
 
 
 
 
 
 

9th International Command and Control Research and Technology Symposium 
  

Coalition Transformation: An Evolution of People, Processes, and Technology 
to Enhance Interoperability  

 
 

 
APPLICATION QOS BASED TIME-CRITICAL MACHINE-TO-MACHINE 

RESOURCE MANAGEMENT IN BM/C2 SYSTEMS  
 

E. Douglas Jensen  
The MITRE Corporation  

202 Burlington Road, Bedford, MA 01730  
Voice 781-271-2514, Fax 781-271-4686  

jensen@[mitre,real-time].org 

http://www.real-time.org  

http://www.real-time.org/


Application QoS Based Time-Critical Machine-to-Machine 
Resource Management in BM/C2 Systems

 
 
 

E. Douglas Jensen 
The MITRE Corporation 

Bedford, MA 01730 
jensen@[mitre,real-time].org 

 
 

 

Abstract 
This paper summarizes a novel paradigm for 
expressing, enforcing, and formally reasoning 
about time-criticality of machine-to-machine 
resource management in battle management 
(BM) and C2 systems. Such systems are largely 
dynamic and asynchronous, and have time 
frames of O(10-1) seconds and higher. Thus they 
fall into a neglected gap between traditional 
static periodic “real-time” systems, and tradi-
tional “any time” scheduling/planning systems 
(e.g., for logistics). The paradigm uses applica-
tion-level QoS metrics (such as track quality, 
circular error probable, etc.) to derive utility 
functions for completing tasks, and then uses 
those utility functions for resource management. 
This paradigm has been successfully employed 
in several experimental BM/C2 demonstration 
systems, and is the topic of on-going research 
by industry and academia. 

Keywords 
Time-critical, real-time, resource management, 
scheduling, QoS, utility, time/utility functions, 
utility accrual 

Introduction 
A system provides services, each of which 

may have various qualities. Each service usually 
has multiple dimensions of quality. Generic ex-
amples include timeliness, availability, and se-
curity. Quality of service (QoS) is traditionally 
associated only with network communications – 
e.g., bandwidth, BER, latency and jitter. But 
QoS is an inherently general concept that can be 
employed at any levels of a system and enter-
prise.  

In many systems, complex dynamic service – 
and thus resource – conflicts and dependencies 

arise. Resolution of the resource contention af-
fects the quality of the provided services to the 
users and thus the success of the mission and the 
enterprise. Not all service requests can always 
be perfectly satisfied; adaptive situation and ap-
plication-specific resource management deci-
sions are required.   

Some of the service requests are time-critical 
– the quality of the service depends on when it 
is performed.  The timeliness of these services 
may have potentially drastic impacts on the en-
terprise and its mission, including survival of 
property and human lives. 

By popular convention, the term “safety criti-
cal” is reserved for very simple, static, systems 
that can be developed in accordance with DO-
178B and other similar standards. But many 
large scale, dynamic, systems (such as for com-
bat platform mission management, and battle 
management) have at least as much potential for 
human harm as do those “safety critical” ones, 
yet they are beyond the foreseeable state of the 
art in high assurance in the spirit of DO-178B et 
al. In the absence of substantive research results 
on that problem, assurance must be sought by 
design methodologies, simulations, and exten-
sive testing. 

In this paper we discuss resolving resource 
contention by adaptively maximizing total ap-
plication-level quality of service (“AQoS”) of a 
set of services according to application- and 
situation-specific criteria. Multimedia and simi-
lar applications popular in the real-time research 
community have AQoS metrics, but they are 
isomorphic to the QoS metrics of traditional net-
working, and so do not present significantly 
new resource management challenges and op-



portunities. We are concerned with managing 
application, as well as system, resources (hard-
ware and software) – above, as well as at, the 
network level – using AQoS metrics, such as (in 
most systems of interest to us) track quality and 
weapon spherical error probable. 

Application designers often think in terms of 
what we refer to as AQoS metrics, but not in a 
general and methodological way. Instead, they 
consider certain metrics and use their domain 
expertise to attempt to aggregate these into the 
proper “tuning” of the system.  System and re-
source management (OS, middleware) software 
designers usually do not think in terms of 
AQoS.  Thus, there are needs for systematizing 
and quantifying: the expression of AQoS met-
rics, and the potential trade-offs among them, to 
resource management software; and managing 
resources adaptively by employing AQoS to 
dynamically optimize the system’s behavior ac-
cording to the users’ wishes. 

We are particularly interested in helping meet 
those needs in the context of satisfying applica-
tion timeliness requirements. We are focused on 
using AQoS metrics in defining how each ser-
vice’s timeliness contributes to its utility to the 
current state of the mission and sequencing ac-
cess to shared resources based in part on maxi-
mizing the utility accrued from the set of ser-
vices. 

Dynamic Time-Critical Control Systems 
Many important time-critical control systems 

do not fit the “real-time” stereotype of: being 
small scale, static, periodic, centralized; per-
forming autonomic monitoring and control of 
simple devices; and having time frames in the 
microsecond and millisecond range.  Instead, 
they: are large scale in various dimensions (e.g., 
millions of lines of source code), dynamic, 
“mesosynchronous,” and distributed; perform 
closed loop automated control at any level(s) of 
an enterprise; and typically operate in time 

frames of hundreds of milliseconds to several 
minutes. 

In mesodynamics [1], the prefix meso refers 
to the middle ground between classical physics 
and quantum physics.  By mesosynchronous 
real-time systems we mean those that are in the 
middle ground between totally synchronous – in 
the sense of having only static, periodic, time-
driven, activities (e.g., [2]) and totally asyn-
chronous – in the sense of having only dynamic, 
aperiodic, event-driven, activities. The real 
world has many important real-time control sys-
tems at various points in this mesosynchronous 
middle ground. The derivation of “mesosyn-
chronous” from “mesodynamics” also reflects 
that synchronous real-time computing, like clas-
sical physics, is relatively well understood, 
while asynchronous real-time computing, like 
quantum mechanics, requires a paradigm shift 
and thus a great deal more research and devel-
opment on methodologies and formalisms. 

It might be tempting to erroneously interpret 
“mesosynchronous” as meaning that a system is 
composed of separate traditional synchronous 
static hard real-time, and asynchronous dy-
namic, non-real-time parts. While mesosyn-
chronous systems normally do have traditional 
synchronous hard real-time parts, the asynchro-
nous parts are just as “real-time” as the syn-
chronous ones are. And some parts are neither 
synchronous nor asynchronous – or are both. 
Properly speaking, a real-time activity is one 
that has a completion time constraint. Asyn-
chronous activities may have deadlines, even 
hard deadlines that if missed result in opera-
tional failures – assurances about their timeli-
ness are based on adherence to resource man-
agement policies, and are almost always un-
avoidably non-deterministic. More commonly, 
these activities have softer but more complex 
time constraints, and sequencing optimality cri-
teria that are softer but more complex than sim-
ply always meeting all deadlines (e.g., minimize 
the expected completion time tardiness accord-



ing to activity importance). That does not mean 
these activities are in any way less “important” 
or less mission-critical or even less safety-
critical than the synchronous activities – indeed, 
quite the contrary. 

The application domain of primary interest to 
us is defense. Defense systems and applications 
have always had by far the most challenging 
time-critical resource management problems – 
and are MITRE’s predominant focus. Examples 
include: multi-role and multi-mode sensors 
(e.g., phased array radars such as MP-RTIP [3]), 
combat and surveillance platform management 
(e.g., the new E-10A (MC2A)  aircraft [4], 
UAV’s and UCAV’s [5], the DD(X) class of 
destroyers [6], the Army Future Combat System 
vehicle cluster [7], battle management and mis-
sion management, (e.g., time-critical targeting 
[8]),  command and control (e.g., AWACS [9]), 
and network-centric warfare [10]. 

Time-critical resource management in net-
work-centric warfare is exemplified by the Af-
fordable Moving Surface Target Engagement 
(AMSTE) system [11], a notional non-classified 
depiction of which is in Figure 1. AMSTE in-
cludes netted airborne and spaceborne Ground 
Moving Target Indication (GMTI) sensors for 
tracking a target on the ground, a missile 
launching fighter aircraft, and a missile guid-
ance aircraft (which is usually one of the sensor 
aircraft). The targets are moving or alternately 
moving and stopping. The AMSTE objectives 
are: to maintain target track from nomination 
through engagement, from tactically significant 
standoff ranges; and to provide precision fire 
control updates to missiles in flight. These ob-
jectives require time-critical orchestration of 
multiple sensors, data links, and the missile. The 
control loop has about a one second time con-
straint for sensor to tracker to missile, and about 
an eight Hz update rate to the missile (the de-
tails of an actual AMSTE system are classified).  

Figure 1. Notional depiction of an AMSTE 
system 

 

The milliseconds-to-minutes time scale is in a 
“no man’s land” of time-critical resource man-
agement theory and practice, between conven-
tional real-time scheduling, and classical logis-
tics (e.g., shop) scheduling with deadlines. Con-
ventional real-time scheduling concepts and 
techniques: are for static (deterministic), peri-
odic, and (to a degree) sporadic activities, and 
cannot handle arbitrary asynchrony and dy-
namic changes in load and resources; time-
frames are presumed to be in the microseconds 
to milliseconds range, which limits resource 
management algorithm capability. Classical lo-
gistics scheduling concepts and techniques [12] 
include: stochastic as well as deterministic 
models; but time-frames are in the minutes to 
hours (usually too computationally intensive for 
on-line automated resource management); and 
the use of lateness (deadline - completion time) 
as the timeliness metric, the linearity of which 
severely limits time constraint expressiveness. 

Time/Utility Functions and Utility Accrual  
In 1977 Jensen created a novel scheduling 

paradigm for dynamic time-critical systems [13] 
for the U.S. Army Safeguard Command's 
AN/FPQ-16 Perimeter Acquisition Radar Char-
acterization System [14], located at what is now 
the USAF Space Command's Cavalier Air Force 
Station, in Cavalier, North Dakota. The sys-
tem’s radar performance was not up to expecta-
tions. Simulated performance with the new 
scheduling paradigm was sufficiently improved 



that the paradigm was deemed to possibly vio-
late SALT II, and hence was not deployed. 
From then until now, Jensen and his collabora-
tors have continued to develop, refine, and ap-
ply the paradigm.  At Carnegie Mellon’s Com-
puter Science Department, two of Jensen’s 
Ph.D. students wrote their theses on this topic 
[15,16] – devising new scheduling algorithms, 
proving theorems about them, simulating them, 
and implementing them in our Alpha real-time 
distributed OS kernel [17]. Subsequent en-
hancements have also been made by other re-
searchers (e.g., [18, 19, 20, 21]). 

The two keystone concepts in our paradigm 
are time/utility functions (originally called 
time/value and then benefit, functions) and  util-
ity accrual sequencing (scheduling, dispatching) 
optimality criteria [13, 22]. 

A time/utility function (TUF) expresses the 
utility to the system (derived from AQoS met-
rics) of completing an activity (e.g., service) as 
an application- or situation-specific function of 
when it completes. Deadlines are a simple spe-
cial case, where full utility is achieved if the ac-
tivity completes by its deadline, and zero (or 
some negative) utility is achieved if it completes 
after its deadline. Four example TUF’s are de-
picted in Figure 2. 

 

Figure 2. Four example time/utility functions 
Utility accrual (UA) based sequencing algo-

rithms sequence  activities according to optimal-
ity criteria based on accruing utility – such as 
maximizing the sum of the utilities (plus satisfy-
ing dependencies such as precedence, resource 

constraints, etc.). The algorithms take into ac-
count the known or expected durations of the 
activities, and may be either deterministic or 
non-deterministic (e.g., stochastic). 

Worked Examples  
To illustrate the use of this paradigm, we 

summarize two significant (unclassified) dem-
onstration applications we implemented suc-
cessfully in collaboration with application do-
main experts.  

AWACS Surveillance Tracker 

The first application is an AWACS surveil-
lance tracker [23], implemented jointly by the 
MITRE Corporation and the Open Group. 
AWACS is an airborne radar system with varied 
missions, including air surveillance. Surveil-
lance missions generate aircraft tracks for battle 
management and command and control. It is 
very common for there to be too many radar re-
ports for the computing system to process, 
which causes sectors of the sky to “go blank”. 
Higher performance computing only helps 
somewhat, because the potential report load and 
the need for ever-better tracking algorithms will 
always exceed all the computing capacity. Cur-
rently, operators have knowledge-intensive 
manual work-arounds for certain overload situa-
tions. 

The surveillance mission includes a number 
of activities; for brevity here, we consider only 
the most computationally demanding activity, 
association, which associates radar reports with 
tracks. There is a multiplicity of concurrent as-
sociation threads, one for each current radar re-
port. 

There are two sensors (radar and IFF) sweep-
ing 180º out of phase with a 10-second period, 
which suggests the association TUF has a “criti-
cal time” at the 10-second period length, at least 
two distinct non-zero utilities before the critical 
time, and a third distinct, lower, utility after the 
critical time. 

t = completion time

0 

now  

u
t
i
l
i
t
y



Prior to the critical time, processing a sensor 
report for one of these tracks in under five sec-
onds (half the sweep period) would provide bet-
ter data for the corresponding report from the 
out-of-phase sensor. So the utility decreases 
with time. The TUF had to decrease linearly due 
to an implementation artifact in this experimen-
tal system – the OS (OSF/RI’s MK7 [24]) TUF 
scheduling algorithm allowed only one critical 
time. The slope, and thus U2, were derived em-
pirically (systematizing this process is one of 
our current research topics). 

After the critical time, utility is zero, because 
newer sensor data has probably arrived if the 
processing load in one sensor sweep period is so 
heavy that it couldn’t be completed, probably 
the load will be about same in next period, so 
there will be no capacity to also process data 
from the previous sweep. A tracker that could 
process older as well as current data would be 
significantly more complex and probably delay 
the track update. The resulting TUF shape is 
shown in Figure 3. 

 

Figure 3. Association time/utility function 
shape 

Next, the utility value U1 had to be deter-
mined. To do that, we used well-established 
surveillance tracker AQoS metrics, which are 
based on the tracker domain experts’ knowledge 
about how to manually attempt to resolve con-
tention for resources: 

• Don’t drop tracks, because they are ex-
pensive to re-create 

• User-identified “important” tracks re-
ceive preference 

• User-identified “important” geographic 
regions receive preference 

• Maneuvering tracks need to be updated 
more frequently than non-maneuvering 
tracks  

• Potentially high threat tracks receive 
preference 

• High speed tracks receive preference 
• Tracks with poor state estimates receive 

preference. 
 

Conventionally, tracker domain experts aren’t 
provided with computation technology that 
would give them incentives to use their knowl-
edge to understand and express behavioral op-
tions and trade-offs in the face of dynamic un-
certainties (i.e., gracefully handling overloads) 
that plague current trackers. Our intention was 
to provide technology that would utilize track-
ing domain expertise sufficient to automate the 
adaptive assignment of the right resources to the 
right tasks at the right time. 

We chose three (to limit the complexity of the 
experimental system) AQoS metrics for an 
AWACS surveillance tracking application (a 
decision with which the domain experts con-
curred): 

• Quality – 0 to 7:  a traditional measure 
of the amount of recent sensor data in-
corporated in a track record, and incre-
mented or decremented after each radar 
scan 

• Accuracy – “high” or “low”:  a measure 
of the uncertainty of the estimate of a 
track’s position and velocity and derived 
from Kalman filter processing 

• Importance – “high” or “low”:  tradi-
tionally, operator-identified based on 
geography, threat, and other characteris-
tics. 

action completion time 

critical time (sweep period length) 

U1 

U2 

U3 

? 

 

 

u
t
i
l
i
t
y



The twelve combinations of these three 
AQoS metrics are diagrammed in Figure 4.  

The initial utility U1 of an association for a 
track report is derived from track AQoS metrics 
by gedanken experiments. The utilities range 
from a low of 10 to a high of 6000 – meaning 
that 600 times more utility is gained by per-
forming an association for a low accuracy, high 
importance, poor quality track, than for a high 
accuracy, low importance, high quality track. 

 

Figure 4. The 12 Combinations of track 
AQoS’s and their relative utilities 

 

All the association (and other) threads are 
scheduled based on their utility functions.  For 
the association threads, the tracking application 
selects the established TUF from the scheduler’s 
library of shapes. The tracking application does 
a look-up in the utility U1 table for each asso-
ciation thread before calling the scheduler.  A 
utility accrual based processor scheduling disci-
pline (in the OS, in this system) schedules 
threads according to a heuristic that attempts to 
maximize total accrued (in this case, summed) 
utility. 

This surveillance tracking application was 
implemented on a research OS (the Open Soft-
ware Foundation’s MK7) having a scheduling 

framework that allowed different disciplines to 
be used. Figure 5 shows two critical tracker 
AQoS metrics, the number of dropped tracks 
and track quality, for more and less important 
threads, using three scheduling disciplines: 
FIFO (the discipline used in the currently de-
ployed AWACS tracker); priority (the predomi-
nant discipline in real-time computing systems); 
and one of our utility accrual disciplines.  

In the measured cases shown, under non-
overload conditions, the tracker handled all 
tracks as expected and delivered high AQoS in 
both metrics for all tracks. In an overload sce-
nario, such as when the tracker can only process 
about 33% of the input, the system delivered 
essentially perfect track quality for the more 
important tracks, while delivering a reasonable 
track quality for the less important tracks. (In 
some respects, this overload level can be lik-
ened to a system where the probability of de-
tecting an airborne object is about 33%.) When 
the tracker was further constrained so that it 
could only process about 10% of the input, the 
system finally dropped some tracks – from the 
less important track class. No important tracks 
have been dropped during our demonstrations. 
In addition, the demonstrations have shown that 
the tracker also adapts when new resources are 
added. In that case, which we demonstrate by 
loosening the time constraints on association 
processing, the prototype automatically delivers 
approximately the maximum achievable AQoS. 

Note that these results are not easily obtain-
able with static priority tracking systems. In pri-
ority-based trackers, track priorities might rea-
sonably be set according to track importance, 
where high importance implies high priority. In 
our tracker, scheduling decisions are based on 
both importance and timeliness, and even rela-
tively unimportant tracks can have very high 
application utility in a surveillance mission – an 
outcome that would not be possible with 
straightforward priority-based scheduling. 

  

 

Track Quality 

Low: 1-2 

Med.: 3-4 

High.: 5-7 

Track Importance 
High / Low 

Track Accuracy 
High Low 

Track state 
marginal 

Track state 
OK

Track state 
poor 

700 

53 

910 

40 

20

60005500 

30 

    10 

1000

65

8005



FIFO Fixed Priority Utility Based

Dropped
Tracks

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1
Tr

ac
ks

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1
0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1

Tr
ac

ks

Track
Quality

0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1
0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1
0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1

More important

Less Important
X-axis represents increasingly constrained system

FIFO Fixed Priority Utility Based

Dropped
Tracks

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1
Tr

ac
ks

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1
0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1

Tr
ac

ks

Track
Quality

0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1
0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1
0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1

More important

Less Important

More important

Less Important

More importantMore important

Less ImportantLess Important
X-axis represents increasingly constrained system

 

Figure 5. Comparison of AWACS surveillance tracker AQoS metrics for different scheduling 
disciplines

Battle Management for Coastal Air Defense 

The second application is a notional battle 
management system for coastal defense from 
cruise missiles and bombers [25]. It was imple-
mented collaboratively by the General Dynamics 
Corporation and Jensen’s Archons Project at Car-
negie Mellon University’s Computer Science 
Department. It is included here to further illus-
trate the dynamic adaptivity possible with 
time/utility functions, which would be difficult to 
achieve with priorities or even deadlines. 

This system’s mission is to destroy incoming 
hostile cruise missiles (for brevity here we will 
disregard the hostile bombers), by using guided 
interceptor missiles. There may be more cruise 
missiles and decoys than can be intercepted, due 
to the number of cruise missiles, insufficient in-
terceptors, and insufficient computational re-
sources for battle management. Cruise missiles 
maneuver during flight, but do not try to evade 
the interceptors. Interceptors are guided by air-
borne defenders using airborne (AWACS, etc.), 

spaceborne, and ground based, sensor platform 
data. 

The cruise missile defense (CMD) application 
quality of service (AQoS) metric here is the 
weapon spherical error probable (WSEP).  
Spherical error probable (SEP) is the radius in 
meters of a sphere centered on a point (e.g., the 
cruise missile) within which the true value of an 
estimated point (e.g., the interceptor missile) will 
lie with a probability of 0.5. The WSEP is an SEP 
radius around the cruise missile chosen such that 
if the interceptor gets within that distance, the 
interceptor’s terminal guidance system can take 
over and with ρ=0.5 cause the interceptor to ei-
ther impact the cruise missile or detonate close 
enough to the cruise missile to destroy it. 

Some CMD AQoS optimality objectives are: 

• minimizing WSEP 
• intercepting sooner (further from the 

cruise missile’s target) is better (EMP, 
etc.) 



• intercepting before the cruise missile 
reaches its target is better 

• intercepting away from an adverse geo-
graphical location (e.g., over a populated 
area) is better 

• intercepting before the blast damage to 
the cruise missile’s target from the com-
bined cruise missile and interceptor mis-
sile would exceed the blast damage from 
the cruise missile explosion alone is bet-
ter. 

WSEP is affected by several factors, including:  

• guidance updates to the interceptor are 
repetitive but not necessarily periodic or 
even sporadic, and need to occur more of-
ten as the interceptor gets closer to the 
cruise missile 

• it becomes more important to use the 
most recent information about the posi-
tions and velocities of the missiles as the 
distance between the cruise missile and 
the interceptor decreases 

• some cruise missile targets, and thus 
cruise missiles, are more important than 
others.   

The CMD application consists of a number of 
activities, as depicted in Figure 6.  

 

Figure 6. The coastal air defense battle 
management activities 

Some activities resemble corresponding activi-
ties in the AWACS surveillance tracker. The plot 
correlation and track database maintenance 
threads have critical times corresponding to the 
radar frame arrival rate.  In both cases, it is better  
if the processing is completed before the next 
frame of sensor data arrives. It is acceptable for 
the processing to slip as much as one additional 
time frame under extreme overload situations.  
The plot correlation activity has a much greater 
utility to the system under overload conditions. 
The TUF’s for those two threads are shown in 
Figures 7a and 7b. 

U
t
i
l
i
t
y

Plot Correlation 

Time frame t

U
t
i
l
i
t
y

Track Database
Maintenance

Time frame t

U
t
i
l
i
t
y

Plot Correlation 

Time frame t

U
t
i
l
i
t
y

Plot Correlation 

Time frame t frame t

U
t
i
l
i
t
y

Track Database
Maintenance

Time frame t

U
t
i
l
i
t
y

Track Database
Maintenance

Time frame t frame t

Figures 7 a,b. The plot correlation and track 
database time/utility functions 

But the timeliness requirements for the inter-
ceptor missile control threads are more complex 
because they vary over the course of an intercep-
tion engagement. After an interceptor is 
launched, the guidance control threads must issue 
timely aperiodic course updates to ensure a suc-
cessful intercept.  The required timeliness of 
these updates, and the importance of completing 
the course corrections at the desired time, change 
as the distance decreases between the interceptor 
and the cruise missile, and between the cruise 
missile and the coastline. Each interceptor’s con-
trol thread changes three parameters of its shape 
during the engagement, as shown in Figure 8. 
Figure 9 shows three representative snapshots of 
this adaptivity as it progresses from right (launch) 
to left (intercept). 

Identify New 

Tracking 

Mission Planning 

Weapon Systems Control 

Gather & Fuse Sensor 

Correlate Radar Plots with  

Track Database

Update Track Data-

Maintain Track Data-
base 

Assign Weap-

Assess threat Poten-
tial 

Manage Weapon Sys-
tems 

Launch Weap- Aim & Launch 

Calculate & Trans-
mit 

Activate SAM 

Defense Sys



 

 

Figure 8. The interceptor time/utility function 
has three shape parameters that adapt during the 

engagement 

 
Figure 9. Three representative snapshots of the 
interceptor time/utility function adapting during 

the engagement 
 

This effect is extremely difficult to achieve by 
manipulating priorities or deadlines. 

Conclusion 
Our current research objective on this topic is 

to advance this paradigm’s concepts and tech-
niques, and to explore its applications in the 
BM/C2 domain. We are devising new resource 
management algorithms, proving timeliness and 
other properties, doing simulations of them, 
building and measuring experimental implemen-
tations of them, devising a methodology for users 
to apply the paradigm, and constructing a proof 
of concept software tool to facilitate the method-
ology. 

References 

[1] R.D. Peters, 
http://mathforum.org/library/view/16558.html 

[2] H. Kopetz, Real-Time Systems, Design Prin-
ciples for Distributed Embedded Applications, 
Chapter 8, “The Time-Triggered Protocols,” 
Kluwer Academic Publishers, 1997. 

[3] 
http://www.globalsecurity.org/intell/systems/mp-
rtip.htm

[4] http://esc.hanscom.af.mil/esc-mc2a/

[5] 
http://www.globalaircraft.org/planes/?type=uav

[6] http://peoships.crane.navy.mil/ddx/

[7] http://www.darpa.mil/fcs/

[8] 
http://www.globalsecurity.org/space/systems/bm
c3i.htm

[9] 
http://www.globalsecurity.org/military/systems/ai
rcraft/e-3.htm

[10] 
http://www.dodccrp.org/ncwPages/ncwPage.html

[11] 
http://www.globalsecurity.org/military/systems/
munitions/amste.htm

[12] M. Pinedo, Scheduling: Theory, Algorithms, 
and Systems, 2nd edition, Prentice Hall, 2002, 
ISBN 0-130-28138-7. 
[13] M. G. Gouda, Y-W. Han, E. D. Jensen, W. 
D. Johnson, and R.Y. Kain, Distributed Data 
Processing Technology, Vol. IV, Applications of 
DDP Technology to BMD: Architectures and Al-
gorithms, Honeywell Systems and Research Cen-
ter, Minneapolis, MN. September 1977. 

[14] http://srmsc.org/

[15] C. D. Locke, Best-Effort Decision Making 
for Real-Time Scheduling,, Ph.D. Thesis, 
CMUCS-86-134, Department of Computer Sci-
ence, Carnegie Mellon University, 1986. 

Time  

Intercept 

midcourse - 
launch 

u
t
i
l
i
t
y

Adaptation 
direction 

Time   

- 

u
t
i
l
i
t
y

3 2 

1 
critical time 

http://www.globalsecurity.org/intell/systems/mp-rtip.htm
http://www.globalsecurity.org/intell/systems/mp-rtip.htm
http://esc.hanscom.af.mil/esc-mc2a/
http://www.globalaircraft.org/planes/?type=uav
http://peoships.crane.navy.mil/ddx/
http://www.darpa.mil/fcs/
http://www.globalsecurity.org/space/systems/bmc3i.htm
http://www.globalsecurity.org/space/systems/bmc3i.htm
http://www.globalsecurity.org/military/systems/aircraft/e-3.htm
http://www.globalsecurity.org/military/systems/aircraft/e-3.htm
http://www.dodccrp.org/ncwPages/ncwPage.html
http://www.globalsecurity.org/military/systems/munitions/amste.htm
http://www.globalsecurity.org/military/systems/munitions/amste.htm
http://srmsc.org/


[16] R. K. Clark, Scheduling Dependent Real-
Time Activites, Ph.D. Thesis, CMUCS-90-155, 
School of Computer Science, Carnegie Mellon 
University, 1990. 

[17] R. K. Clark, E. D. Jensen and F. D. Rey-
nolds, “An Architectural Overview of the Alpha 
Real-Time Distributed Kernel”, USENIX Work-
shop on Microkernels and other Kernel Architec-
tures, pp 200-208, 1993. 
[18] P. Li, B. Ravindran, H. Wu, and E. D. Jen-
sen, A utility accrual scheduling algorithm for 
real-time activities with mutual exclusion re-
source constraints, IEEE Transactions on Com-
puters. Submitted August 2003.  
 
[19] D. Mosse, M. E. Pollack, and Y. Ronen, 
“Value-density algorithm to handle transient 
overloads in scheduling," in Proc. Euromicro 
Conference on Real-Time Systems, June 1999, 
pp. 278-286. 
 
[20] W. T. Strayer, “Function-driven scheduling: 
A general framework for expressing and analysis 
of scheduling," Ph.D. dissertation, University of 
Virginia, May 1992, department of Computer 
Science. 
 
[21] S. A. Aldarmi and A. Burns, “Dynamic 
value-density for scheduling real-time systems," 

in Proc. of Euromicro Conference on Real-Time 
Systems, June 1999, pp. 270-277. 

[22] E. D. Jensen, C. D. Locke, and H. Tokuda, 
“A Time-Driven Scheduling Model for Real-
Time Systems,” Proc. Real-Time Systems Con-
ference, IEEE, December 1985. 
[23] R. Clark, E. D. Jensen, A. Kanevsky, J. 
Maurer, P. Wallace, T. Wheeler, Y. Zhang, D. 
Wells, T. Lawrence, and P. Hurley, “An adaptive, 
distributed airborne tracking system," in Pro-
ceedings of IEEE International Workshop on 
Parallel and Distributed Real-Time Systems, ser. 
Lecture Notes in Computer Science, vol. 1586. 
Springer-Verlag, April 1999, pp. 353-362. 

[24] D. Wells, “A Trusted, Scalable, Real-Time 
Operating System,” Dual-Use Technologies and 
Applications Conference Proceedings, pp II 262-
270, Utica, NY, 1994. 
 
[25] D. P. Maynard, S. E. Shipman, and R. K. 
Clark. et al., “An example real-time command, 
control, and battle management application for 
alpha,” Technical Report Archons Project TR-
88121, CMU Computer Science Department, De-
cember 1988. 

 

 

http://reports-archive.adm.cs.cmu.edu/anon/1990/CMU-CS-90-155.pdf

	Abstract
	Keywords
	Introduction
	Dynamic Time-Critical Control Systems
	Time/Utility Functions and Utility Accrual
	Worked Examples
	Conclusion

