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I. THE GOAL

Our scientific goal is to uncover common principles governing the behavior of a range of
social networks. Our practical goal is to use this understanding to develop specific strategies
to destroy threat networks, and in parallel to develop specific strategies to defend threatened
social networks against attack. There is evidence that progress toward achieving both goals
can be achieved using new approaches from modern statistical physics to social network

structure and dynamics that our group has contributed to.

II. THE “RESEARCH GROUP”

H. E. Stanley, University Professor and Professor of Physics, leads a research group fo-
cused on a range of interdisciplinary problems concerned both with scale-invariant social
networks and with social networks lacking scale invariance (see, e.g., Ref. [1]). A significant
fraction of his recent papers are on the subject of interdisciplinary approaches to the un-
derstanding of real-world networks, with special emphasis on social networks. He served as
Ph.D. thesis advisor to A.-L. Barabasi, the leader in the modern theory of networks. He
has been identified by Science Citation Index for being among the 100 most-cited physicists

worldwide. He received national recognition as recipient of this year’s NSF Director’s Award,



and he has been invited to speak on new developments in understanding the structure and
dynamics of social networks.

An important member of our research group, whose work is key to the success of this
project, is Professor S. Havlin, Director of the Minerva Center, Bar-Ilan University, Israel.
He is acknowledged to be among the top 10 workers in the modern theory of networks,
and figures prominently in the recent book on modern networks by A.-L. Barabési [2].
In particular, Professor Havlin has pioneered mechanisms to attack threat networks and

immunize social networks against attack.

ITII. TOPICS INVESTIGATED

Populations, which can be viewed as networks of social acquaintances, are vulnerable to
disease epidemics initiated by terrorist organizations. Any random immunization of people
against such an attack is problematic because it must encompass almost the entire population
in order to successfully stop the spreading damage [3—7]. Other types of social networks are
organizations, such as military or security agencies, where working relations are represented
by links. To be effective, those organizations must be stable and allow fast data flow in the
network. We propose to address these problems — using concepts and tools of both social
sciences and statistical and nonlinear physics — by designing more stable social network
structures, enabling them to resist random and intentional attacks. Further, we will develop
efficient strategies for immunizing population networks. For this purpose we will need to
better understand the topological structures of existing social networks, and to improve our
understanding of transport in such systems.

Our methods in statistical physics are based on relatively new concepts, such as corre-
lated site-bond percolation theory, which has been pioneered by our research group [8-10].
The applications of percolation theory range from predicting the amount of oil that can be
extracted from an underground reservoir, to understanding the network formation mech-

anism involved in the hardening of a boiled egg. The use of percolation theory by our



interdisciplinary team has already proven valuable in the study of social networks. We have
generalized percolation theory in order to analyze the structure and stability of general
networks under random failures [11] and intentional attacks [12]. Based on this general-
ization, we propose to study a novel approach for designing new social networks that are
more resilient to intentional attacks. We also will develop methods based on our percolation
approach [13] that will enable us to more effectively immunize populations against different

types of epidemics.

IV. RECENT ADVANCES OF OUR GROUP AND OTHER GROUPS

A. Scale-Free Social Networks

Very recent analysis of social networks, as well as many other networks (such as trust
networks and sexual networks), reveals that some of these networks display the important
property of being scale-free [1,4,14], i.e., there is a very wide distribution of the number of
links per vertex. Most vertices have a small number of connections. However, there are
a small number of vertices that have a very large number of connections, and there are
vertices in the full range between these extremes. Further, it seems that there is a possible
explanation for this scale free behavior [15], and that the results for sexual networks extend
to other social networks [16].

Our group is studying the structure of a wide range of social network types [17], and is
building mathematical models of large social networks [13]. In studies we have conducted
about the stability of scale-free social network we have proven that these networks are
optimally resilient to random failure of individuals [11]. Even if almost all elements of a
network malfunction, a large fraction of the individuals will be left connected, and will
allow interactions between a large fraction of the population. This situation is unlike that
of homogeneous networks, in which such a failure will break the entire network into small

unconnected islands. On the other hand, a deliberate attack on the most connected elements



in the network, which will put them out of action, will lead to failure of the entire network
after only a small fraction of nodes have been targeted [12]. Further, studies show that
search can be conducted in such heterogeneous network in a much more efficient way than
in a homogeneous network [18].

A deep connection exists between (a) the stability of a network and (b) the propagation
of disease. Heterogeneous networks are prone to the rapid spreading of epidemics. If the
individuals to be immunized are chosen randomly, spreading is unavoidable, even if almost
all individuals in the network are immunized. However, if the individuals to be immunized
are chosen using “smart” strategies, it becomes possible to reduce the number of infected
individuals to almost zero. Using models, it is possible to forecast the consequences of epi-
demic outbursts and to try to control them. It is established that random immunization
of a large fraction of the population fails to prevent epidemics of diseases that spread upon
contact between infected individuals; for example, Malaria requires 99% of the population
to be immunized in order to stop epidemic spreading [6,7]. On the other hand, targeted
immunization of the most-connected individuals requires global knowledge of the topology
of the social network in question, rendering 99% immunization impractical. We proposed
recently an effective strategy, based on the immunization of a small fraction of acquain-
tances of randomly-selected individuals, that prevents epidemics without requiring global
knowledge of the social network [19].

Our group’s work on social networks has attracted sufficient attention in the social science
community that the authors of these studies have already been invited to present their work
at international conferences, and have been invited by Oxford University Press to prepare a
monograph on social networks. This work is very tentative, and more work is needed before

it can be applied to destroying threat networks.



B. Traffic Flow on Networks

We will adapt to social network analysis recent results on traffic low. In 1994 Leland
et al. [20] found that Ethernet LAN traffic is self-similar, so that “bursts” occur on every
time scale. These findings show that long-range correlations in the interval times of arriving
packets and extreme variability (or infinite limit of the variance). Paxson and Floyd [21]
have found evidence for self-similarity of Wide Area Network (WAN) Traffic, and showed
the failure of Poisson modeling in this case. New empirical findings challenge the validity
of the traditional queuing models, and new models have since been proposed. In contrast
to the above measurements, Takayasu et al. [22,23] have measured a 1/f power spectrum
only at the critical point of a phase transition, and it is still not clear whether the flow is
always self-similar in such networks. They found finite correlation times in the fluctuations
of network traffic, and identified phase transitions between “sparse” and “jam” phases of
the network.

The empirical phenomena mentioned above can influence the design of control schemes
for traffic. However, the empirical description of the traffic is not yet complete. As we have
demonstrated recently in the case of vehicular traffic [24], a careful nonlinear statistical
analysis of measured data may lead to the finding of several congested phases. One of our
goals is to clarify this issue, and one method that we will use in the analysis of measured
time series is Detrended Fluctuation Analysis (DFA). DFA was developed by our group [25]
and has been successfully applied by us and others to many systems, e.g., to DNA sequences,
the analysis of climate changes, heart rate variability, and economics. One of the advantages
of this method is its ability to detect long-range correlations in the records in the presence

of trends and other nonstationarities.



V. DESCRIPTION OF THE ONGOING WORK

A. Preliminary Results of Our Group

We have developed a method that classifies complex real-world networks according to
their statistical topological properties [17]. By studying a wide range of different types of

networks, we find evidence for the occurrence of three classes of small-world networks:

(a) scale-free networks,

(b) broad-scale networks, characterized by a connectivity distribution that has a power-law

regime followed by a sharp cut-off;

(c) single-scale networks, characterized by a connectivity distribution with a fast-decaying

tail.

We have also developed a percolation approach for general networks and obtained surpris-
ing results for scale-free networks [11-13]. The network is fully resilient to random failure of
sites and is extremely vulnerable to intentional attack. Our analytical approach will enable
us to study realistic social networks—e.g., where known correlations between individuals
are included—where the measured clustering property and the real geographical distance,
measured experimentally, will be taken into account. We have already preliminary findings
showing that the geographical effect has a strong influence on the stability and transport of

the network [26,27].

B. Structural and Transport Properties of Networks

We also plan to study several topological properties of networks—e.g., clustering and
correlations. Some preliminary results already exist, such as the work on clustering in trust
networks [28]. The clustering coefficient [29,30], which quantifies the extent to which nodes

adjacent to a given node are linked, seems not to be affected when the network collapses.



This is relevant to terrorist organizations that are comprised of small strongly-connected
cells that are connected to each other by a few, highly-connected individuals [31]. The
clustering was found to also be important in electric power networks, e.g., the power grid
in the Western States in which the clustering coefficient is significantly larger than that
of random networks. A useful method to quantify correlations (by measuring assortative
tendencies, i.e., the tendency of high-degree vertices to associate preferentially with other
high-degree vertices) was suggested recently by Newman [32].

We plan to extend these studies to other real social networks and to study also the degree
distribution for sites at a given distance from the most-connected site. We will also study the
effect of geographical distance in real networks. This information is important for evaluating
the stability and the immunization threshold. We will also analyze the transport properties
of data flow in social networks. We will apply DFA analysis and multifractal analysis [33] to
better understand transport in complex social networks. We plan to develop structural and
transport modeling that will enable better understanding of the structure and transport in

such networks.

C. Optimizing the Stability of Threatened Networks

We will use the analytical approach we developed to calculate the percolation thresh-
old for a given network [11,12], in order to design topologies that improve the stability of
scale-free networks under both random failures and intentional attacks. This will be done
by calculating the percolation threshold while keeping the average number of links for an
individual in the network constant (for safety and security reasons) and then varying param-
eters such as the form of the degree distribution, the type of correlations, and the clustering
coefficients. We will also test the effect of geographical distances on the stability of scale
free networks. This will enable us to propose ways to design more stable networks and to

improve the stability of existing networks.



D. Additional Work

Random immunization fails to prevent epidemics of diseases that spread in populations
upon contact between infected individuals [6,7]; the same is true for immunization of com-
puters against viruses [34]. Unless almost the entire system is immunized, the virus continues
to spread through the population or computer network. To deal with this problem, we have
developed an analytical method that can accurately determine, for various scenarios, the
threshold needed to stop spreading epidemics [13]. Among these possible scenarios are (i)
immunizing people who are acquaintances of an infected individual, (ii) immunizing only
those people who are acquaintances of at least two infected individuals, or (iii) immunizing
only those people who are acquaintances of highly-connected infected individuals.

Our recent results on social networks are complemented by analogous strategies for pro-
tecting other threatened networks, such as communication networks. For example, we have
already demonstrated that, in scale-free uncorrelated networks, if we immunize the neigh-
bors of randomly-chosen sites, the critical threshold can be reduced by a factor of five [19].
This result has dramatic practical implications.

Our analytical approach will enable us to study efficient immunization strategies in more
realistic networks where, e.g., correlations, clustering effects, and geographical topology
are taken into account. The immunization approach will also help to develop methods to
disintegrate targeted organizations, since by removing the nodes that are most relevant for

immunity, the targeted network will collapse.

VI. EXPECTED CONTRIBUTIONS

(a) We will improve the tentative explanation [15] of scale-free social networks, and develop

a better understanding of the range of social networks that are scale-free [16].

(b) We will develop a better understanding of the topological structures of threatened

social networks.



(¢) We will develop new algorithms to improve the stability and safety of threatened
networks. We will design networks for optimal resistance to epidemics, malfunctions

and attacks. We will design efficient and secure algorithms organizational data flow.

(d) We will design efficient methods for effective “immunization” that will greatly re-
duce spreading in threatened networks—the same mathematics describes spread of
infectious agents in social networks, or “viruses” in communication networks. Those

methods will also help to identify weaknesses and thereby protect threatened networks.

VII. SPECIAL FEATURES OF OUR RESEARCH GROUP

Many of the primary methods to be used in this work have been developed by our research
group. These include the analytical percolation approach to general networks [11-13], the
efficient immunization theory [19,13], and the DFA method [25]. We also were among the
first to identify scale-free networks in certain social systems and sexual networks [14-16],

and we developed an approach for classifying network topologies [17].
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