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Abstract 
 

The U.S. Army�s Objective (Future) Force is being developed as a faster, lighter, more 
rapidly deployable alternative to the current force structure.  The development of a strategy for 
the allocation of the Unit of Action�s organic sensing assets is necessary to achieve the 
maximum situational awareness and information dominance required for successful combat 
operations on the future battlefield.  This thesis presents a methodology for finding an 
appropriate mix and allocation strategy for organic Unit of Action sensors in a given scenario.   

Three aggregate levels are identified: sensors, platforms, and packages and performance 
measures are developed at each aggregate level.  Two optimization models were developed, (1) a 
Sensor Mix Model that, given a fixed mix or inventory, allocates assets to target areas on the 
battlefield, and (2) a Sensor Mix Model that suggests an organic mix of sensors for consideration 
in developing the Objective Force structure.  These models have the potential use as an 
operational decision support tool for the unit commander.   

The notional data set used for model development included ten each platform types, 
target clusters, target categories, and four enemy orders of battle, and four outcomes, however 
these inputs are easily modified based on requirements of the user or analyst. 



OVERVIEW. 
 

The United States Army is in the process of transforming itself into a faster, lighter, more 
rapidly deployable force capable of facing any threat in any environment.  �The Objective 
(Future) Force is our future full spectrum force: organized, manned, equipped and trained to be 
more strategically responsive, deployable, agile, versatile, lethal, survivable and sustainable 
across the entire spectrum of military operations from Major Theater Wars through counter 
terrorism to Homeland Security� (U.S. Army White Paper, 2002). 

Organic sensing assets at the Unit of Action (UA) level play a critical role in developing 
the superior situational understanding required by UA commanders to shape the battlefield and 
maneuver to positions of advantage. �The key to the success of UA operations is the ability to 
build and maintain a credible knowledge base in order to know more about what is going on and 
dominate the battlespace� (UA O&O 2002). Currently there is little information detailing, or 
published literature outlining, effective employment strategies of UA organic sensing assets.   

The United States Army is in the process of developing superior sensing technology but, 
without a methodology or procedure to assist in determining an effective employment strategy of 
sensor assets, units will not realize their full sensing capability nor achieve the highest level of 
situational awareness and understanding.   

 
PURPOSE. 

 
The objective of this paper is to provide a methodology that suggests different allocations 

and employment strategies for unmanned sensor assets organic to the Unit of Action.  Objective 
(Future) Force units will be distinguished from Legacy Force units by their ability to maintain 
what the Army terms the �Quality of Firsts.�  Objective (Future) Force units at all levels, 
engaged in any type of operation, will �See First, Understand First, Act First, and Finish 
Decisively� (White Paper, 2002).  

This paper focuses on �See First,� where Objective (Future) Force units detect, identify 
and track enemy units utilizing intelligence made available from higher echelons and assets 
organic to the unit.  These assets include organic sensors, Special Operations Forces, joint air and 
ground reconnaissance operations, etc.  

The following two questions are explored in this research: 
(1) Given an initial inventory of C4ISR assets, how should they be employed? 
(2) What C4ISR assets should be organic to the UA? 

Two models were developed to assist with providing answers to the above questions.  
The Sensor Mix Model (SMM) extends the Sensor Allocation Model (SAM) by treating the 
initial inventory of assets as the key decision variable, and provides a tool to analyze the mix and 
allocation of organic sensors by maximizing expected target detections within the UA�s Area of 
Operations.  The SMM does not determine actual detected targets on the battlefield. An expected 
number of target detections is calculated based on the allocation of sensors suggested by the 
model prior to the actual employment of assets. This model also does not suggest specific search 
methods or patterns. Rather, it uses results from search theory to estimate the performance of 
various allocations of sensors. 

 
 

 



BACKGROUND 
 
Objective (Future) Force Structure 
 

The Divisional Unit of Employment has operational command and control of the UA and 
continues the intelligence gathering process begun at higher echelons and in coordination with 
joint assets.  The Divisional UE is responsible for creating the Common Relevant Operational 
Picture (CROP) and providing an accurate assessment of conditions in the theater.  The Unit of 
Action, however, must be prepared to fight immediately upon entering the theater of operations 
and uses the CROP for initial planning during the Entry Operations and Actions Before Forces 
are Joined stages. These stages are briefly explained in a following paragraph. 
 The Unit of Action is responsible for integrating organic and supporting Intelligence, 
Surveillance, and Reconnaissance (ISR) assets, fires, and Command and Control (C2) 
immediately upon entrance into the theater of operations. Once the UA is committed, the 
Divisional UE immediately begins refocusing its intelligence assets and shaping the battlefield 
for the follow-on fight (UA O&O, 2002).   

An extremely vulnerable phase of any military operation is the transitional period when a 
unit assumes command and control from another unit. The Sensor Allocation Model provides a 
method for the UA commander to utilize the UE�s Intelligence Preparation of the Battlefield 
(IPB) and the CROP while enroute to the theater of operations. The ability to immediately 
deploy sensing assets and begin shaping operations within the UA Area of Interest allows 
continued development of the tactical infosphere and is critical to reducing operational risk to 
soldiers during the UA�s acceptance of Battle Command from the UE. 
 
Stages of Contact 
 

The Objective (Future) Force concept describes five main stages of contact with enemy 
forces: Entry Operations, Actions Before Forces are Joined, Actions during Combat, Tactical 
Assault and Transitions. Each stage requires a specific level of situational understanding and 
intelligence integration sufficient for accomplishment of the mission and to achieve success on 
the battlefield  

The goal is to maximize the expected number of targets detected in the designated search 
areas. The Sensor Allocation Model is a tool designed to upgrade the intelligence integration 
effort from �sufficient for accomplishment of the mission� to �superior situational dominance,� 
based on the optimization of sensor-to-target pairings with available UA organic assets, thereby 
reducing casualties and decreases in operational momentum. 
 
Entry Operations 
 

Entry Operations are characterized by speed, precision, and knowledge. During 
operational planning, the UA commander must develop a plan to immediately and effectively 
begin gathering intelligence within the UA�s Area of Operations and begin providing updates to 
the CROP.  �The access that the UA has to joint intelligence capabilities enables the UA�s ability 
to prepare the battlespace even while still enroute to the point of entry� (UA O&O, 2002). 
 



Actions Before Forces are Joined 
 

Actions Before Forces are Joined stage closely follows the Entry Operations stage.  This 
stage completes the transition of Battle Command from the UE commander to the UA  
commander.  The UA commander must quickly deploy unit organic sensing assets in a near 
optimal configuration to identify targets, target clusters and locations, maneuver routes, and gain 
the situational awareness and situational understanding needed in order to conduct tactical 
operations during the follow-on stages of contact.  Figure 2 below depicts the UA�s reliance on 
non-organic and organic ISR capabilities at different stages in an operation. 

 
 
The focus of the model is at the decisive stage when the UA begins to reduce reliance on non-
organic ISR assets and begin deployment of organic ISR assets. The Sensor Allocation Model is 
designed to assist unit commanders with the allocation of organic assets to target areas on the 
battlefield in an effective manner. 
 

METHODOLOGY 
 
Overview 
 

This research developed a mathematical programming model to analyze the mix and 
allocation of organic UA sensor assets using an optimization-based approach.  The model 
requires the following inputs: an inventory of sensors and platforms, a list of asset configurations 
known as packages, and an intelligence-based clustering of targets.  The model then creates 
operationally feasible assignments of packages to target clusters, maximizing the weighted 
number of targets detected.  

The following Operations Research techniques were used, stochastic optimization and 
mixed integer linear programming, to accomplish this goal. Using this approach, the allocation or 
assignment of sensors suggested by the model is robust to uncertainties in sensor performance 
and available threat information (i.e. location, type and quantity of targets). Other factors taken 
into consideration include sensor characteristics such as cost, latency, logistical footprint, and 
survivability. 
 
Assumptions 
 



Several basic assumptions are required for the development of the optimization models.  
A major assumption is that a certain level of intelligence is available to the UA from other than 
organic assets (i.e. higher echelons, joint, national, etc); however, this intelligence is assumed 
static.  Additionally for simplicity, it is assumed all sensor platforms are launched from a single 
location and centrally controlled. However, the model is easily modified to account for multiple 
launch locations.  Also within the UA�s Area of Interest, potential search areas are identified and 
targets within these areas are assumed independent and randomly and uniformly distributed.  
Target speed is assumed negligible in relation to searcher speed in the case of moving platforms.  
A final basic assumption deals with consolidated packages and assumes a positive or enhanced 
capability when platforms are teamed to form the consolidated packages.  
 
Package Consolidation 
 

The following are the defined model levels of sensor aggregation: sensors, platforms, and 
packages.  Sensors are identified as specific technologies or capabilities, such as infrared (IR), 
acoustic, and radar, and their performance can be measured by a probability of detection at a 
given range against a specific target type. Platforms have the capability to carry one or more 
sensors based on size, weight, and payload capacity. UA platforms are further identified as 
ground or aerial and moving or stationary and consist of such entities as the Unmanned Aerial 
Vehicle (UAV), Armed Robotic Vehicle (ARV), and Unattended Ground Sensor (UGS). 

Finally, packages are defined as combinations of platforms based on the ability of the 
individual platform to enhance the collective sensing capability or performance of the package. 
A package consisting of two or more platforms is assumed to perform at least as well as two or 
more independent platforms. This (potentially) increased performance is the result of a 
platform�s ability to cue another platform assigned to a package configuration and provide a 
complementary target signature (i.e. sensors working together in a dependent relationship). 
Figure 5 summarizes the sensor aggregation levels through an example using four sensor types, 
three platforms, and two packages. 
 

 
 

The Unit of Action has a designated inventory of platforms organic to the unit.  Each 
platform has one or more mounted sensors, and an average performance level based on the 
underlying platform performance (i.e. velocity, operational time) and sensor performance (i.e. 
probability of detection against a specific target at a specific range). 



Platforms are combined to form pre-configured packages prior to assignment or 
allocation.  Packages consist of a single platform or multiple platforms. Single-platform 
packages and pre-configured packages containing multiple platforms are referred to as basic 
packages. Consolidated packages are combinations of basic packages, and are generated 
automatically. 

In a single platform package, the performance of the package is the same as the 
performance of the platform. When multiple platforms are teamed together and designated as a 
pre-configured package, a combined platform performance is calculated to determine an overall 
package performance level. Table 1 illustrates the set of example basic package configurations. 
Our model explicitly forms consolidated packages based on combinations of the user provided 
basic packages.  

 
All packages, basic or consolidated, are considered single entities for employment or 

allocation purposes. For each package, overall performance is pre-processed for use by the 
model using, in this case an Excel worksheet. The Sensor Mix Model uses the performance of 
each package to determine an effective assignment of packages to target clusters. 

 
Target Clustering 
 

The basic assumption that a certain level of information is available to the UA 
commander through the UE IPB and the CROP, represents the commander�s initial intelligence 
estimate of the situation. Uncertainty still exists in relation to the �true� or actual locations, type, 
and estimated number of targets on the battlefield. 

Using the intelligence estimate provided to the UA, targets are clustered, or grouped 
together utilizing the simple Euclidean distance formula. Other more sophisticated techniques 
can be substituted.  Of special note is, the term �target cluster� does not indicate targets are 
tactically related. Figure 6 provides an example of target clustering on the battlefield. 



 
 

The number of target clusters in the model was limited to ten for expository purposes. 
The number of clusters can vary based on user specification, outcome requirements, 
experimental design, etc. The model utilizes total cluster area, thereby allowing target clusters to 
vary in size or dimension as defined by the user.  Target clusters are then identified by dimension 
and approximate center grid location within the model.  The intelligence represented by Figure 6, 
is used to complete Table 2, which enumerates the target cluster dimension and location data, 
and represents a data input into our model. 

 



METRIC DEVELOPMENT 
 

A set of metrics is needed to represent individual sensor and platform capabilities and 
performance levels. For ease in calculation and understanding, we partitioned metric 
development into the same three levels that define the UA aggregate sensor levels: sensor, 
platform, and package. This framework allows the user to provide inputs and receive outputs at 
each level and assists in determining overall effectiveness of the desired system or platform 
allocation strategy. 

Aerial and ground platforms have the ability to carry or maintain more than one type of 
sensor. Current information on UA sensor capabilities and platform configurations is under 
continual update. Table 3 summarizes the current sensor/platform pairings as identified in the 
Future Combat Systems Book, Version 1.6.  Entries in bold face are the basis for combinations 
used in this research and the Sensor Mix Model. 

 

 
Random Search Theory 
 

The actions and capabilities of the different sensor aggregation levels (sensor, platform, 
package) are described and modeled by techniques from random search theory.  The use of these 
techniques requires the following assumptions: (1) uniform and random target distribution 
throughout the search area, (2) the platform track is random but uniformly distributed, and (3) no 
search effort falls outside the search area (Stone, 1975). 

The first assumption is reasonable for the level of detail associated with this model. For 
example, an enemy armor company defensive posture would deliberately emplace individual 
tanks in a tactical manner and would not disperse them uniformly over a hundred kilometer 
square area. However, it is not clear whether non-uniform grouping would increase or decrease 
the expected number of targets detected. Target clusters and EOBs are aggregate inputs, and this 
assumption is kept in perspective with the understanding that target location, type, and quantity 
are not known with certainty. 

The second assumption is reasonable if targets are expected to move unpredictably, and 
the third assumption is reasonable when total search area is significantly larger than the sensor�s 
effective detection range.  The decision to use random search theory was based on mathematical 
simplicity, type and amount of data available, and its ability to provide a lower bound on the 
effectiveness of a systematic search of a particular area (Stone, 1975).  Utilizing random search 



theory attempts to prevent significant overestimation of the detection capability of UA sensing 
assets. 
 
Sensor Level Metric 
 

The performance of a sensor is summarized by a function called the lateral range curve 
(Wagner, 1999). Each sensor detects targets with a certain probability at a certain range resulting 
in a lateral range curve for each specific sensor/target pair. Figure 7 illustrates a typical lateral 
range curve.  However sensors are not guaranteed to move directly toward a target but pass the 
target at some lateral range within the sensor�s detection zone.  Figure 8 illustrates a sensor 
detection zone. 
 
 

 
 

Closely related to the lateral range curve is sweep width (W), a scalar measure of the 
search effectiveness of a sensor (Washburn, 1996). By definition, sweep width is equal to the 
area under the lateral range curve and represents the effective width of the sensor detection zone: 
 

 
Each sensor�s performance can be represented as a probability of detection at a certain 

range against a specific target type. Using equation (1), a sweep width (W) is calculated for each 
sensor type against each possible target type. These values are used to generate cumulative 
detection probabilities for other levels of aggregation (see Platform Level Metric section below). 

A degree of uncertainty exists in relation to actual sensor performance. Performance level 
is affected by many different factors such as terrain, weather, battlefield clutter, enemy deception 
tactics, etc. In order to account for potential variation in sensor performance, four possible 
outcomes were modeled. Each outcome represented a different level of sensor performance 
based on several of the factors previously mentioned.  

Each outcome also had the possibility of each different EOB occurring. The ability to 
model this uncertainty assisted in providing a more robust allocation of assets to target clusters. 
Again, the number of outcomes developed, based on identified uncertainty factors, is not limited 
to four but determined by the user. 



 
Platform Level Metric 
 

The platform metric is developed in terms of Cumulative Detection Probability (CDP), 
where CDP is the probability that a platform searching for a target over a specific time interval 
detects that target at least once (Wagner, 1999). Each platform CDP, or performance level, is 
determined by transit speed, sensing velocity, adjusted sweep width (defined in the next 
paragraph), and operational time. 
 
Adjusted Sweep Width 
 

When two or more sensors are mounted on a single platform, an adjusted sweep width 
must be calculated to account for the cumulative sensor capability on the platform. The 
assumption is made that a platform operates at the optimal altitude for all mounted sensors with 
the understanding that an appropriate combination of sensors has already been considered for a 
single platform.  

A second assumption is made that sensors are considered cookie-cutter, which means a 
target is detected the moment it enters the zone of detection and is not detected beyond that range 
(Washburn, 1996).  This does not realistically model sensor performance where detection is 
certain within a certain radius and impossible outside of that radius. However, the cookie-cutter 
approximation is a convenient and reasonable device to allow fast, accurate calculation of time-
dependent CDP values for various sensor-target pairings.   

Multiple sensors mounted on the same platform perform at least at the level of the best 
sensor and no better than the cumulative sum of all sensors. Summing the individual sweep 
widths over-estimates the performance of the entire platform and assumes complete 
independence between multiple sensors on the platform.  This is an upper bound.  However, 
considering only the largest sweep width of all sensors underestimates the platform capability, 
assumes complete dependence, and provides a lower bound on the platform performance.  This 
also indicates no added benefit of more than one sensor on a single platform. 

Therefore, an adjusted sweep width is calculated by selecting the maximum sweep 
width (lower bound on sensor performance for the platform) and applying a dependence factor to 
the remaining cumulative sum of the sweep widths.  The resulting equation is: 
 

 
where ws represents individual sensor sweep widths, and α is a positive dependence factor 
indicating added benefit of multiple sensors mounted on a single platform. 

The Sensor Mix Model methodology assumes a positive benefit of multiple sensors 
working in concert. This benefit is due, in part, to the ability of sensors to cue other sensors to 
specific target locations on the battlefield, and multiple sensors detecting the same target 
provides a greater level of fidelity in that single detection. 
 
Time on Station 
 

Platform speed and operational time are directly related to platform size, fuel capacity, 
payload carrying capacity, etc. Transit speed is the speed at which the platform can travel to, 



and return from the search area. During transit, the platform is assumed to have its sensors in a 
passive mode, where no information is actively transmitted to the CROP. Platform sensing 
velocity is generally less than the platform transit speed and is the velocity at which a sensor is 
able to provide accurate detection capability at the level of resolution or fidelity required for the 
CROP.  Operational time is the amount of time a platform can remain operational, including  
transit time and search time. 

Using the Euclidean distance formula to calculate the distance from the platform launch 
site to the search area, and taking into account the platform transit speed, and total operational 
time, an associated time on station (time available over the search area) is determined by: 
 

 
where Top is total operational time, D is the distance to the search area, and Vt is transit speed. 
 
Coverage Factor 
 

Another important factor in the platform metric calculation is total search area covered. 
Fixing the total area of a target cluster, platform sensing velocity, time on station, and the 
adjusted sweep width, a coverage factor is determined. This factor is the ratio of cluster area 
swept by the given platform (Wagner, 1999). 

The coverage factor for a particular platform is calculated as follows, 

 
where vs is the platform sensing velocity, Wadj  is the adjusted sweep width of the platform, t is 
the time on station, and A is total area of the cluster. 
 
Platform CDP 
 
It has been shown (Wagner, 1999) that the probability of detection of a target by a platform can 
be expressed as 

 
Given, that sensing velocity, adjusted sweep width, and the time on station are fixed for a 

particular platform, expression (5) yields a constant probability of detection.  We can model the 
coverage of a cluster by multiple platforms of the same type by assuming that each individual 
platform �covers� an equal proportion of the cluster.  It follows, then, that 

 
yields the probability of detection for p platforms searching within the target cluster. This 
expression is known as the Cumulative Probability of Detection (CDP).  Figure 12 shows a 
graphical example of a CDP. 
 
 



Package Level Metric 
 

Basic packages are single platforms or combinations of platforms teamed together for 
various reasons. Teaming platforms has the potential to reduce the number of intervals where 
targets may be blocked from view and/or multiple signatures of the same target in the search area 
increase the probability and fidelity of a target detection (Klein, 1993). Consolidated packages 
are combinations of basic packages. Each package then has an associated overall CDP that is a 
combination of the individual platform CDPs. 

Similar to multiple sensors on a single platform, a package has an overall CDP at least as 
good as the best individual platform. However, teamed platforms configured into basic and 
consolidated packages are assumed to have an improved performance level over independently 
employed platforms. 

Summing the individual platform CDPs suggests complete independence and no overlap 
of search effort, which does not realistically represent multiple platforms over a search area. The 
high potential in overlap of search effort between platforms implies some type of dependence. 
However, substituting only the best individual platform performance as the overall package CDP 
implies the opposite, or a complete dependence between platforms and no added benefit is 
gained from teaming platforms. 

A positive benefit is assumed with package configurations to account for cueing between 
platforms, enhanced performance, thoroughness of search area coverage, and the improved 
fidelity of information being processed and transmitted to the CROP. 
A CDP is calculated for each individual platform (for each target type) using the platform�s 
sensing velocity, adjusted sweep width, time on station, and area of the target cluster. Figure 9 
shows an example of individual performance levels (CDP) for two platforms, if each 
independently searched target cluster 1. 
 

 
 

The goal at the package level is to maximize the minimum CDP of all platforms in the 
same package and this occurs when all platforms have the same CDP. The proportion of the 
search area that each platform covers represents an effective distribution of the cluster area for 
the operating platforms. 

Using platform 1 and platform 2 from Figure 9, and designating a package configuration, 
each platform searches a portion of the total area of the target cluster.  Figure 10 shows a 



possible scenario where each platform is modeled as being responsible for fifty percent of the 
total area. 

 

 
 

Since we have assumed uniform target distribution, the overall �effectiveness� of this 
package, then, is the simple average of the two CDPs (0.3421), which represents the expected 
proportion of all targets detected within the cluster. This is not the most efficient distribution of 
detection effort of the two platforms, however; the most efficient distribution of detection effort 
occurs when the minimum CDP is maximized (i.e., the two are equal). 

To maximize the minimum CDP, each platform�s search rate is calculated using sensing 
velocity, adjusted sweep width, and time on station. Equation 7 shows the calculation for a 
platform search rate: 

 
Using the search rate for a single platform (equation 7) and the proportion of the target 

cluster that the platform effectively covers (equation 8), 
 

 
the package CDP is determined. 

By determining the proportion of the target cluster effectively covered, the effect is to 
move the solid center line in Figure 11 (equivalent to the solid line in Fig. 10) to the right or left 
until all platforms in the package searching the target cluster have the same CDP. 



 
Note the overall effectiveness of the package as modeled in Figure 11 exceeds that shown 

in Figure 10 (0.3460 vs. 0.3421). 
The package CDP is determined using the velocity, sweep width, and time on station of 

any platform in the package because each platform has the same CDP once the effective 
proportion of search area is determined (See Figure 11). The package CDP is calculated using a 
platform search rate (from equation 6) as follows, 

 

 
where A’ is the total area of the target cluster multiplied by the proportion of the total area 
effectively covered by the platform (See equation 7) and ßpkg is a positive dependence factor 
associated with a specific configuration of individual platforms designated as a package. 

Figure 12 illustrates a CDP curve generated for multiple packages of the same type. As 
additional packages (of the same type) are allocated to a search area or target cluster the CDP 
increases asymptotically toward one ( probability of detection ≤ 1). 

 
 
 
 
 



Enemy Order of Battle 
 

Although we assume prior intelligence regarding the Area of Operations, the previously 
mentioned uncertainty relating to location, type and quantity of targets on the battlefield is 
represented in the model as a list of potential Enemy Orders of Battle (EOBs). Again, using 
information from Figure 6 (number of target clusters designated by the user or commander), 
several EOBs are generated using intelligence available from higher echelons and entered as 
input to the model. Table 4 shows one possible EOB.  

Four potential enemy EOBs were generated for this research to model the uncertainty 
associated with target location, type and number of entities for each identified target cluster. As 
with the number of target clusters in the battlespace, the user can specify any number of enemy 
EOBs to generate based on the experimental design or analysis being considered.  Each EOB has 
a probability of occurrence that the model considers when determining a robust allocation of 
sensors to target areas. 

 
 
System Characteristics  
 

The final piece of the SMM and methodology consists of four identified characteristics 
associated with each individual sensor, platform, and package. The four characteristics used were 
cost, logistical footprint, perishability (opposite of survivability), and latency. Each characteristic 
is calculated at each level of aggregation, and used at the package level to assess the overall 
characteristics of the suite of packages employed.   

The cost characteristic accounts for simply actual system (i.e. sensor and platform) 
replacement cost in dollars.  Logistical requirement include transportation requirements from 
actual equipment (hardware) deployment into theater to platform transport throughout the theater 
of operations.  Perishability is associated with the likelihood that a sensor or platform will be 



damaged or destroyed through enemy action or equipment failure before mission 
accomplishment.  And, finally latency defines a sensor�s response time.   

System characteristics in the four categories were simply ranked from least to most.  
Extensive research and effort was not concentrated to characteristic development because many 
of the sensors, platforms, and systems are still in production and testing phases.  The model 
currently allows the analyst or user to develop up to four characteristics and provide inputs 
representing the values or weights. 

The SMM allows the analyst or decision maker to provide a relative weighting to each 
characteristic category according to importance in the scenario or outcome. The objective 
function of the SMM incorporates these characteristics by minimizing their effects while 
maximizing expected number of targets detected in the search area. 

 
 

MIXED INTEGER PROGRAMMING MODEL 
 

The Sensor Mix Model is further characterized as a mixed-integer program (MIP).  In a 
MIP, both continuous and integer variables are required to describe, quantify and qualify the 
inputs and states of the model. 

Accurately modeling the sensor/platform-to-target allocation requires the use of non-
linear functions to determine the expected probability of target detection.  Difficulties arise in 
attempting to model or incorporate these non-linear measures of effectiveness into a linear 
optimization model. 

In order to overcome the non-linearities, the solution was to enumerate a reasonable 
number of consolidated packages based on identified basic package configurations (see Table 1). 
Performance measures for these consolidated packages were pre-computed and provided as 
inputs for the model. For simplicity of example, this model enumerated only consolidated 
packages with up to two copies of up to two basic packages, resulting in 175 available 
consolidated packages for consideration in the model. At this point the MIP solves the 
optimization problem using integer decision variables that represent the assignment of packages 
to target clusters.  

 
 

CURRENT DATA 
 

Data currently available via Army Materiel Systems Analysis Activity (AMSAA) sources 
provides a lateral range curve and probability of detection for a particular sensor against a 
specific target type at a specified range. Table 5 provides a notional example of AMSAA data. 

 



 
Data similar to Table 5 provides the performance measure for individual sensors.  

However, performance measures for platforms carrying multiple sensors and consolidated 
packages (combinations of platforms) are currently unavailable. Using notional sensor 
performance data and platform performance (sensing velocity, time on station, etc), package 
performance levels were determined using random search theory, as described earlier. 
 
 
 

MODEL DESCRIPTION 
 

The discussion of the Sensor Mix Model is divided into two main parts, the Sensor 
Allocation Model (how �best� to allocate or assign a given set of sensors to target clusters), 
followed by the Sensor Mix Model itself (what is the �best� mix of sensors for a given tactical 
scenario). Both models use many of the same parameters, inputs, and variables and are defined 
and described in the following sections. An additional set of constraints is defined for use in the 
Sensor Mix Model and a second integer decision variable is introduced. 

 
Sensor Allocation Model 

 
This section describes an optimization model that, given a fixed inventory of sensor 

platforms available, suggests an appropriate assignment of sensor packages to target clusters on 
the battlefield. The key decisions in the Sensor Allocation Model are which consolidated 
packages, and how many of each, should be assigned to each target cluster. 

The mixed-integer program makes the best overall allocation of packages based on the 
mix available, taking into account the characteristic weightings of each package, target type 
weights, and sensor/platform performance. The decision variables for the Sensor Allocation 
Model are integer and indicate how many sensor packages of a certain type to allocate to a target 
cluster. 
 

Indices 
 

The indices used to define this model are: 



p platform type  {'UAV', 'ARV', 'UGS',...} 
k package configuration {'K1', 'K2', 'K3',...} 
t target type {'INF', 'Main Battle Tank', ...} 
c target cluster {'C1', 'C2', 'C3',...} 
ch sensor characteristic {'latency', 'cost', 'logistics', ...} 
w outcome_scenario {'W1', 'W2', 'W3', ...} 
eob enemy order of battle {'EOB1', 'EOB2', 'EOB3', ...} 
n number of packages of type k  to cluster c {' N1','N2', ..., 'N10'} 

 
Individual targets of type t are identified as being in one of ten target categories for the example 
in this thesis. The number of target categories can vary based on the user and desired results. 

 
Parameters 

 
The parameters used to define the data for this model are: 
 

Asset Data 
 
plat_pkg p, k number of platforms of type required for one package of type 
p_avail p number of platform of type p available (inventory) 
pkg_char k,ch  value of package k contribution to each characteristic ch 
cdp c,t,k,w Cumulative Detection Probability for package k against target type t in cluster c in 
outcome w 
 
Table 6 shows the inventory level of organic UA platforms available for mission requirements.  
 

 
Target Data 
 
num_tgt t,c,eob  number of targets of type t in cluster c for a specific eob 
 
Parameter Weights 
 
wt_tgt t   value of detecting target type t 
wt_char ch  platform characteristic weights 
pr_eob eob  probability of a specific eob occurring 
pr_out w  probability of a specific w occurring 
alpha_det  overall weight for expected targets detected portion of the objective 
function 



alpha_char  overall weight for characteristic portion of the objective function 
 
Derived Data 
 
cdpe c,t,k,w,n  Cumulative Detection Probability Enumerated for n packages of type k 
against target type t in cluster c in outcome w 
 
 The model inputs are CDPs (indexed by target cluster, target type, package, and outcome) 
for one package, and the MIP precomputes the CDPs for assignment of up to ten packages of a 
single type assigned to a target cluster against a specific target type and indexes them by n. 
 

DECISION VARIABLES 
 
 Unrestricted continuous variables in the model: 
 
 CH_OBJ ch,w  value of characteristic weights over all packages assigned to all  

clusters for an outcome w 
 EXP_TGT t,c,w  expected number of targets detected by target type t in cluster c for  

outcome w 
 OBJ   objective function value 
 
 Integer variables in the model: 
 
 KTOC c,k,w  Integer Variable: number of packages of type k assigned to cluster  

c in outcome w 
 
 Binary variables in the model: 
 
     1  if n packages of type are assigned to cluster c in  

IND_VAR c,k,n,w  =    outcome w 
0 otherwise 

 
 

The key decision variables in the Sensor Allocation Model are integer and allow for the 
selection of which consolidated packages, and how many are assigned to each target cluster. 

 
CONSTRAINTS 

  
The model requires two main constraints.  The first constraint set ensures that only one 

package type (regardless of configuration) is assigned to a target cluster. 
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The second constraint ensures that only available platforms are used: 
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The next two constraints calculate terms in the objective function. 
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The final constraint defines the objective as a weighted combination of expected, 

weighted targets detected and weighted sensor characteristics. 
 

, , ,_ det* _ _ * _t c w ch wOBJ alpha EXP TGT alpha char OBJ CH= −  
 
 OBJECTIVE FUNCTION  

 
The objective in this model is to maximize the weighted combination of expected number of 
weighted detections and overall sensor characteristic penalties. 
 

RESULTS 
 

We implemented the model using GAMS with CPLEX as the solver. The results for the 
model using 10 basic packages uniquely configured into 175 consolidated packages and 
allocated to 10 target clusters over 4 enemy order of battles, are given in Table 7. 

 
 

 
 

CPLEX applies a �presolve phase,� which reduces the size of the MIP. The parameter 
OPTCR is a relative measure of optimality, and provides a bound on how far from the best 



possible answer the solution is (OPTCR = 0.05 requires the solution to be within 5% of optimal). 
The smaller the OPTCR, the more time needed for the solver to find a solution. 

Table 8 is an example of Sensor Allocation Model output. For example, the SAM 
allocated three copies of package 1 to target cluster 1 and two copies of package 1 to target 
cluster 3. Table 9 breaks down the assignment of consolidated package 118 to target cluster 4 
into basic package components and total assets allocated. 

 

 
 

CONCLUSIONS 
 

This research has resulted in the development of  a model for optimally allocating sensor 
packages to target clusters on a battlefield  A sensor package consists of a combination of 
platforms each carrying one or more sensors. The model ensures that platforms have sufficient 
range, time on station, and performance level for each enemy order of battle per target cluster so 
the maximum expected number of target detections occurs. 

The Sensor Allocation Model, with a fixed mix or inventory- of sensor platforms, 
allocates consolidated packages to target clusters. The model takes into account uncertainties in 
sensor performance and uncertainties in target location, type and quantity.  The model pre-



computes values for what would otherwise be non-linear model components (e.g. consolidated 
package performance for expected target detections). 

Integer variables represent the assignment of consolidated packages to target clusters 
resulting in a mixed integer linear program. An instance of the allocation model, with 10 basic 
packages, 10 target clusters, 4 enemy order of battles and 175 consolidated packages solved in 
less than ten seconds on a Pentium III processor. 
 

RECOMMENDED MODEL REFINEMENTS 
 

Data Improvements 
 

Classified sensor data is available from AMSAA sources. The AMSAA data was 
reviewed to determine type and format available and a surrogate data set was generated to mirror 
the classified data and to develop our models. The assumption was made in development of the 
optimization models that platform and package performance data would become available as 
further experimentation and research is conducted. The availability of such data would eliminate 
the need to surrogate the data in ways such as those described in Chapter 3, Section I (Metric 
Development) and in paragraph 2 (Dependence Factors) below. As additional sensor platform 
and package data becomes available, additional refinements and improvements to the models 
will be required. 
 
Dependence Factors 
 

The combination of sensors mounted on a single platform assumed a positive, or 
enhanced, overall platform performance. This positive dependence factor was applied to all 
sensor combinations. Further research may indicate that multiple sensors mounted on the same 
platform do not enhance performance in all situations and may possibly cause degradation in 
platform performance in some instances. 

In similar fashion, combinations of platforms to form basic and pre-configured packages 
also assumed an enhanced performance level. Additionally, no particular criteria were used in 
determining basic pre-configured packages. The development of a methodology to optimize over 
individual platform performance to develop optimal package configurations should be 
considered for refining the model�s package performance metric. 

 
VV&A 
 

Verification, Validation, and Accreditation have not been conducted on this model. 
TRAC-Monterey is in the process of developing the Dynamic Allocation of Fires and Sensor 
(DAFS) simulation. The output from the SAM can be used as input to the DAFS model. 
Validation would be accomplished by comparing the performance (in DAFS or other 
simulations) of sensor allocations suggested by the SAM to those derived by other means. 
 
Target Clustering 
 

The manner in which target clusters were identified for the model is perhaps too 
simplistic. Target clusters were based on proximity to nearby targets on the battlefield.  A more 



effective method of clustering targets may include a statistical algorithm that groups targets by 
similarities or dissimilarities based on a series of inputs. A more refined method of identifying 
search areas and grouping targets could be incorporated to improve the model. 
 
Sensor Characteristics 
 

Four sensor characteristics (logistics, cost, perishability, latency) were identified through 
discussion and review of several Objective (Future) Force documents. The descriptions used for 
these terms are rather nebulous and difficult to quantify in meaningful measurements. As the 
Objective (Future) Force concept continues to develop, additional characteristics or methods to 
quantify the impact to operations can be identified and incorporated into the model. 
 

SUGGESTED FURTHER RESEARCH 
 

Many possibilities can be pursued to extend the model presented in this research.  This 
study only addresses the allocation of organic Unit of Action sensor assets.  However, our basic 
methodology easily adapts to echelons above or below the UA level.  Minor modifications are 
needed to include joint assets at the higher echelons, and different mission requirements at both 
levels would have to be considered. 

Another more challenging project would be to create a dynamic model significantly 
improving the utility of the Sensor Allocation Model. There are two components for 
consideration in the development of a dynamic model. The inclusion of multiple time periods 
would take into account equipment or platform resupply, attrition rates, maintenance, follow-on 
missions, and new launch sites. 

The second more difficult component would involve the allocation of a package to a 
higher priority or just-identified target area. This reallocation would also apply to reallocation to 
a secondary target area if the allocation to the original target area was no longer required (i.e. 
mission change, combat damage assessments show target area clear, etc). 

Further extensions of the model would allow for consolidated packages to search multiple 
target areas. This could be modeled based on a prioritization of target clusters and involve 
platform time on station. A more difficult scenario would allocate a consolidated package to 
search a primary target cluster, then �decompose� the consolidated package into basic package 
configurations. The resulting basic packages would then be reconsolidated into newly formed 
consolidated packages and optimized for allocation to secondary target clusters. New variables 
will be necessary to indicate package location, remaining time on station, and distance to 
secondary search area. 
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