
9th International Command and Control Research and Technology
Symposium Coalition Transformation: An Evolution of People,

Processes and Technology to Enhance Interoperability

Integrating Battlefield Objects of C4ISR Systems by Using CAPS

Dr. Meng-chyi Harn
(Point of Contact)

Department of Information Management

China Institute of Technology

245, Academic Rd. Sec. 3, Nankang, Taipei,
Taiwan 115, Republic of China

+886-919-297-147 (Tel)
+886-2-2785-2811 (Fax)

harn@cc.chit.edu.tw

Cheng-hang Wang

Department of Computer Science and Engineering
Yuan Ze University

135, Far-East Rd., Chung-Li, Taoyuan,

Taiwan 320, Republic of China

+ 886-2-2222-2137 ext. 8479 (Tel)
+ 886-2-2226-5896 (Fax)

chwang@saturn.yzu.edu.tw

Integrating Battlefield Objects of C4ISR Systems by Using CAPS*

Dr. Meng-chyi Harn

Department of Information Management
China Institute of Technology

245, Academic Rd. Sec. 3, Nankang, Taipei,

Taiwan 115, Republic of China
+886-919-297-147 (Tel)
+886-2-2785-2811 (Fax)

harn@cc.chit.edu.tw

Cheng-hang Wang

Department of Computer Science and Engineering
Yuan Ze University

135, Far-East Rd., Chung-Li, Taoyuan,

Taiwan 320, Republic of China
+ 886-2-2222-2137 ext. 8479 (Tel)

+ 886-2-2226-5896 (Fax)

chwang@saturn.yzu.edu.tw

Abstract

The purpose of this study is to integrate the battlefield objects of a C4ISR system by
using a heterogeneous integration tool, called Computer-Aided Prototyping System
(CAPS). We explored the whole picture and the prototype of the R. O. C. military C4ISR
system and found what the difficulties and the best solutions were. In the physical
domain, we specified the battlefield object into five types: military people, weapon
systems, navigation systems, platform sensors, and communication links. Then, we
modeled the physical battlefield objects as several software objects that had an operator
with properties, and the relationship among these battlefield objects as a data stream. The
requirements evaluation of a C4ISR system can be carried out by the rapid prototyping
method. We have created and integrated 230 large-grain prototypes of C4ISR subsystems,
which are going to be developed urgently in Taiwan, R. O. C. We discussed the theorem
and practice of battlefield object integration in this paper.

Keywords: C4ISR Systems, Battlefield Object Integration, Software Object Integration,
Computer-Aided Prototyping System (CAPS), Software Evolution.

*This research was supported in part of the R.O.C. National Science Council under the grant number 90-2213-E-123-001.

1. Introduction

This study focuses on the theorem and practice on the battlefield object integration of a
specified R. O. C. military Command, Control, Communication, Computer, Intelligence,
Surveillance, and Reconnaissance (C4ISR) system by using a heterogeneous integration
tool, called Computer-Aided Prototyping System (CAPS). The C4ISR system is a kind of
real-time embedded system that is difficult to be developed without a powerful tool,
especially to integrate thousands of battlefield objects including military people, weapon
systems, navigation systems, platform sensors, and communication links [Harn et al.,
2002]. The requirements description of C4ISR systems is always changed in accordance
with the national strategic thinking, commander’s operational needs, battlefield resources
allocations, and so forth. Therefore, it is very hard to firm the user’s requirements and
specifications during the development process of a command and control system [Luqi,
1992].

In Taiwan, no one has ever conducted similar projects to integrate huge military C4ISR
system before. We explored the whole picture and the prototype of the R. O. C. military
C4ISR system and to find what the difficulties and the best solutions were. We got
together over 200 military officer students working with our group in Army College and
National Defense Management College, National Defense University, Taiwan, R. O. C.

When we went through this project, we faced the several same research issues that had
been in existence in the process of the general business system integration. The
integration of the military C4ISR system is quite different from the business system
because the C4ISR system needs the framework that allows operational, system, and
technical architecture to be defined in terms of formal specifications that evolve via
consensus-based forums [Harn et al., 1999b]. In this project, we addressed the issues that
focused on the system integration of military applications only. We have created and
integrated 230 large-grain prototypes of C4ISR subsystems, which are going to be
developed urgently.

The open issues faced are as follows:
･ It is not easy to integrate the C4ISR systems without a project leader and a system

engineer who have experience in the system integration even though they use a
powerful integration tool.
･ The battlefield objects are not only too numerous but also too complex to be

integrated into an expectable system because the huge amount and complexity of
battlefield objects limit the system function.
･ It is very hard to obtain a military operation model from the physical domain to the

cognitive domain through the knowledge understanding process.
･ There is not a reliable and adaptive tool to integrate a huge and complicate system,

especially for the real-time embedded system such that the formalization of system
integration has to depend on the inadequate tool that provides partial functions.
･ The additional issues in the system integration, such as weapon system replacement,

real-time data communication, business process reengineering, command and

control process changing, and so on, are elicited when we undertake this project
further.

The solutions proposed to the above issues are the rapid prototyping method and the
formal model that have been performed well into CAPS. The CAPS is a set of integrated
software engineering tools for creating real-time prototyping systems. Such prototypes
are useful for requirements analysis, feasibility studies and systematic development of
embedded systems [Luqi, 1993].

The primary objective of the CAPS system is to assist military project managers and
designers and rapidly evaluate requirements for real-time control software using
executable prototypes. Other important objectives include testing and integrating
completed subsystems through evolutionary prototyping [Harn et al., 1999c]. The CAPS
provides a capacity to quickly develop functional prototypes so that feasibility can be
verified early in the software development process; furthermore, the code generator of
CAPS increases productivity at a very low cost [Luqi, 1997].

Other functionalities include:
･ Supporting integration of large complex systems from requirements to maintenance,
･ Formulating/Validating requirements via a prototype demonstration with user’s

feedback, and
･ Assessing feasibility of real-time system designs.

The benefits of using evolutionary prototyping [Harn et al., 1999b] supported by CAPS
include:
･ Reducing project failure risks,
･ Validating systems that meet the stakeholder needs,
･ Lowering reliability and maintenance costs,
･ Reducing system integration problems, and
･ Improving responsiveness of changing requirements.

2. Battlefield Objects

Many C4ISR Systems in the world are created by different purposes that may be to the
military or nonmilitary applications. Whatever the military and nonmilitary C4ISR
systems are, thousands of system objects are hard to be managed. On the research view
for creating a military C4ISR application, we classified the battlefield objects into five
types: military people, weapon systems, navigation systems, platform sensors, and
communication links in the physical domain [Harn et al., 2002].

The battlefield objects in a C4ISR system specified are modeled as a set O = P ∪ W ∪ N
∪ S ∪ C where
･ P denotes a set of military person objects,
･ W denotes a set of weapon system objects,
･ N denotes a set of navigation system objects,

･ S denotes a set of platform sensor objects, and
･ C denotes a set of communication link objects.

The military people using the C4ISR system include different system end users who
directly or indirectly receive the intelligence from the different platform sensors of
surveillance and reconnaissance, manipulate the equipments of computers for receiving
information and making decision, handle the weapon systems according to the direction
of navigation systems, command other military people via computers with
communication links and control all of the battlefield objects. We can define each
battlefield object by a set as follows:
･ The military people can be denoted a set P = {P1, P2, …, Pp}, where p is a number

of the military person objects that are involved to the C4ISR system and can be
classified into many groups;
･ The weapon systems can be denoted a set W = {W1, W2, …, Ww}, where w is a

number of the weapon system objects that are handled by Army, Navy and Air
Force people and can be classified into many types;
･ The navigation systems can be denoted a set N = {N1, N2, …, Nn}, where n is a

number of the navigation system objects that direct weapon systems via
communication links and can be classified into many types;
･ The platform sensors can be denoted a set S = {S1, S2, …, Ss}, where s is a number

of the platform sensor objects that monitor any battlefield objects via
communication links and can be classified into many types; and
･ The communication links can be denoted a set C = {C1, C2, …, Cc}, where c is a

number of the communication link objects that may assemble the relative
equipments with the data transformation function and can be classified into many
types.

A specified C4ISR system is a huge combination of thousands of battlefield objects that
is very difficult to be firmed. What kinds of battlefield objects would be selected? How to
combine these objects? These issues depend on the user’s requirements of a specified
C4ISR project.

Due to the adjustment of user’s requirements coming from national strategic thinking,
commander’s operation needs, battlefield resources allocations, military organizational
architecture and so forth, some of the new battlefield objects would be swap into the
specified C4ISR system, some of the original battlefield objects would be swap out of
this C4ISR system, and some of the original battlefield objects would be modified. The
integration mechanism of battlefield objects of a C4ISR system, which includes
swap_into, swap_out_of, modified and unchanged, can be shown as Figure 1. The change
from the C4ISR system representing the ith version to the C4ISR system representing the
(i+1)st version can be described in terms of set operations by the following equations:

Oswap_into(i)

Oswap_out_of(i)

Omodified(i)

Ounchanged(i)

O(i) O(i+1)

Battlefield object
Modified step

Unmodified step

Figure 1: The integration mechanism of battlefield objects of a C4ISR system

O(i+1) = O (i) + ∆O(i)
O(i+1) = P(i+1) ∪ W(i+1) ∪ N(i+1) ∪ S(i+1) ∪ C(i+1)
O(i) = P(i) ∪ W(i) ∪ N(i) ∪ S(i) ∪ C(i)
∆O(i) = ∆P(i) ∪ ∆W(i) ∪ ∆N(i) ∪ ∆S(i) ∪ ∆C(i) where

∆O(i) = Oswap_into(i) – Oswap_out_of(i) ∪ Omodified(i) where
Oswap_into(i): The set of the new battlefield objects of the C4ISR system

to be added to O(i).
Oswap_out_of(i): The set of the original battlefield objects of the C4ISR

system to be removed from O(i).
Omodified(i): The set of the removed battlefield objects of the C4ISR

system to be modified and added to O(i).
∆P(i) = Pswap_into(i) – Pswap_out_of(i) ∪ Pmodified(i) where

Pswap_into(i): The set of the new military person objects of the C4ISR
system to be added to P(i).

Pswap_out_of(i): The set of the original military person objects of the
C4ISR system to be removed from P(i).

Pmodified(i): The set of the removed military person objects of the C4ISR
system to be modified and added to P(i).

∆W(i) = Wswap_into(i) – Wswap_out_of(i) ∪ Wmodified(i) where

Wswap_into(i): The set of the new weapon system objects of the C4ISR
system to be added to W(i).

Wswap_out_of(i): The set of the original weapon system objects of the
C4ISR system to be removed from W(i).

Wmodified(i): The set of the removed weapon system objects of the
C4ISR system to be modified and added to W(i).

∆N(i) = Nswap_into(i) – Nswap_out_of(i) ∪ Nmodified(i) where
Nswap_into(i): The set of the new navigation system objects of the C4ISR

system to be added to N(i).
Nswap_out_of(i): The set of the original navigation system objects of the

C4ISR system to be removed from N(i).
Nmodified(i): The set of the removed navigation system objects of the

C4ISR system to be modified and added to N(i).
∆S(i) = Sswap_into(i) – Sswap_out_of(i) ∪ Smodified(i) where

Sswap_into(i): The set of the new sensor platform objects of the C4ISR
system to be added to S(i).

Sswap_out_of(i): The set of the original sensor platform objects of the
C4ISR system to be removed from S(i).

Smodified(i): The set of the removed sensor platform objects of the C4ISR
system to be modified and added to S(i).

∆C(i) = Cswap_into(i) – Cswap_out_of(i) ∪ Cmodified(i) where
Cswap_into(i): The set of the new navigation system objects of the C4ISR

system to be added to C(i).
Cswap_out_of(i): The set of the original navigation system objects of the

C4ISR system to be removed from C(i).
Cmodified(i): The set of the removed navigation system objects of the

C4ISR system to be modified and added to C(i).

Therefore, the change from P, W, N, S and C representing the ith version to P, W, N, S
and C representing the (i+1)st version can be described in terms of set operations by the
following equations:

P(i+1) = P (i) + ∆P(i)
W(i+1) = W (i) + ∆W(i)
N(i+1) = N (i) + ∆N(i)
S(i+1) = S (i) + ∆S(i)
C(i+1) = C (i) + ∆C(i)

The elements of the above sets of P(i+1), W(i+1), N(i+1), S(i+1) and C(i+1) are
integrated by the super set of O(i+1). The number of the battlefield objects depends on
the scale of the specified C4ISR project that can be supervised by the mechanism of the
Version Control and Configuration Management (VCCM) of CAPS.

3. Software Objects

The battlefield objects in the physical domain can be transferred to as a specification or a
program in the C4ISR system development and evolution process [Harn, 1999a]. We can

simulate the physical battlefield object as an operator with properties and the relationship
among the physical battlefield objects as a data stream. In the [Luqi, 1989], Luqi
explored the general class of objects subject to version control and viewed each type of
software object – such as a specification or a program – as a subclass of the general class
“versioned-object.” Each subclass provides additional operations and properties relevant
to each kind of software object.

In order to discuss the integrating of C4ISR system changes made to a prototype, we have
to introduce the mathematical model of the change process provided by her study group
and shown in Figure 2 [Dampier, 1994].

If S is the intended final version of the software system, then each
successive iteration of the prototype can be viewed as an element of a
sequences S(i), where lim i →∞ S(i) = S.
Each prototype S(i) is modeled as a graph G(i) = (V(i), E(i), C(i)), where

(1) V(i) is a set of vertices. Each vertex can be an atomic operator or a
composite operator modeled as another graph.

(2) E(i) is a set of data streams. Each edge is labeled with the associated
variable name. There can be more than one edge between two
vertices. There can also be edges from an operator to itself,
representing state variable data streams.

(3) C(i) is a set of timing and control constraints imposed on the
operators in version i of the prototype.

The prototype designer repeatedly demonstrates versions of the prototype to
users, and designs the next version based on user requirements.
The change from the graph representing the ith version of the prototype to
the graph representing the (i+1)st version can be described in terms of
graph operations by the following equations:
S(i+1) = (V(i+1), E(i+1), C(i+1)) = S(i) + ∆S(i)
∆S(i) = (VA(i), VR(i), EA(i), ER(i), CA(i), CR(i)) where

V(i+1) – V(i) = VA(i): The set of vertices to be added to S(i).
V(i) – V(i+1) = VR(i): The set of vertices to be removed for S(i).
E(i+1) – E(i) = EA(i): The set of edges to be added to S(i).
E(i) – E(i+1) = ER(i): The set of edges to be removed from S(i).
C(i+1) – C(i) = CA(i): The set of timing and control constraints to be

added to S(i).
C(i) – C(i+1) = CR(i): The set of timing and control constraints to be

removed from S(i).
The + operation above is defined as follows:
V(i+1) = V(i) ∪ VA(i) – VR(i)
E(i+1) = E(i) ∪ EA(i) – ER(i)
C(i+1) = C(i) ∪ CA(i) – CR(i)

Figure 2: A change process model of a software system

Because of the need of the successive iteration process of the prototype, a requirement
evolution model that is a kind of a schematic model for the analysis process, was
proposed in [Berzins et al., 1997] for computer-aided prototyping. The requirement
evolution model was modified from the Issue-Based Information System (IBIS) model
[Conklin and Begeman, 1988] and considered that the software object via the evolution
process is not limited to a specification or a program only. We have to trace the source of
the specification and program for obtaining the rationale of evolution.

As a result, the meaning of a software object was extended to the software evolution
objects that have seven types of software evolution components: criticisms, issues,
requirements, specifications, modules, programs and optimizations, and eight types of
software evolution steps: software prototype demo, issue analysis, requirements analysis,
specification design, module design, software prototype integration, software product
demo and software product implementation, for the software evolution process [Harn,
1999a].

The software evolution objects in a C4ISR system specified are modeled as a set X = Y ∪
Z where
･ Y denotes a set of software evolution components and
･ Z denotes a set of software evolution steps.

The software evolution components in a C4ISR system specified are modeled as a set Y =
C ∪ I ∪ R ∪ S ∪ M ∪ P ∪ O where
･ C denotes a set of criticisms,
･ I denotes a set of issues,
･ R denotes a set of requirements,
･ S denotes a set of specifications,
･ M denotes a set of modules,
･ P denotes a set of programs, and
･ O denotes a set of optimizations.

The software evolution steps in a C4ISR system specified are modeled as a set Z = C′ ∪
I′ ∪ R′ ∪ S′ ∪ M′ ∪ P′ ∪ O′ ∪ Q′ where
･ C′ denotes a set of software prototype demo steps,
･ I′ denotes a set of issue analysis steps,
･ R′ denotes a set of requirements analysis steps,
･ S′ denotes a set of specification design steps,
･ M′ denotes a set of module implementation steps,
･ P′ denotes a set of software prototype integration steps,
･ O′ denotes a set of software product demo steps, and
･ Q′ denotes a set of software product implementation steps.

Criticisms

Issues

Requirements

Specifications

Modules

Porgrams

Requirements

Specifications

Modules

Porgrams

Criticisms

Issues

Requirements

Specification Design

Module Design

Software Prototype Demo

Issue Analysis

Requirements Analysis

Specification Design

Module Design

Software Prototype Integration

Issue Analysis

Requirements Analysis

Prototype 1

Prototype 2

Prototype 3

OutputInput Process

Software Product Implementation
Optimizations

Programs

Programs

Prototype n

Production
Program 1

New user requirements component
Software evolution component

Legacy program that is a set of module components

Software evolution step

Components Software Evolution Steps Versions

Software Prototype Integration

Software Product Demo

ComponentsComponentsComponents

Software Prototype Demo

Figure 3: Software evolution steps with their related components

In the C4ISR system development and evolution process, the change from the C4ISR
system representing the ith version to the C4ISR system representing the (i+1)st version
can be described in term of set operations by the following equations:
X(i+1) = X (i) + ∆X(i)
X(i+1) = Y(i+1) ∪ Z(i+1) = (C(i+1) ∪ I(i+1) ∪ R(i+1) ∪ S(i+1) ∪ M(i+1) ∪ P(i+1) ∪

O(i+1)) ∪ (C′ (i+1) ∪ I′ (i+1) ∪ R′ (i+1) ∪ S′ (i+1) ∪ M′
(i+1) ∪ P′ (i+1) ∪ O′ (i+1) ∪ Q′ (i+1))

X(i) = Y(i) ∪ Z(i) = (C(i) ∪ I(i) ∪ R(i) ∪ S(i) ∪ M(i) ∪ P(i) ∪ O(i)) ∪ (C′ (i) ∪ I′ (i) ∪
R′ (i) ∪ S′ (i) ∪ M′ (i) ∪ P′ (i) ∪ O′ (i) ∪ Q′ (i))

∆X(i) = ∆Y(i) ∪ ∆Z(i) = (∆C(i) ∪ ∆I(i) ∪ ∆R(i) ∪ ∆S(i) ∪ ∆M(i) ∪ ∆P(i) ∪ ∆O(i)) ∪
(∆C′ (i) ∪ ∆I′ (i) ∪ ∆R′ (i) ∪ ∆S′ (i) ∪ ∆M′ (i) ∪ ∆P′ (i) ∪ ∆O′ (i) ∪
∆Q′ (i)) where

∆X(i) = Xswap_into(i) – Xswap_out_of(i) ∪ Xmodified(i) where

Xswap_into(i): The set of the new software evolution objects of the C4ISR
system to be added to X(i).

Xswap_into(i): The set of the original software evolution objects of the
C4ISR system to be removed from X(i).

Xmodified(i): The set of the removed software evolution objects of the
C4ISR system to be modified and added to X(i).

∆Y(i) = Yswap_into(i) – Yswap_out_of(i) ∪ Ymodified(i) where
Yswap_into(i): The set of the new software evolution components of the

C4ISR system to be added to Y(i).
Yswap_out_of(i): The set of the original software evolution components of

the C4ISR system to be removed from Y(i).
Yswap_modified(i): The set of the removed software evolution

components of the C4ISR system to be modified and added
to Y(i).

 The definition in details is shown in Appendix A.
∆Z(i) = Zswap_into(i) – Zswap_out_of(i) ∪ Zmodified(i) where

Zswap_into(i): The set of the new software evolution steps of the C4ISR
system to be added to Z(i).

Zswap_out_of(i): The set of the original software evolution steps of the
C4ISR system to be removed from Z(i).

Zswap_modified(i): The set of the removed software evolution steps of the
C4ISR system to be modified and added to Z(i).

The definition in details is shown in Appendix B.

4. Object Integration of C4ISR Systems

4.1 Project Organization and Preparation

The C4ISR system selected by our project is a huge-grain program [Luqi, 1997]
involving module composition. We spent almost one year to conduct this project by nine
project teams. Each project team had one project leader and 24 project members in
charge of 25 large-grain programs that included one integrated meta-program and 24
individual programs.

We assigned project team A, whose members came from Army, Navy, and Air Force, to
integrate the C4ISR systems of Army, Navy, and Air Force. We assigned project team B
to I to create 200 Army C4ISR systems because all of the project members served in the
Army. We had one project chairman and 4 project technical instructors to direct the 225
project members and work with them for four hours once a week. Most of the 225 officer
students, whose ranks were lieutenant commanders or lieutenant colonels, were
operational officers and part of them served in logistics units.

They didn’t have too much knowledge about prototyping the C4ISR systems before
joining to our project. At the beginning of this project, we gave them several relative
classes about the C4ISR systems, for examples: Digitizing Battlefield Management,

Development and Implementation of the C4ISR Systems and Evolution of the C4ISR
Systems. The major contents of these classes include the following subjects:
 1. Digitizing Battlefield Management:
 ･ Network Centric Warfare [Alberts et al., 1999]

･ Understanding Information Age Warfare [Alberts et al., 2001]
 ･ Power to the Edge [Alberts et al., 2003]
 ･ Information Warfare and Security [Denning, 1999]
 2. Development and Implementation of the C4ISR Systems
 ･ Command and Control Theory
 ･ Real-time Embedded Systems
 ･ Requirement Engineering and Rapid Prototyping
 ･ Computer-Aided Prototyping System
 3. Evolution of the C4ISR Systems
 ･ Relational Hypergraph Model [Harn, 1999a]
 ･ Version Control and Configuration Management
 ･ Automated Software Engineering
 ･ Computer-Aided Software Engineering System [Harn, 1999a]

After three months, we taught them to manipulate the Heterogeneous Integration System
(HIS) that was a building tool for creating real-time embedded system and was a PC
version of CAPS executed in Windows platform. At the same time, they collected the
operational requirements of the C4ISR system from user views and discussed the
operational architecture with their previous senior officers and colleagues.

4.2 Operational Architecture

We carried out the Army C4ISR system primarily and integrated with the Navy and Air
Force C4ISR systems that had already been operated for many years by a meta-system
that is a top-level Joint Operational Command and Control System. We have designed
interfaces with the glue and wrapper methodology [Luqi, 1997] to integrate different
heterogeneous platforms including hardware, software, database and network protocol, to
enhance the interoperability among the numerous objects. Through the process of
discussion and optimization by each project team, there were nine projects/systems we
classified as follows:
･ Joint Operational Command and Control System (JOCCS)
･ Decision Support System of Operation Area Commander (DSSOAC)
･ Battle Command System (BCS)
･ Intelligence Surveillance and Reconnaissance System (ISRS)
･ Air Defense System (ADS)
･ Fire Support and Coordination System (FSCS)
･ Disaster Control System (DCS)
･ Operational Service System (OSS)
･ Personnel Information Integration System (PIIS)

The hierarchical operational architecture is built by the above systems and combined by
five types of battlefield objects. Each system is a kind of distributed computer system that
includes the distribution of the related software and data, and integrates the other
battlefield objects via interfaces. The distributed computer system in the above systems
connects to the relative upper/lower level and large/small-scale distributed computers that
are embedded in their command and control systems.

In our project, the battlefield object was simulated as a prototype program with a series of
relative evolutionary objects. We obtained the requirements of the operational
architecture by rapid prototyping method and automated software engineering technology.
CAPS can spread out the whole picture and automatically generate the Prototype System
Description Language (PSDL) codes including the operators and data streams with
properties.

4.3 An example: Fire Support and Coordination System (FSCS)

FSCS is one of the Army C4ISR systems in our project. Table 1 is provided, briefly and
partially, to illustrate the battlefield objects of FSCS configuration management in the
physical domain.

Table 1: The Battlefield Objects of FSCS

Types\Objects The Battlefield Objects of FSCS
Military People Fire-coordinating Officer, Fire-supporting Director,

Artilleryman, Navy Liaison Officer, Air Force Liaison
Officer, Chemistry Officer, Communication and Information
Officer, Object-obtaining Officer, Object-analyzing Officer,
Air Force Support Director, J2 Air Operational Officer, Air
Control Director, Army Air Force Officer

Weapon Systems Field Artillery, Rocket Forces, Armor Forces, Gunnery,
Fighter-bomber, Hunting Helicopter

Navigation Systems CNS, Satellite Navigation GPS
Platform Sensors Battlefield Surveillance and Reconnaissance Radar, Coast

Acquisition Radar, Searching and Ranging Radar, Weather
Radar, ATHS

Communication Links High-rate Receive Links, High-rate Transmit Links, Low-
rate Receive and Transmit Links, Tadiran Communications

FSCS is functionally decomposed into six subsystems, such as object-obtaining
subsystems, fire-supporting subsystem, fire-coordinating subsystem, air-supporting
subsystem, air-controlling subsystem and fire-coordinating command and control
subsystem, which are incorporated by a large-scale computer shown as Figure 4.

In the graphic user interface of HIS, each subsystem of FSCS is considered as a software
object that is a set of lower-level software objects. An example of the fire-supporting

subsystem is shown as Figure 5. These software objects model the battlefield objects of
the physical domain. The software object’s enlargement and refinement of a C4ISR
system depend on the optimization mechanism of operational requirements analysis
including the consideration of economic, technical, and legal feasibility.

Figure 4: Top-level of FSCS

Figure 5: Lower-level of FSCS

The software object in HIS is represented as an operator with properties and connected to
another software object by a data stream with properties. From the huge/large-grain view
of designing a C4ISR system, the operator can be regarded as a super-system because the
operator is an accumulation of its subsystems and the data stream can be specified as a set
of data with an array type because the amount of transmission data is numerous. From the
small-grain view of designing a C4ISR system, the operator is an atomic component that
can be implemented and executed but cannot be decomposed, and the data stream can be
specified as simple data with an abstract dada type.

Finishing the requirements analysis on the graphic user interface panel of HIS, we saved
the whole picture to the disk; at the same time, the PSDL codes are generated
automatically. Through the software evolution steps, the software object of the C4ISR
systems evolves by CAPS. Without using CAPS, it is very hard to manage the software
object with its related evolutionary steps and components. The CAPS has a very powerful
mechanism of configuration management and version control to handle software objects
in different system layer vertically and trace software objects in different versions
horizontally. This mechanism was conducted in the Relational Hypergraph model [Harn,
1999a].

5. Lessons Learned

We have already studied several building methodologies and tools for integrating
battlefield objects of the C4ISR system, such as IDEF, UML, C4ISR Architecture
Framework 2.0, System Architect V9.1, ARIS, Rhapsody, and so on. We found that only
CAPS could match our requirement goals of selecting a suitable tool because we
considered the following key reasons to integrate the battlefield objects:
･ We specified the development methodology – rapid prototyping;
･ We wanted to develop a C4ISR system that was real-time embedded;
･ We needed a building tool that had the function of project management, risk

assessment, software automation, software component reuse, version control and
configuration management;
･ We had to quickly obtain the executable code that could simulate all kinds of

battlefield objects;
･ We had to enhance the software productivity and quality, and reduce the

development and maintenance cost;
･ This tool had to be learned and handled easily;
･ This tool had to be manipulated on the PCs; and
･ Our development environment was heterogeneous.

Before we started our project, we were afraid that our officer students were lacks of
backgrounds and experiences about integrating the battlefield objects of the C4ISR
system. We were supposed to introduce the Petri-Net for them quickly to understand the
process of describing the requirements of the C4ISR system; however, we were very
surprised that they easily accepted the graphic user interface of the HIS. They elicited

their ideas via a simple knowledge representation that was a combination graph of
operators and data streams so they quit to learning the Petri-Net. We proved that the
prototyping was the best method to integrate the C4ISR system.

As mentioned earlier, several battlefield objects could evolve to a new version based on
the object’s swap_into, swap_out_of, modified and unchanged mechanism. Because we
considered the battlefield objects as simulators that were atomic software components
generated by CAPS, after the simulators were executed in the CAPS, we would evaluate
the system performance and change the battlefield objects of the C4ISR system. The
process of the system evaluation and the change of a battlefield object would be executed
several times until the system performance reached the users’ requirements.

For example, the Maximum Execution Time (MET) of a weapon system object had to
adjust to 2 seconds instead of 3 seconds for the reason that the capacity of this kind of the
weapon system was enhanced. If we would like to improve the efficiency of the C4ISR
system but the capacity of the battlefield object of the C4ISR system could not match
user’s current needs, the changed battlefield objects of C4ISR system could be simulated
as a software component with its specific parameters by using CAPS. Therefore, the
battlefield objects could be carried out in the physical domain, and the related software
objects could be validated in the laboratory.

We were anxious about project failure, so we requested each officer student to integrate a
small number of objects of a nonmilitary C4ISR system in advance. The officer student
specified the system domain for practice only. The application of nonmilitary C4ISR
system was selected by the principle that they had to be very familiar with their
knowledge domain. Finally, we obtained the 230 small and independent nonmilitary
C4ISR systems and integrated different domain objects, for examples, ID Checking
System, Smart Cell Phone System, Intelligent Refrigerator Management System, Water
Quality Monitor System, Pet Feed System, Automated Night Stool System, Automatic
Slowdown System for Vehicles, Sound Control TV System, and so on. These nonmilitary
systems cover the characteristics of the C4ISR system partially or completely.

References

[Conklin and Begeman, 1988] "gIBIS: A Hypertext Tool for Exploratory Policy
Discussion," ACM Transactions on Office Information System, Vol. 6, October 1988, pp.
303-331.

[Denning, 1999] D. E. Denning, Information Warfare and Security, Addison-Wesley,
July, 1999.

[Harn, 1999a] M. Harn, "Computer-Aided Software Evolution Based on Inferred
Dependencies," Proceedings of Conference on Advanced Information Systems
Engineering: 6th Doctoral Consortium, Heidelberg, Germany, June 14-15, 1999, pp.
116-127.

[Harn et al., 1999b] M. Harn, V. Berzins, Luqi, and W. Kemple, "Evolution of C4I
Systems," Proceedings of 1999 Command and Control Research and Technology
Symposium, United States Naval War College, Newport, Rhode Island, June 29 - July 1,
1999, pp.1361-1380.

[Harn et al., 1999c] M. Harn, V. Berzins, and Luqi, "Software Evolution Process via a
Relational Hypergraph Model," Proceedings of IEEE/IEEJ/JSAI International
Conference on Intelligent Transportation Systems, Tokyo, Japan, October 5-8, 1999, pp.
599-604.

[Harn et al., 2002] M. Harn, S. Hsu, V. Berzins, and Luqi, "Battlefield Object Control via
Internet Architecture," Proceedings of 2002 Command and Control Research and
Technology Symposium, United States Naval Postgraduate School, Monterey, California,
June 11 - June 13, 2002.

[Luqi, 1989] Luqi, "Software Evolution Through Rapid Prototyping," IEEE Computer,
May 1989, pp. 13-25.

[Luqi,1992] Luqi, "Computer-Aided Prototyping for a Command-And-Control System
Using CAPS," IEEE Software, January 1992, pp. 56-67.

[Luqi,1993] Luqi, "How to Use Prototyping for Requirements Engineering," Proceedings
of IEEE/ACM Symposium on Requirements Engineering, San Diego, CA, January 1993,
p.229.

[Luqi, 1997] Luqi, "Formal Methods Promises and Problems," IEEE Software, January
1997, pp. 73-85.

Appendix A
Yswap_into(i) = Cswap_into(i) ∪ Iswap_into(i) ∪ Rswap_into(i) ∪ Sswap_into(i) ∪ Mswap_into(i) ∪ Pswap_into(i) ∪

Oswap_into(i) where
 Cswap_into(i): The set of the new criticism components of the C4ISR system to be added to C(i).
 Iswap_into(i): The set of the new issue components of the C4ISR system to be added to I(i).
 Rswap_into(i): The set of the new requirements components of the C4ISR system to be added to R(i).
 Sswap_into(i): The set of the new specification components of the C4ISR system to be added to S(i).
 Mswap_into(i): The set of the new module components of the C4ISR system to be added to M(i).
 Pswap_into(i): The set of the new program components of the C4ISR system to be added to P(i).
 Oswap_into(i): The set of the new optimization components of the C4ISR system to be added to O(i).
Yswap_out_of(i) = Cswap_out_of(i) ∪ Iswap_out_of(i) ∪ Rswap_out_of(i) ∪ Sswap_ out_of(i) ∪ Mswap_out_of(i) ∪

Pswap_out_of(i) ∪ Oswap_out_of(i) where
 Cswap_out_of(i): The set of the original criticism components of the C4ISR system to be removed from C(i).
 Iswap_out_of(i): The set of the original issue components of the C4ISR system to be removed from I(i).
 Rswap_out_of(i): The set of the original requirements components of the C4ISR system to be removed from R(i).
 Sswap_out_of(i): The set of the original specification components of the C4ISR system to be removed from S(i).
 Mswap_out_of(i): The set of the original module components of the C4ISR system to be removed from M(i).
 Pswap_out_of(i): The set of the original program components of the C4ISR system to be removed from P(i).
 Oswap_out_of(i): The set of the original optimization components of the C4ISR system to be removed from O(i).
Yswap_modified(i) = Cswap_modified(i) ∪ Iswap_modified(i) ∪ Rswap_modified(i) ∪ Sswap_ modified(i) ∪

Mswap_modified(i) ∪ Pswap_modified(i) ∪ Oswap_modified(i) where
 Cswap_modified(i): The set of the removed criticism components of the C4ISR system to be modified and added to C(i).
 Iswap_modified(i): The set of the removed issue components of the C4ISR system to be modified and added to I(i).
 Rswap_modified(i): The set of the removed requirements components of the C4ISR system to be modified and added to

R(i).
 Sswap_modified(i): The set of the removed specification components of the C4ISR system to be modified and added to

S(i).
 Mswap_modified(i): The set of the removed module components of the C4ISR system to be modified and added to M(i).
 Pswap_modified(i): The set of the removed program components of the C4ISR system to be modified and added to P(i).
 Oswap_modified(i): The set of the removed optimization components of the C4ISR system to be modified and added to

O(i).

Appendix B
Zswap_into(i) = C′swap_into(i) ∪ I′swap_into(i) ∪ R′swap_into(i) ∪ S′swap_into(i) ∪ M′swap_into(i) ∪ P′swap_into(i) ∪

O′swap_into(i) ∪ Q′swap_into(i) where
 C′swap_into(i): The set of the new software prototype demo step of the C4ISR system to be added to C′(i).
 I′swap_into(i): The set of the new issue analysis step of the C4ISR system to be added to I′(i).
 R′swap_into(i): The set of the new requirements analysis step of the C4ISR system to be added to R′(i).
 S′swap_into(i): The set of the new specification design step of the C4ISR system to be added to S′(i).
 M′swap_into(i): The set of the new module implementation step of the C4ISR system to be added to M′(i).
 P′swap_into(i): The set of the new program integration step of the C4ISR system to be added to P′(i).
 O′swap_into(i): The set of the new software product demo step of the C4ISR system to be added to O′(i).
 Q′swap_into(i): The set of the new software product implementaton step of the C4ISR system to be added to Q′(i).
Zswap_out_of(i) = C′swap_out_of(i) ∪ I′swap_out_of(i) ∪ R′swap_out_of(i) ∪ S′swap_ out_of(i) ∪ M′swap_out_of(i) ∪

P′swap_out_of(i) ∪ O′swap_out_of(i) ∪ Q′swap_out_of(i) where
 C′swap_out_of(i): The set of the original software prototype demo step of the C4ISR system to be removed from C′(i).
 I′swap_out_of(i): The set of the original issue analysis step of the C4ISR system to be removed from I′(i).
 R′swap_out_of(i): The set of the original requirements analysis step of the C4ISR system to be removed from R′(i).
 S′swap_out_of(i): The set of the original specification design step of the C4ISR system to be removed from S′(i).
 M′swap_out_of(i): The set of the original module implementation step of the C4ISR system to be removed from M′(i).
 P′swap_out_of(i): The set of the original program integration step of the C4ISR system to be removed from P′(i).
 O′swap_out_of(i): The set of the original software product demo step of the C4ISR system to be removed from O′(i).
 Q′swap_out_of(i): The set of the original software product implementation step of the C4ISR system to be removed from

Q′(i).
Zswap_modified(i) = C′swap_modified(i) ∪ I′swap_modified(i) ∪ R′swap_modified(i) ∪ S′swap_ modified(i) ∪

M′swap_modified(i) ∪ P′swap_modified(i) ∪ O′swap_modified(i) ∪ Q′swap_modified(i) where
 C′swap_modified(i): The set of the removed software prototype demo step of the C4ISR system to be modified and added

to C′(i).
 I′swap_modified(i): The set of the removed issue analysis step of the C4ISR system to be modified and added to I′(i).
 R′swap_modified(i): The set of the removed requirements analysis step of the C4ISR system to be modified and added to

R′(i).
 S′swap_modified(i): The set of the removed specification design step of the C4ISR system to be modified and added to

S′(i).
 M′swap_modified(i): The set of the removed module implementation step of the C4ISR system to be modified and added

to M′(i).
 P′swap_modified(i): The set of the removed program integration step of the C4ISR system to be modified and added to

P′(i).
 O′swap_modified(i): The set of the removed software product demo step of the C4ISR system to be modified and added to

O′(i).
 Q′swap_modified(i): The set of the removed software product implementation step of the C4ISR system to be modified

and added to Q′(i).

