 0 – 4 Fusion Methodologies 

 
Data structures are displayed on the left side of Figure 11. Data structures representative 
of knowledge fusion as identified in the upper left of the figure include the tactical 
elements with raid structure and timing, missions, activities and operational zones. The 
critical process of generating a situation base, as shown in the center of the figure, 
represents recognition of tactical elements. The purpose of this paper is not to 
characterize this process so much as to identify the architectural characteristics of a 
Combat ID structure that would support such a capability. 
 
Implementation of such an aggregative recognition of tactical elements is facilitated by 
use of the corresponding architectures for multi-hypothesis structures and taxonomies for 
Combat Identification. Use of such an architecture may in turn then facilitate a power to 
the edge [1] approach to decision-making which enables edge units by providing these 
units with the Combat ID information structured, traceable, and displayed to the level of 
recognizable tactical elements for which decisions are made. 
 



 

The power that would be provided to edge units would be in the form of enhanced 
Combat ID, earlier Combat ID when contextual cues can discriminate between alternative 
Combat ID hypotheses, and integration of CoA assessments to evaluate the Combat ID of 
various threatening elements with the generation of CoAs for mission planning.  This 
information can enable a self-synchronization as described by Alberts & Hayes [1] as 
well as the more obvious support of Effects Based Operations as described by Smith [11]. 
 

 
Figure 12: Potential Functional Flow for a Proposed Threat Evaluation Tool for Combat Identification 

 
Determination of a hostile commander’s intent typically requires the representation of his 
decision-making process. By returning to the dual-view characterized previously that 
addresses impact assessments in both a predictive and deductive form, one can propose a 
functional flow as shown in Figure 12. In this example, a Recognition-Primed Decision-
making (RPD) process is employed as described by Klein [10]. As a result, for both 
forms we observe the familiar Recognition/Assessment/Evaluation model. For the 
predictive form at the top of the figure, the system recognizes threatening tactical 
elements and generates threat assessments and impact predictions. For the deductive form 
at the bottom of the figure, the system recognizes potential threat intents and generates 
assessments of intent and their associated Courses of Action (CoAs). Acting in tandem, 
the dual activity model thus proposed provides a useful tool for the determination of 
intent coupled with the recognition of the critical tactical elements that can be integrated 
with existing Combat ID assessment tools. 
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IX. CONCLUSIONS AND FUTURE WORK 
This paper stresses the importance of understanding the contextual relationship of 
information available from sensors and sources in order to properly incorporate all 
information into a fusion process, especially in the context of Combat ID. 
 
Regardless of the method used to fuse information across the JDL levels, the numerical 
result of the fusion process (or the confidence in the declaration of Neutral, as an 
example) doesn’t necessarily provide all of the information necessary to make a decision. 
This is especially critical for Combat ID where a wrong answer can have disastrous 
effects. The USS Vincennes incident in July 1988, Black Hawk shoot-down in 1994, and 
the Patriot Missile battery misidentification in 2003 are all reminders that the context, 
type, timeliness, quantity, and quality of information must be understood prior to making 
a decision. For expansion of work in this area, we have developed measures of 
information value, completeness, and decision cost that complement this multi-taxonomic 
approach for information fusion. Other future work of interest includes contextual 
reasoning approaches with extensibility beyond a given domain, realization of the 
recognition of tactical elements, multi-objective collaborative mission planning and 
decision-making under uncertainty, and predictive situational awareness integration 
approaches. 
 
In this paper we deliberately avoided the use (except briefly in the beginning) of the word 
ontology. The word “ontology” seems to generate a lot of controversy, probably from its 
origins in artificial intelligence (AI). An ontology is an explicit specification of a 
conceptualization. The term is borrowed from philosophy, where an ontology is a 
systematic account of existence. For AI systems, what “exists” is that which can be 
represented. Thus, in the context of AI, we can describe the ontology of a program by 
defining a set of representational terms. In such an ontology, definitions associate the 
names of entities in the universe of discourse (e.g., classes, relations, functions, or other 
objects) with human-readable text describing what the names mean, and formal axioms 
that constrain the interpretation and well-formed use of these terms. Formally, an 
ontology is the statement of a logical theory (see http://www-ksl.stanford.edu/kst/1). 
Pragmatically, a common ontology defines the vocabulary with which queries and 
assertions are exchanged among agents. Ontological commitments are agreements to use 
the shared vocabulary in a coherent and consistent manner. In this case, our use of the 
term “taxonomy” is consistent with “ontology” and the two can be considered 
synonymous. 
 
The authors wish to thank the support of our management at Lockheed Martin MS2 in 
systems engineering, software engineering and C4 IR&D. This paper represents one 
piece of an ongoing applied research program into tactical, multi-source, information 
fusion. The authors invite further discussions and can be reached via e-mail. 
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