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Abstract 

Netcentric warfare and associated concepts have a fundamental assumption that improved 
information infrastructures will improve military decision-making and therefore military 
effectiveness. Previous work on linking NCW applications to military effectiveness using 
modelling and simulation have had difficulties in modelling the decision-making aspects of the 
process, and in particular modelling them such that NCW applications can be shown to make a 
difference. A survey of conceptualisations of decision making suggests that two characteristics 
of a decision, its speed (or timeliness) and its soundness, and two types of decision making, 
recognition-based and analytic, constitute a sufficient foundation for modelling. Models based 
upon empirical timings can be found for decision speed for the two types, however modelling 
decision soundness is more problematic. A theoretical structure for decision soundness 
modelling is proposed using situation and decision spaces and constrained by commanders 
intent. This structure appears to be rich enough in detail to encompass the concepts of 
commanders intent, decision-makers beliefs and biases etc., but has not yet been practically 
implemented. Within the structure, situational awareness is represented by a sub-space of 
possible situations and perturbed by decision-maker biases, commander's intent is represented by 
a second subspace of possible situations, and decisions are functions from one space to another. 
Decision soundness is a metric to assess the results of applying a decision function on both the 
perceived and actual situations and compares these results to the commanders intent or mission 
objective. The application of the proposed structure to the analysis of maritime interception 
operations is explored. 

Introduction 

Network-Centric warfare (NCW) and associated concepts have a fundamental assumption that 
improved information infrastructures will improve military decision-making and therefore 
military effectiveness. Previous work on linking NCW applications to military effectiveness 
using modelling and simulation [1] have had difficulties in modelling the decision-making 
aspects of the process, and in particular modelling them such that effects due to NCW 
applications can be measured.   

At base, the technology enabler behind network-centric warfare is the network. The key source 
of advantage therefore lies in the sophisticated generation, communication and consumption of 
information. To realise the advantage, the consumption step must lead to better decision-making. 
Hence, models aiming to determine the magnitude of the effectiveness gain from the adoption of 
NCW must address in some way the issue of modelling decision-making. To support the study of 
weapon systems and military operations, models of human decision-making are required that do 
more than assume that information of complete accuracy and comprehensibility arrives at the 
decision-maker when it is needed, is processed optimally, and is implemented flawlessly are 
required.  Previous work [2] indicated that it is not the quantity of data or indeed the individual 
datum quality, but a context-induced information quality that is important in determining value 
to a decision-maker. It is believed that Pigeau and McCann�s [3] Commander�s Intent provides 
this context. 

The study of human performance in decision-making is a major and active branch of both 
cognitive science and ergonomics. However, the majority of the research is focused on 



determining specific aspects of cognition or behaviour. Important influences range from the 
environment, such as stress, heat and cold, presence of the enemy, through factors such as level 
of morale, training and experience, to a wide range of cognitive biases that are innate, in the 
sense that they are difficult to avoid (to say the least), even with explicit training. The list of 
biases includes some quite surprising effects, such as the resource-overuse bias and the possible 
deleterious effects of thinking too much, in addition to the more well-known biases due to 
perception, confidence and problem framing [4]. How much of this detail should be included in a 
model of military decision-making depends on the intended use of the model, but model 
mechanics ought at least to be consistent with what it is known about decision-making 
performance modulators and biases. For example, it should not be assumed that any given type 
of decision�e.g. analytical decisions�is deterministic. That is, decision-makers faced with the 
same situation need not come to the same decision, even when situational awareness is deeply 
shared. This is particularly true of decision-making under uncertainty, a very common feature of 
military decision-making.  

The process of decision-making, viewed as a whole, is widely recognised as cyclic in essence. 
The Observe Orient Decide Act (OODA) loop, its variants and extensions provide a 
conceptualisation that is useful for modelling military decision-making, and have been used 
successfully for the study of network centric warfare. In terms of a scheme for classifying 
decisions the cognitively-based classification scheme�analytical vs. recognition-primed�
appears useful for the purpose of modelling decision-making [4,5]. Working from the precept of 
not making a model more complicated than is needed for the purpose at hand, we propose that 
the quality of military decisions be modelled by specifying just two characteristics: speed and 
soundness [4]. Speed is defined in terms of the time taken to carry out certain parts of the OODA 
loop. Soundness is more problematic and has been assessed in some studies using subject-matter 
experts (SME). A major aim of this work is to propose a framework for obtaining more 
quantitative measures. 

From the History of Decision Modelling 

Attempts at mathematically conceptualising decision-making have a history stretching back 
several centuries. That the problem remains open is an indication of its difficulty. In surveying 
the history of models of decision-making, one can discern two broad themes that are not always 
clearly separated. On the one hand, some models of decision-making aim to assist decision-
makers to make better decisions. That is, such work typically begins with a paradigm of best 
practice in decision-making�for example, that Bayes�s theorem ought to be consistently 
employed�and produces a tool to help decision-makers to achieve the ideal. On the other hand, 
decision-making may be modelled with the aim of describing how decisions are actually made in 
practice and quantifying the quality of those decisions. We pursue the second aim in that we are 
interested in how military decision-makers actually function, and from that to learn about how 
NCW may affect the process. To this end, and in view of the problematic nature of quantifying 
soundness, we focus in the following brief historical review on concepts of decision soundness. 

For most of the history of decision-making modelling, the first of the themes was foremost. Prior 
to about 1700, it was generally thought that optimum decision-making should be conceptualized 
in terms of expected values: the best decision or sequence of decisions is that which secures the 



highest (or lowest, as the case may be) average value of a quantity over the long term. In fact, 
humans are naturally more risk-averse in their decision-making than is implied by theories based 
on expected values. For example, most of us will pay in a lifetime more in insurance premiums 
than we receive in payouts. Therefore, according to expected-value theory, the purchase of 
insurance is a bad decision. This conclusion overlooks the purpose of insurance, which is to 
buffer the effects of rare catastrophic events. The insurer assumes some of the risk of such 
events. 

In the early 1700s, Bernoulli proposed the replacement of expected value with utility, a construct 
intended to capture the decision-maker�s attitude to risk [6]. The decision-maker then seeks to 
maximise expected utility. This theory was too ad hoc to be widely accepted until it was placed 
on an axiomatic basis by Von Neumann and Morgenstern in the early 1940s [7].   

Expected utility may well serve as a basis for modelling ideal decision-making, but from the 
descriptive rather than the normative point of view�how we actually make decisions rather that 
how we ought to�the now well established cognitive biases that seem innate in humans do not 
always follow Von Neumann�s and Morgenstern�s axioms [8]. This has prompted the 
development of a range of variant theories in recent decades, with limited success. For example, 
Dorsey and Coovert recently published a formalism based on fuzzy logic [9] that is interesting, 
but seems of limited usefulness in modelling military decision-making. 

Cognitive task analysis [10] constitutes a different approach. It attempts to map in detail the 
mental processes needed to make a decision in a given context. This can be a formidable task: 
the number of possibilities, branches and contingencies grows exponentially with the complexity 
of the decision context. Although cognitive task analysis can be viewed as producing a 
description of the decision space, the task of assessing the soundness of decision options is not 
an aim of the analysis. However, the need for a quantification of soundness is the main 
requirement of the modelling required to support NCW analysis. 

The result is that at present, the modelling of decision-making and indeed human behaviour 
modelling remains open at the most basic level. Extension of methodologies to the quantification 
of decision soundness in general has required the use of subject-matter experts. In the next 
section, we propose an initial modelling framework as a contribution to the advancement of the 
subject area. This is followed by a section detailing some of the issues that will need to be 
addressed to obtain a practical implementation of the framework. Although a full implementation 
is not yet available, we apply the framework to a Maritime Interdiction Operation scenario that 
has previously been analyzed for NCW effects. [1] 

Proposed Conceptual Framework 

We seek a model that covers the orient and decide steps of the OODA loop. However, although 
the �act� part of the OODA loop seems problematic from the modelling point of view, some 
representation of it and the �observe� part are necessary to deal with situations involving a 
sequence of decisions. Since a primary purpose of the model is to enable the study of NCW 
effects on decision-making, it must take as input some representation of the decision-maker�s 
level-1 situational awareness [11] and commander�s intent [3]. Similarly the metric of 



effectiveness, decision quality, needs to be calculable from the output. Hence, the output should 
be the decision speed, decision soundness, and the decision itself. 

Situation and Decision Spaces; Decision and Implementation Functions 

Our concept of the overall structure of such a model is shown in Figure 1. Its essence is a 
mapping between the physico-temporal and cognitive worlds. The physico-temporal world is 
represented by the �situation space� S, which describes all possible situations that could be faced 
by the decision-maker; each point s in S corresponds to a distinct situation. Following the ideas 
of situational awareness, �situation� includes not only entity locations but also immediate entity 
aims. Thus, identical physical scenarios with differing entity courses of action are different 
situations. 

The cognitive world is represented by the �decision space� D, which describes all possible 
decisions. Decision-making and implementation are then functions between the two spaces. The 
form of the decision function, F: S → D, must reflect the decision-maker�s understanding and 
abilities, and the form of the implementation function, δ: D ⊗  S → S, describes how a particular 
decision will change the current situation when it is implemented.  

We do not specify the structure of S and D beyond referring to them as �spaces�. It may appear 
that they have the character of vector spaces in the sense that the objects s and d are assumed to 
be categorisable in some appropriate fashion. However, the mathematical construct of the vector 
space requires the properties of vector addition, scaler multiplication, null vectors and closure, 
some of which are unlikely to be definable.  

The combination of the two spaces and linking functions has the appearance of the classic 
OODA loop model of decision-making. It should be possible to set up the decision function F to 
represent �orient� and �decide�, leaving �act� and �observe� to be described by the perhaps lower-
fidelity implementation function δ. If such a separation can be achieved, then decision speed 
would be given by a time associated with F. Whether this time is an input to or an output of the 

SCI(t)
 δ(d,s (t))c

S D

Situation Space Decision Space

Decision Soundness Surface M( )d,s(t)

 
Figure 1: High-level view of the structure of a model of military decision-making. The ‘situation 
space’ S comprises all possible situations that the decision-maker may encounter and the 
‘decision space’ D all possible decisions. The two are connected by a function FCI(s,R) repre-
senting decision-making in response to the commander’s intent and constraint set R and a 
function δ(d,s) representing the implementation of the decision. The soundness of the resulting 
decision is given by a function on D ⊗  S that returns the soundness surface M. 
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model depends on how the model is instantiated.  

Decision Function and Commander’s Intent 

The nature of the decision function F must reflect the decision-maker�s creativity and freedom to 
generate options, the constraints on those options, and how to choose between them. There are 
therefore two main non-physical inputs to the function: the decision-maker�s profile (experience 
and biases) and the mission context contained in the commander�s intent. We define a set R of 
constraints on the decision function, which represents aspects such as the rules of engagement 
(ROEs), the decision-maker�s authority to command resources, etc. The resulting decision 
function is labelled FCI to emphasise the part played by the commander�s intent in selecting the 
best decision for a given situation. Its physical arguments are the specific situation s at time t and 
the relational constraints are specified by R; its result is the decision d: 

 d = FCI(s(t),R) (1) 

The subspace SCI shown in Figure 1 indicates that usually the commander�s intent does not 
encompass all possible situations. That is, while the domain of FCI is all of S, for s not an 
element of SCI, FCI(s,R) results in the decision to request changes to or seek clarification of the 
commander�s intent. We make the following definitions: 

1) sc(t) is the true situation at time t. 
2) �( )s t  as the situation at time t as the decision-maker understands it. 
3) Sg(t) is the goal of the commander�s intent, which is likely to be a set of situations.  

When s�  ≠ sc, FCI is applied to s�  (not sc) to obtain a decision, but the implementation function δ 
is always applied to sc, the true situation. Thus, if s�  ∈  SCI and sc is not, then a decision requiring 
substantive implementation is still generated, whereas when s�  ∉  SCI but sc is, an unnecessary 
request for clarification of intent is generated. Practically, for a well constructed commander�s 
intent, the probability of sc not being in SCI should be small. 

The function FCI(s,t) connects the physico-temporal and decision spaces in a manner that 
depends on the commander�s intent, but it is not the intent itself. Commander�s intent, as defined 
in this paper, consists of the commander�s full appreciation of the battlespace and how it will 
change over the operation. Thus, it consists of the current situation sc(t0) when it was developed, 
the set of expected situations SCI, the goal set Sg and the constraints R on the actions of 
subordinate commanders (i.e. rules of engagement and relationships between resources). When 
viewed over time, commander�s intent can be visualised as specifying a corridor through S from 
sc(t0) to Sg. In principle, it might specify a single path through S, but usually this would be 
regarded as micromanagement�the doctrine of �mission command� posits that commander�s 
intent should specify the goal without being too prescriptive on how to get there. 

Structure of the Spaces; Situation Increments 

Deleted: Figure 1

Inserted: Figure 1

Deleted: Figure 1



In S, the �sum� of two situations has no natural definition for any general pair of situations, but it 
is sufficient for our purposes to define a restricted change operator as follows. For any pair s1 , s2 
of situations, it is natural to conceive of a situation increment δs1→2 as representing the 
�difference� between the two situations; it indicates what is needed to change s1 into s2 . Hence, it 
makes sense to write 

 s2 = s1 + δs1→2 (2) 

as a definition of the symbol �+� in its application to situation-like objects.  Of more interest is 
viewing δs1→2 as the result of a decision that changes s1 into s2. Thus (and with an obvious 
modification of the notation), δ(d,sc(t)) can be defined as a function from D ⊗  S to S such that 

 sn = si + δ(d,sc(t)) (3) 

is the new situation following the implementation of decision d to situation sc(t) added to 
situation si. Developing this further, we see that δ(d,sc(t)) provides the feedback from the 
decision space to the situation space, as indicated in Figure 1.   

A major assumption of the model is that of closure for both D and S, that is, that all possible 
decisions are represented in D and every possible situation has a representation in S. 

Decision Soundness 

Soundness must ultimately be judged by reference to the effect of the decision on some measure 
of overall military effectiveness�absolute soundness�but usually this is not known to a 
decision-maker at the time when the decision must be made, so decision-makers judge the 
soundness of the available options by reference to the prevailing commander�s intent as they 
understand it. This provides, we believe, a straightforward description of how military decision-
makers operate and how less than optimal decision options (as measured on the absolute scale) 
come to be chosen. These considerations also indicate at least two aspects of decision 
measurement that need to be incorporated into the model: absolute and relative soundness. 

Figure 1 shows schematically the metric M(d,s(t)) of decision soundness. M is a function from D 
⊗  S to the real numbers that provides the figure of merit for the decision taken given either the 
actual (absolute) or perceived (relative) situation. The details of the definition of M must be 
tailored to match the purposes of each individual study. However, in general terms, M can be 
conceived of in terms of �distances� between two situations, which we represent with the 
notation 1 2,s s . If a �distance� metric can be defined on S, then the two types of soundness 
measures can be represented as 

 ( ) ( )abs c c c g, ( ) ( ) , ( ) ,M d s t s t d s t S= + δ , (4) 

based on true situation knowledge, and 

 ( ) ( )rel c g� �, ( ) ( ) , ( ) ,M d s t s t d s t S= + δ  (5) 
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based on the decision-maker�s situation knowledge.   

The distinction between Mabs and Mrel concerns the decision-maker�s situation awareness. Mrel is 
calculated by adding the implementation function δ to the perceived situation s�  rather than the 
actual situation sc. This gives the quantity by which the decision-maker judges the soundness of 
decision options. On the other hand, Mabs gives the true soundness in terms of the actual outcome 
of implementing the decision.  

Possibilities for defining the �distance� between two situations include the following: 

•  The metric might be a quantification of the physical distance between the two situations, but 
this ignores the temporal, cognitive and C2 dimensions of �situation�, such as the size of δ 
required to change s1 into s2. 

•  �Distance� may be taken as the time required to change from one situation to another. This has 
the advantage of representing the time required to modify commander�s intent, or to acquire 
situational awareness, but the metric might be unhelpfully skewed by physical-space issues, 
such as the time needed to make a transit. 

•  At a more abstract level, it may be useful to take the distance metric as the inverse of the 
probability that a path between the two situations exists and will be chosen. That is, if one can 
in some sensible way enumerate all possible paths from the current situation sc, one can ask 
what fraction of them lead to the goal set Sg, and use the reciprocal of that quantity as the 
metric. For example, if Sg includes the requirement that a certain platform survive that has 
just been heavily damaged, then the probability of a path through the situation space to Sg 
becomes very low, and indeed the situation space may have become disconnected. 

Performance Modulators and Biases 

Effects of performance modulators and cognitive biases can be represented as perturbations of 
the entities defined above. For example: 

1) a shift in FCI(s(t),R)�i.e., in the decision-making function 

2) a shift in )(� ts �i.e., in the understanding of what the situation is 

3) a shift in SCI(t)�i.e., in the commander�s intent. 

4) a shift in R―i.e., in the  promulgated ROEs or other constraints. 

If dCI = FCI(sc(t),R) represents the best decision relative to the extant commander�s intent, then 
the actual decision d taken under the influence of one or more of the four shifts above can be 
written as d = dCI + γ, where γ is a random fluctuation representing a difference between two 
decisions. Whether γ has a mean of zero depends on the effect being modelled. For example, 
many stressors are deleterious, so the mean of γ representing such effects would be non-zero. On 
the other hand, fluctuations intended to contrast analytical and recognition-primed decisions 
would probably have a mean value of zero and different variances. Similarly, a bias may cause a 
decision-maker to misunderstand what the current situation is, leading to a perturbation in 
s = s0 + δ. A shift in the understanding of the commander�s intent could represent a 
misunderstanding of whether sc ∈  SCI or in the application of the constraint set R. If the results of 



situational assessment ( s� ) and decision-making are modelled by probability distributions, then 
biases may be specified by shifts in the mean or variance of the distribution around the true 
value. A shift in the understanding of the scope of the commander�s intent might also be 
modelled as a barrier function, such that the probability of a situation being labelled as in or out 
of the set follows a specified distribution. A bias might then be to interpret some aspects of a 
situation more tightly or loosely (more or less likely) in terms of whether it meets the criteria of 
the commander�s intent. A bias may cause a similar interpretation on how strictly constraints are 
applied in the decision function. 

Implementing the Conceptual Model 

Key Implementation Issues 

The conceptual model detailed above is not meant to be definitive, but to provide an alternative 
means to describe and think about decision-making modelling. To move beyond concept to 
implementation requires the following: 

1) defining the attributes of the elements of the situation space S 
2) defining the attributes of the elements of the decision space D 
3) determining FCI (sc(t),R)―decision option generation and choice 
4) determining δ(d,sc(t))―how decision d changes situation sc(t) 
5) specification of the impact of biases on each of these elements 
6) determination of the form of M, the metric for decision quality. 

Development of the Model 

To start implementing the decision-making model we make the following assumptions: 

1) Elements of the situation space can be classified and expressed as an array of characteristics. 
2) The decision space is enumerable and expressible as an array of characteristics. 
3) Decision-option generation is possible using an evolutionary algorithm with mutation, 

incorporating decision-maker understanding of commander�s intent and decision-maker 
biases. 

4) Decision choice can be based upon battlespace simulation which incorporates decision-
maker beliefs and biases. 

5) Situation change as a function of a decision implementation can be based upon the true 
situation and true unit capabilities, and evaluated using a single step of a battlespace 
simulation. 

6) A relative decision soundness metric can be defined using the output of a battlespace 
simulation to calculate the increase or decrease in likelihood of achieving commander�s 
intent. 



Based on these assumptions, Figure 2 shows a more developed view of the modelling 
framework, and one from a different perspective than Figure 1. It explicitly includes a set of 
independent and parallel decisions, and a mechanism for altering the commander�s intent in the 
event of a situation being encountered that is believed to lie outside of the extant intent (outside 
SCI, in terms of Figure 1). The steps through the model are conceived of as follows: 

•  The decision-maker receives some change ∆SA in situational awareness. 
•  The ∆SA is compared to the commander�s intent (CI), as understood by the decision-maker. If 

the ∆SA is covered by the CI then the decision-maker moves down the process; if the ∆SA is 
not covered, then the decision-maker must seek clarification and also notify higher command. 
This will incur a cost in time (T(Comms�)). In some cases, this part of the process might 
actually require a number of iterations before a new CI is obtained that allows the decision-
maker to progress. 

•  Once the ∆SA is covered by the CI, the decision-maker then checks to see if the CI implies a 
specific action or decision (i.e., recognition-primed decisions); if not, an analytical decision is 
required. (The time for these events is determined in the next step.) This process will be a 
function of understanding of the CI, experience, personality, biases and stressors and may 
include a stochastic element. 

 
Figure 2: Decision-making model components and flows. Boxes are individual processes, with specific 
calculations given in italics. 
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•  The means and variances of the distributions for decision speed and absolute decision 
soundness are determined using as inputs CI, understanding, decision-maker�s experience, 
personality, biases and stressors, and whether the decision is analytical or recognition-primed. 

•  The calculated means and variances are then used to determine a decision point within the 
decision space and the decision speed. 

•  The soundness value, which is calculated given the decision point, and the decision speed 
together constitute decision quality. 

The model clearly requires a quantification of the extant commander�s intent and the decision-
maker�s situation awareness, if not separately, then at least so far that the degree of correlation 
between them can be represented by a number. At an abstract level, the degree of correlation 
could be taken as a random variate; alternatively, it may be determined from more detailed 
modelling. 

Option Generation using Genetic Algorithms 

The important feature of the decision-making model for present purposes is to capture how the 
decision-maker navigates the decision space and the process by which a decision-maker chooses 
a particular option, rather than the exploration of novel solutions from uncharted areas of the 
decision space. From this perhaps subtle point, it follows that the modeller can assume that all 
possible decisions are expressible and can be evaluated for soundness within the model. The 
same point can be viewed in another way, in terms of controlling for confounding effects: since 
the aim is to explore effects of network centricity, decision-maker creativity must be held 
constant except where influenced by a network-based application such as collaborative planning 
tools. 

This raises the question of modelling decision-option generation, at first sight the least tractable 
of the modelling issues. There have been a number of studies using evolutionary methods such 
as genetic algorithms to generate search plans and other tactical decisions. [12] Given that the 
decision options can be quantified to the point that they can be represented by a set of binary 
variables, a genetic algorithm can be applied to develop �optimal� sets of decisions. By 
�optimal�, we do not mean necessarily globally optimal, since proving the convergence of 
genetic algorithms to a global optimum requires the imposition of undesirable constraints on the 
algorithms. Instead, we contend that the population of solutions developed models well the result 
of the satisficing process that is a significant and widespread feature of military decision-making 
[13]. Satisficing is the process of looking not for an optimal solution but for one sufficiently 
good enough to work.  Indeed, the entire process of evolutionary algorithms is an attractive 
computational metaphor for human option generation in military decision-making [14]. As we 
use the terms, the �evolutionary� or �genetic� aspects of the process include the following 
characteristics: 

•  Fitness/Reproduction � some candidate options become more favoured in the population 
(even if they do not satisfice the situation, either because of a bias toward them or because 
there is a part of them that has a potential and should not be lost). 

•  Cross-over � a candidate option is modified by the incorporation of part of another solution 
(mixing and matching good looking parts of solutions). 

•  Mutation � the random incorporation of new ideas into an option, and the random drift and 



variance of ideas over time. 

As applied to modelling option generation, a genetic algorithm would have the following steps: 

1) An initial population of decisions is developed based upon the decision-maker�s experience, 
biases and understanding of the problem constraints. 

2) The decision population is evaluated against a set of criteria for soundness. 
3) If a solution that satisfices the criteria is not found, then new solutions are developed by 

a. Combining parts of good solutions from the old population 
b. Mutating some of the attributes of the old population. 

4) The new population is evaluated for soundness and the process is iterated until a satisficing 
solution is encountered. 

To take this further requires that the commander�s biases and experiences be quantified as well, 
so as to match particular situations with potential decision options that have an associated 
likelihood of being chosen by a particular decision-maker. Similarly, decision-maker biases 
toward certain types of decisions can be included both in the selection of an initial population 
and as a weighting on the perceived decision soundness and ability to satisfice the situation. 

Decision Soundness and Quality 

The decision soundness should be a measure of the likelihood that the decision will lead to the 
attainment of the operation�s goal, that is, the commander�s intent. A decision that increases the 
likelihood should have a higher soundness than one that decreases the likelihood. Additionally, 
this likelihood can be relative to the likelihood under the decision-maker�s best knowledge, or 
relative to the true likelihood.  

Evaluation of decision soundness, both to satisfy the decision-option-generation process and as 
part of the overall decision quality metric, is a key part of this model. This is a difficult task; in 
essence it requires evaluating the effect of a decision on the future probability of achieving the 
commander�s intent. In the case of decision-maker choice, it should include decision-maker 
biases and beliefs; as part of the absolute quality metric, the evaluation must be free of those 
biases and reflect the true likelihood. In either case, even if a simulation may be structured to 
estimate the outcome of a decision made at time ti on the situation at ti +1, the resulting 
uncertainty of actions at ti +1 will result in an exponentially growing tree of possible situations 
over time. A complete evaluation of likelihood will require modelling the outcome of all the sets 
of decisions―a huge task.  

In terms of modeling the decision-maker�s assessment of the option satisficing, it is probably 
enough to make a rough estimate of the likelihood based upon a small number of model runs.  
Increasing the number of runs to provide a Monte Carlo-esque estimate of likelihood with 
increasing experience might even simulate commander experience.  Likelihood estimates can be 
further estimated utilizing synthetic annealing methods to sample the decision space [16]. For the 
purposes of the task at hand, it appears clear that only simplistic situations are likely to be 
completely tractable. Alternatively, a lower-fidelity but more straightforwardly computable 
situation-space metric of the element-by-element difference between the new situation and the 
goal of the commander�s intent might be sufficient in some cases. 



As numerous remarks throughout this paper make clear, we have no illusions about the difficulty 
of implementing the program laid out above. Each of the key implementation issues is likely to 
be problematic to practical implementation. The use of software agents coupled with 
evolutionary decision-option generation for social and economic modeling  [14,15] provide some 
indication that it is possible. 

Example: Applying the Conceptual Model to Maritime Interdiction Operations 

In [1], an attempt to quantify the value added of NCW to Maritime Interdiction Operations 
(MIO) was reported. A major gap in that analysis was the inability of the queueing theory 
military effectiveness model to definitively link the addition of any particular network 
application to increases in military capability. All links made were of a qualitative nature. While 
the decision-making model described above has not been developed to the point of quantitative 
results it is instructive to apply the concepts to the particular warfare problem.   

As an example, the MIO analysis examined the problem of an interceptor force defending a 
coast-line from smugglers. In the scenario analyzed, a finite number of interceptors are each 
given a section of coastline to defend and must stop and interrogate all shipping to and from the 
coast. The smugglers are expected to use a strategy of rushing the line of interceptors in order to 
overwhelm the units in a particular sector. The question posed was, if the commander had prior 
knowledge of where the rush would take place, perhaps from intelligence or some form of 
reachback, then could the force be reconfigured to handle the problem. Conceptually, it was 
assumed that, under NCW, when the commander obtained prior warning of the increase in 
smugglers (or traffic) in an area, it would be possible to use net-based collaborative planning to 
pull enough interceptors into the relevant sector to handle the increased traffic. Queueing showed 
that under these assumptions, the force could indeed maximise its probability of catching the 
smugglers.   

In fact, the queueing theory actually shows that it is equivalent if the workload of the ships 
dealing with the rush can be reduced to a baseline level, and therefore the more fundamental 
decision for the force commander is the criteria to be used in determining how many vessels 
must be intercepted, and how to position sufficient interceptors to do it. 

To apply the conceptual model the six key implementation issues must be addressed: 

1) The situation space must be enumerated to account for the disposition and state of the 
interceptors, neutrals and smuggler units, and the MIO commander�s understanding of the 
status of each. The physical state of the units will impose some conditions on the timing of 
information requirements. It is reasonable to assume that the MIO commander will have 
good situational awareness of the state of his own units, so that s�  ≈ sc so far as own forces 
are concerned. The question of whether a given other vessel is neutral or smuggling is the 
key information management issue in this scenario and is the most likely source of 
divergence of s�  from sc. The situation space should be explicitly constructed to facilitate the 
depiction and exploration of this divergence. 

2) The decision space must be determined, including the time scale and scope of the decision 
options. Since the emphasis is on modelling the effects of NCW, decision options must 
reflect the effect of various amounts of information on the intentions of incoming vessels, the 
manner in which the information is generated and passed between the entities of the model, 



and the use that the entities make of it [2].  
3) The option generation process must be seeded with the current operations plans, doctrine and 

tactics to provide an initial population of options. The commanders� intent and resources 
available are to be instantiated as constraints on the problem, possibly the current disposition 
of interceptors and other physical limitation as well. Recent modelling of MIO using a 
prioritised queue [17] indicates that the key decision issue is that of �pre-emption��the 
conditions under which the MIO commander decides to abandon the interception of a low-
priority vessel in order to free up an asset for intercepting a recently arrived higher-priority 
vessel. It is important that the modelled decision space include a representation of pre-
emption and desirable that several pre-emptive options be generated wherever possible and 
appropriate. 

4) Physical limitations on interceptor ability to respond and implement a decision option, and 
likely smuggler responses if a multi-step (response-counter) study is to be attempted, should 
be included in the definition of the implementation function δ. However, to match the 
previous MIO study, a single-step response is sufficient. 

5) To simplify the problem, we leave out the issue of biases, although the issue of complacency 
for units who have been on patrol for long periods might be addressed by including a bias in 
the option generation functions. 

6) The measure of effectiveness is the probability of intercepting a smuggler. This will be 
determined through a combination of the number of interceptors made available and their 
effectiveness as given by the queueing theory model. 

The application of the conceptual model thus focuses the problem on the type of information 
required by the decision-maker and therefore on specific NCW applications that can affect the 
information. On implementation, specific issues of information quality (clarity, timeliness etc.) 
can be explored.   

Summary and Conclusions 

A framework for a model of decision-making is developed. This involves the construction of two 
abstract spaces, one representing all situations and the second all decisions. Functions 
connecting these are constructed: the function from situations to decisions describes the 
decision-making process; that from decisions to situations describes the implementation of the 
chosen decision option. This process has the cyclical nature of the OODA loop. The two spaces 
also support a function quantifying the soundness of the chosen option. Several general 
suggestions are presented for suitable soundness metrics; a particular metric must be chosen to 
suit the problem at hand. The conceptual framework is developed sufficiently to point the 
direction for implementation, to give an indication of expected outputs and capabilities, and to 
suggest its relevance for the modelling of NCW. 

The model incorporates most of the important influences on decision-making from the literature 
and provides at the very least a conceptual model within which to think about these issues. 
Despite the formidable obstacles to full implementation, we believe that the framework set out 
above is sufficiently detailed to provide an indication of the sort of outputs that are achievable. 
The most important of these is the ability to assess the impact of the inputs to decision-making 
on force effectiveness as embodied in the commander�s intent. This would provide a basis for 
judging the effect of varying levels of network centricity. 



Further, even if a numerical implementation should turn out to be impractical, the conceptual 
model of provides a formalism within which the functional relationships of changes to decision-
making inputs can be constructed and studied. Thus, to take the effects of biases as an example, 
in cases where it proves impossible to quantify the effect, it may be possible to see where a bias 
influences the process. This would then assist users to construct human-in-the-loop 
experimentation designed to explore the specific issue at hand. 
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