

Modeling for Future Command and Control Architectures1

Holly A. H. Handley and Alexander H. Levis
C3I Center, MSN 4B5

George Mason University
Fairfax, VA 22030

ABSTRACT

Future command and control centers are being designed based to exploit the capabilities
offered by information technologies; models of these proposed architectures are
necessary to predict the performance of alternative designs. However, many of the
performance metrics that these future centers will be evaluated on, such as speed of
command and shared situational awareness, have not been included in previous command
and control models. An enhanced command center model has been created that combines
both a task process model and a decision maker model in order to provide the necessary
degrees of freedom required to evaluate such performance metrics. The task process
model was developed as part of a recent pre-experimental modeling iteration for a subject
experiment and captures the stages of a task over its lifetime; the decision maker model is
required in order to explicitly represent the interaction between decision makers as they
process the task. This enhanced model will allow sophisticated modeling of interactions
between decision makers, such as decision maker synchronization and information
sharing. By combining the task process model with the decision maker model, surrogate
measures of speed of command and situation awareness can be developed and used to
evaluate the behavior and performance of command and control information and decision
processes, essential to assess any future command and control architecture.

1.0 Introduction

As the military moves to redesign command and control architectures to incorporate
information technologies, models are necessary to predict the behaviors and performance
of the proposed command structures. However, many of the performance metrics, such as
speed of command and shared situational awareness, have not been included in previous
command and control models. Models of command and control architectures have been
developed over the last eight years in order to examine the behavior and performance of
experimental command centers performing missions in a laboratory environment
[Handley et al., 1999]. Each model met the requirements of the experiment and was
validated with post experimental data; however, each model was limited to the conditions
of the hypotheses and the performance metrics of the organizations and missions being
developed.

A task process model has been developed as part of a recent pre-experimental modeling
iteration for a subject experiment [Handley and Levis, 2003]. While previous models had

1 This work was supported by the Office of Naval Research under grant no. N00014-03-1-0033

focused on the decision maker process and metrics of the decision maker workload, the
task process model captures the stages of a task over its lifetime, including information
needs and decision maker activity required at each stage. By using the task process
model, metrics for decision maker participation and information requirements regarding
specific tasks can be elicited. The task process model was found to correlate well with
tasks that required a single decision maker completing a task with a single resource. The
model did not explain, however, why some tasks stop mid process and resume at a later
time and it does not represent decision maker synchronization well, i.e., two or more
decision makers supplying resources within a specified time window to complete a task.
Both of these conditions require a decision maker model to work in conjunction with the
task process model, in order to explicitly represent the interaction between the task and
the decision maker.

In order to reconcile the task process model with an existing decision maker model, the
five-stage interacting decision maker model [Levis, 1995], the empirical data collected
from the subject experiment used to validate the task process model were examined.
From the data, the task stages that required different decision makers were identified,
along with delays in the task stages due to decision maker synchronization and
interruptions in task processing due to engaged decision makers. The empirical data
offered insights on how decision makers coordinated on complex tasks. An enhanced
model was then created that combined the task process model and the decision maker
model. The enhanced model will allow more sophisticated modeling of interactions
between decision makers, such as decision maker synchronization and information
sharing. By combining the task process model with the decision maker model, surrogate
measures for speed of command and situation awareness can be developed and used to
evaluate the behavior and performance of command and control information and decision
processes, essential to assess any future command and control architecture.

The remainder of the paper is organized as follows: the next section describes the task
process model while section 3.0 identifies its limitations. Section 4.0 describes the five
stage decision maker model and section 5.0 describes the enhanced model that results
from joining these two component models. Section 6.0 describes the performance
measures used with this model, specifically speed of command and shared situational
awareness; section 7.0 concludes the paper.

2.0 Description of the Task Process Model

The task process model was designed in conjunction with a subject experiment
examining the relationship between different command and control architectures and
alternative scenarios [Diedrich et al., 2002]. The task process model emulates the series
of stages a task follows over its lifetime; each task that appears in the scenario is
represented and evaluated separately. A task is an activity that entails the use of relevant
resources and is carried out by an individual decision maker or a group of decision
makers to accomplish the mission objectives or in defense of own assets. The task stages
are based on the simulator used in the subject experiment, the Dynamic Distributed
Decision-Making (DDD) simulator. The model was developed and validated using trial

experimental data; see Handley & Levis [2003] for a complete description of the model
development.

The task process model is shown in Figure 1. The first stage, Appear, occurs when a task
(in this case a threat) is first present in the environment. This is controlled by the input
scenario which specifies the time that each task appears. As soon as the task is noticed,
either by a decision maker or a sensor, it is Detected and a decision maker initiates its
processing. The task is then Identified; this indicates the decision maker knows what type
of task it is and what type of resource (in this case a weapon) can be used to process the
task. When the weapon is launched and travels to collide with the task, the task is defined
as Attacked. When the resource has succeeded in completing the task (the weapon has
destroyed the threat), the task is considered Destroyed. Lastly, the task Disappears from
the simulator screen.

Task Resource Decision MakerScenario

DisappearDestroy Attack IdentifyDetect Appear

Figure 1: Task Process Model

The output of the task process model is a task completion time for every task in the
scenario. Each stage of the sequential model has a delay determined by the attributes of
the task, decision maker, or resource. Once the task enters the detect stage, it proceeds
through the process uninterrupted, accumulating the delays at each stage until
completion. The finish time of the task is the sum of the delays of each stage in the
process; the task delay is the completion time minus the time the task first appeared,
representing the actual processing time of the task:

 tfinish = tappear + tdetect + tidentify + tattack + tdestroy + tdisappear. [1]

tdelay = tfinish - tappear [2]

The time the task appears, tappear, is predetermined by the scenario; the scenario is a list of
all input tasks and the time they enter or appear in the model. The detect delay, tdetect, of
each task is variable depending on the activity of the decision maker. If the decision
maker responsible for the task is not currently acting on another task, the current task will
be detected immediately. If, however, he is engaged with another task, the current task
will wait until he is unoccupied; this variability is represented by the larger arrow in
Figure 1. The delay associated with identifying the task, tidentify, represents the processing
time by the decision maker. At the end of this stage the decision maker has identified the
type of threat the task represents and the appropriate type of resource to use against it.
This stage has a fixed delay to represent the decision maker’s processing time. This value

was determined empirically by comparing model simulation data at increasing levels of
decision maker delay to trial experimental output data. There is also a workload limit of
one task imposed on the model at this stage. In the Attack and Destroy stages the
parameters of the resource chosen by the decision maker to counteract the task provide
the delay times; tattack is the launch delay of the resource and tdestroy is the travel time of the
resource to the location of the task. The delay of the Disappear stage, tdisappear, represents
the delay between the time the threat is attacked and the time it disappears from the
display; this value is specific to each task class.

The model was implemented using Colored Petri nets, a graphical modeling language and
a powerful modeling tool used to expose critical time dependencies, task concurrencies
and behavior that is event driven. The model was implemented in Design/CPN and
simulated under different conditions as determined by the experimental design. While the
DDD simulator creates the environment for the subject experiments, it also captures the
subject’s actions and task data throughout the course of the experimental scenario. This
information is made available after the experiment in log files, which can be sorted by
decision maker, resource, or task identifiers to find timing information. The model was
validated after the subject experiment by comparing the timing of the task stages
recorded in the log files with the timing of the task stages used in the simulation model.

Certain delays in the process are fixed based on the task type or the resource chosen
while other delays are variable depending on the activity level of the responsible decision
maker. The task pattern in the scenario elicits different decision maker activity levels
depending on the architecture; the architecture determines what resources a decision
maker controls and what types or locations of tasks each is responsible for. This model
was used to predict congruence between architectures and scenarios. Scenarios varied the
arrival time, type, and location of tasks, which in turn changed the loading on decision
makers and affected his choice of resource; congruence was evaluated as the ability of the
different architectures to process the scenario tasks in a timely manner. The task process
model allows the evaluation of individual task delays; looking at a single task process
allows the correlation of the task delay, resource used and decision maker engaged with
the experimental data Looking across multiple task processes can be used to identify
concurrency between tasks, decision maker workload at a particular time, and platform
activity across time.

3.0 Limitations of the Single Task Model

Empirical data from the subject experiment [Handley and Levis, 2003] was used to
validate the task process model. The performance of the model was validated by
comparing the task completion times of the model to the experimental results. The
average correlation between the model data and the experimental data was 0.86, with an
average of 58 tasks per scenario (see Appendix A). While the final output of the task
stages correlated well, there was a discrepancy between the modeled tasks and some of
the experimental results. Examination of the time data of the experimental task stages
indicated that often tasks were interrupted in the middle of the process and then were
resumed later on. In order to verify the sequence of stages that composed the task

process, experimental data from two task classes (threats) were examined in detail:
enemy patrol boats and enemy air attacks. Both of these tasks required one decision
maker and one resource to complete. Extraction of the empirical stage delays showed that
the individual tasks fell into two categories: those that had an interruption, or a large time
delay, in their task process, and those that did not. Note that the DDD simulator is a real
time simulation, i.e., one second of real time represents one second of simulation time.
Examples of the simulation time at each task stage are shown in Figure 2.

 Arrive Detect Identify Select Attack Destroy
Patrol Boat #218
Team MA 370 371 372 430 434 439
Team MC -
Interruption

370 371 372 584 588 593

Air Attack #406
Team SA 1251 1254 1322 1340 1342 1347
Team SE -
Interruption

1251 1254 1322 1380 1389 1394

Figure 2: Example Tasks with Task Process Interruptions

The empirical data suggests that in some instances there is a break in the processing
between the Identify and Attack stages. The stage Select was introduced in the log files to
indicate the continuation of a task after an interruption. This break represents the
decision maker disengaging from the current task to attend to another, higher priority
task, before returning to the original task. This requires including another stage in the task
process model, the Select stage, which represents another variable delay depending on the
activity level of the decision maker. This also implies the need for a coupling of a
decision maker model with the task process model to allow for variations in the task
processing due to the activity level (workload) of the decision maker.

Many of the tasks in the scenario required the interaction of one or more decision makers
to combine their resource in order to execute the task. These tasks were not included in
the model simulation, but were present in the experiment and in the empirical data
collected for examination. An example of the interaction of the decision makers
synchronizing their resources is shown in Figure 3:

Stage Time DM Resource
04-Select 1726 2
04-Select 1756 3
11-Attack 1759 2 SOF-500
12-Assist 1761 3 SOF-501

18-Destroy 1789 2

Figure 3: Decision Maker Synchronization on Task 28, Team D Run S2

These synchronized tasks could not be included in the original task process model design;
however, they can be addressed if the decision maker model is included explicitly.

4.0 A Five Stage Decision Maker Model

In order to study the behavior of an organization, it is necessary to have a model of its
components, namely the individual decision makers. March and Simon [1958]
hypothesized that decision makers follow a two step process: first determining the
situation and then determining a response. This led to a two stage decision maker model
by Wohl [1979] which was expanded to four stages by Boettcher and Levis [1982] in
order to accommodate interactions between decision makers. Remy and Levis [1986]
formalized these interactions. Levis [1992] presented a model of a five stage interacting
decision maker that subsumed the previous models. This model presupposes that the
decision makers are executing well-defined tasks for which they have been trained and
that there is a limit to the amount of processing a decision maker can perform [Boettcher
and Levis, 1982] in accordance with the bounded rationality constraint [March, 1978].

The five stage decision maker model is shown in Figure 4. The decision maker receives a
signal, x, from the external environment or from another decision maker. The situation
assessment stage (SA) represents the processing of the incoming signal to obtain the
assessed situation, z, which may be shared with other decision makers. The decision
maker can also receive a signal z’ from another decision maker; z’ and z are then fused
together in the information fusion (IF) stage to produce z’’. The fused information is then
processed at the task processing (TP) stage to produce v. A command or control
information from another decision maker is received as v’. The command interpretation
(CI) stage then combines v and v’ to produce the variable w, which is input to the
response selection (RS) stage. The RS stage then produces the output y to the
environment, and/or the output y’ to other decision makers.

x z z'' v w y

z

z' v'

y'

SA IF TP CI RS

Figure 4: Five Stage Interacting Decision Maker

The model depicts explicitly the stages at which a decision maker can interact with other
decision makers or the environment. A decision maker can receive inputs from the
external environment only at the SA stage. However, this input x can also be from
another decision maker (the y’ output) from within the organization. A decision maker
can share his assessed input through the z output at this stage. The z’ input to the IF stage
is used when the decision maker is receiving a second data input. This input must be

generated from within the organization and can be the output of another decision maker’s
SA or RS stage. The fused information from the IF stage, z”, is the input to the TP stage.
The decision maker’s function is performed at this stage and results in the output v. In the
CI stage, the decision maker can receive control information as the input v’. This is also
internally generated and must originate from another decision maker’s RS stage. In the
RS stage, an output is produced; y is the output to the environment and y’ is the output to
another decision maker. Thus the interactions between two decision makers are limited
by the constraints enumerated above: the output from the SA stage, z, can only be an
input to another decision-maker’s IF stage as z’, and an internal output from the RS stage,
y’, can only be input to another decision maker’s SA stage as x, IF stage as z’, or CI stage
as v’.

A decision maker need not exercise all five stages when performing a task. Depending on
the inputs and outputs required, a decision maker can instantiate different subsets of the
five stage model.

5.0 Enhanced Task Process Model

The two limitations identified in the current task process model are the inability to allow
a decision maker to disengage from a task in order to initiate the processing of another
task and the inability to represent complex tasks, i.e., tasks requiring multiple decision
makers to synchronize resources to accomplish a task. Both of these limitations require a
coupling of the task process model with the five stage interacting decision maker model.

5.1 Task Interruption

Currently in the single task process model, the delays of the Detect and Identify stages are
due to the decision maker; the decision maker is implicitly associated with these task
stages. This relationship can be made explicit by associating the Detect-Identify stages of
the task process model with the Situation Assessment (SA) – Response Selection (RS)
stages of the decision maker model. The task process model is now constrained by the
decision maker model during these stages. An additional task stage was identified in the
empirical data: the Select stage preceded the Attack stage and was used to indicate that a
decision maker had continued processing the interrupted task. The decision maker SA-RS
stages can again be associated with the task process Select – Attack stages. This coupling
of the task process model with the decision maker model is shown in Figure 5.

RS SA RS SA

Select Appear Disappear DestroyAttack IdentifyDetect

Figure 5: Single Task Model Coupled with Decision Maker Model

This coupling allows a second variability in the task processing: the original interruption
in processing occurs between the Appear and Detect stages, which represents the variable
delay due to an engaged decision maker, and an additional interruption between the
Identify and Select stages, when a decision maker may disengage from the task in order to
attend to another task. The Select stage delay is also a variable delay depending on the
activity of the decision maker. The linear delay equations are modified by adding the
additional variable delay term tselect:

 tfinish` = tappear + tdetect + tidentify + tselect + tattack + tdestroy+ tdisappear. [3]

tdelay` = tfinish` - tappear [4]

5.2 Decision Maker Synchronization

The task process model is limited in that it can currently process only tasks requiring a
single decision maker with a single resource. While these tasks did account for the
majority of the tasks in the experimental scenarios, these were mostly tasks that defended
own assets. The tasks that defined the objective of the scenario mission were the complex
tasks that required two or three decision makers to synchronize their resources to
accomplish the task within a defined time window; if any one decision maker applied his
resource outside of that time window the task would fail.

In order to represent the synchronization of decision makers in the model, the different
roles a decision maker assumes in processing different types of tasks must be defined in
terms of the five stage model. Three decision maker roles have previously been identified
[Levis et al., 1998]. The Independent role is defined as a decision maker acting on a task
that he can then execute without interacting with other decision makers; this is the role of
the single task in the current task process model. The Leader role is defined when a
decision maker has to execute a task by interacting with other decision makers, however
this decision maker is the initiator and sends synchronization messages to the other
decision makers. The Follower role is defined for decision makers who must provide
resources to execute a task with other decision makers, but it is another decision maker
that sends the synchronization information.

The Independent role is used in the single task process model; a single decision maker
with a single resource processes the task. Figure 4 and equations [3] and [4] describe this
model. The Leader and Follower roles are bound together by the interactions required to
synchronize their efforts. In all complex tasks, the commander’s intent identifies a
specific decision maker as the leader for that task. This decision maker will initiate the
task and interact with the other decision makers as necessary to complete the task. These
interactions are shown in Figure 6.

Task

CI
DMF

IF
DML

Assist

Follower

Leader

RS
DMF

SA
DMF

RS
DMF

SA
DMF

Select IdentifyDetect

RS
DML

SA
DML

RS
DML

SA
DML

Select Appear DisappearDestroy Attack Identify Detect

Figure 6: Leader and Follower Role Interactions

The Leader (DML) will first Detect and Identify the task; he identifies the additional
resources and their responsible decision makers he needs for the complex task. The
Leader is modeled with SA-RS stages, similar to the Independent role with the addition
of the y` output. The y` output is used to alert the Follower decision maker(s) to Detect
and Identify the task in preparation for a synchronized attack. The Follower (DMF) is
modeled with the same SA-RS combination and the y` output is used at the Leader’s
Select stage to indicate the readiness of the Follower decision makers; the Leader’s Select
stage is still variable dependent on the other tasks he is engaged with. The Leader will
then begin the attack by launching his resource and signaling the other decision makers to
synchronize their resource launch. The Leader’s Select stage is modeled by a SA stage to
indicate the task has been selected and an IF stage to include the “ready” signal from the
Followers. The Attack stage is modeled as a RS stage, which indicates the launch of the
resource and again a y` signal is sent to interact with the Follower. The Follower’s Select
stage also has a variable delay depending on his task priorities; the SA stage represents
his Select stage. The Follower’s task process stage is indicated as “Assist” in the DDD
simulator; the Assist stage is modeled as a CI stage that waits for the synchronization
signal from the Leader, and then a RS stage where the resource is launched.

The completion time of the task must be represented as a combination of delays from
both the Leader and the Follower decision makers. In terms of the delays incurred by the
Leader, the task completion time is:

 tfinish`` = tappear + tdetectL + tidentifyL + tselectL + tIFL + tattackL + tdestroy + tdisappear. [5]

However, tIFL, which represents the delay associated with waiting for the “ready”
response from the Follower decision maker is not a valid entry; it cannot be traced as a
task stage in the DDD simulator. This delay can be represented, however, as the Detect
and Identify stages of the Follower decision maker, tdetectF + tidentifyF; but these delays may

be occurring concurrently with the Select delay of the Leader. The delay can then be
correctly represented as a maximum of the pair:

tfinish`` = tappear + tdetectL + tidentifyL + tselectL + max [0, (tdetectF + tidentifyF) - tselectL]
+ tattackL + tdestroy + tdisappear. [6]

Likewise, the Destroy stage of the task is dependent on all synchronized resources
arriving with the window of attack determined by the task class. In this case:

 tassistF - tattackL < ∆ tattack [7]

where ∆ tattack is the pre-determined time completion window of the task; if this condition
is not met the threat is not destroyed. For completeness:

tdelay`` = tfinish`` - tappear. [8]

The enhanced task process model was implemented as a Colored Petri net and
resimulated with the experimental scenario. The model output was again correlated with
the experimental data; the average correlation over 12 teams was 0.80 with an average of
71 correlated tasks (see Appendix A). In order to add complex tasks to the model, the
scenario was modified to accept the mission tasks. The mission tasks are complex tasks
that must be completed in precedence order and require multiple resources; in some
architectures one decision maker may own the complete set of resources, in other
architectures he must coordinate with other decision makers to complete the set of
resources required. While the existing scenario, the independent tasks, was an input list of
tasks and their (fixed) arrival time, now the mission tasks are triggered by the completion
of other tasks and as such have no fixed arrival time. This makes the correlation more
complex as not only is the completion time variable, but also the actual appear time.

The delay times of this model are dependent on the interaction of the architecture and the
scenario, and on the interaction of the Leader and Follower decision makers in complex
tasks. The decision maker SA delay times (tdetect, tselect) represent the delay for the
decision maker to commence work on the task, either initially or after an interruption.
This delay depends on what other tasks the decision maker is engaged on and task
priorities. The IF and CI stages are junctions where the decision makers exchange
information; task processing suspends until all information is exchanged. It would be
difficult to determine these compound delays without executing the model in simulation
mode.

6.0 Performance Measures

6.1 Speed of Command

Speed of Command is defined as the time from when a threat is detected until it is
engaged. A surrogate measure for the speed of command in the enhanced task process
model is the task delay, i.e. the difference between the completion time of the task and

the time the task appeared; the time from the Detect stage to the Disappear stage in the
model. This is equation [4] for a single task and equation [8] for a synchronized task.
Tasks can be evaluated individually using this metric as in Figure 6, or the accumulated
task delay over the course of the scenario can be compared across architectures, as in
Figure 7.

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500
Task Appear Time (sec)

Ta
sk

 D
el

ay
 (s

ec
)

Functional

Divisional

Figure 6: Speed of Command as Task Delay for Individual Tasks

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500

Task AppearTime (sec)

A
cc

um
ul

at
ed

 D
el

ay
 (s

ec
)

Functional

Divisional

Figure 7: Speed of Command as Accumulated Task Delay for Scenario

The data in the graphs show the simulation results for two different architectures, termed
Functional and Divisional; in both cases the same scenario was used. The delay of each
task versus the time it appears for each architecture is shown in Figure 6. While this
graph shows the differences in delay for each individual task, it does not give a good

indication of how each architecture is performing with regards to Speed of Command. A
better indicator of the performance is the accumulated delay of individual tasks as the
scenario progresses over time as shown in Figure 7; the Divisional architecture shows an
improvement of 17.8% in accumulated task delay, or Speed of Command, over the
Functional architecture. The enhanced model includes the variability of the decision
maker’s attention to the task, not only the initial delay in the Detect stage, but also delays
that may occur due to interruptions in the task processing at the Select stage. These
results concur with the experimental output; for this scenario, termed the “M” scenario,
the Divisional organization outperformed the Functional organization.

6.2 Shared Situational Awareness

Shared Situational Awareness is the ability of a team of decision makers to perceive and
understand a tactical picture that is complete and consistent across the team. In the single
task process model there was no mechanism for decision makers to interact on a task;
therefore there was no metric to gauge the situational awareness of multiple decision
makers on the same task. The enhanced model specifically allows decision makers to
synchronize their efforts to complete a task, which allows the opportunity to propose a
metric to observe shared situation awareness.

On complex tasks that require multiple decision makers, a time window exists for each
task in which all required resources must be fired. This allotted time can be described as a
window of attack whose parameters are determined a priori by the requirements of the
task; different task types may have different windows of attack. Two quantities are
needed to specify the window of attack: the lower and the upper bounds of the time
interval, ts and tf, respectively, or one of the bounds and the length of the interval, e.g. ts
and ∆ t [Cothier and Levis, 1986]. The lower bound of the window is the time the first
resource attacks the task and the length of the window is the predetermined time window
of attack. In order for the attack to be successful, the time the final required resource
attacks the task must be within the window’s bounds:

tf < ts + ∆ t [9]

This window of attack (which is equivalent to [7]) can represents a surrogate measure for
Shared Situation Awareness for the decision makers participating in the task. For the task
to succeed the team of decision makers all need to apply the correct resources to the
correct task within a finite period of time indicating a consistent and complete tactical
picture. As the number of decision makers who participate in an attack increase, this
metric becomes more meaningful.

The enhanced task process model can provide insights on Shared Situational Awareness
based on the interactions between the Leader and Follower decision maker on
synchronized tasks. There are three interaction points between the two roles: the output of
the Leader’s Identify (RS) stage to the Follower’s Detect (SA) stage, the output of the
Follower’s Identify (RS) stage to the Leader’s Select (IF) stage, and the output of the
Leader’s Attack (RS) stage to the Follower’s Assist (CI) stage. While the first two will

affect the overall delay of the task, the last interaction affects the final synchronization of
the launch of resources. The critical point is the variable delay of the Follower’s Select
stage; if he delays too long resuming processing of the task, he will miss the window of
attack initiated by the Leader’s resource launch. This variable delay is a function of the
architecture interacting with the scenario and can be used to compare across architecture
scenario pairs; an example is shown in Figures 8 and 9.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

Complex Task Number

A
tta

ck
 T

im
e

(s
ec

)

DivF
DivL
FunF
FunL

Figure 8: Shared Situational Awareness as Leader-Follower Attack Times

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Complex Task Number

A
tta

ck
 D

el
ay

 (s
ec

)

DivWin
FunWin

Task
Window
Limit

Figure 9: Shared Situational Awareness as Attack Delay

Figure 8 shows both the Leader and Follower attack times for a set of 14 complex tasks,
similar to those used in the “M” scenario above but in a separate, investigational scenario

where the tempo of operations has been increased, completed by both Divisional (Div)
and Functional (Fun) architectures. This can be used to evaluate how situational
awareness varies over the course of this investigational scenario. In this case situational
awareness seems to improve over the course of the scenario for both architectures. Figure
9 makes explicit the attack delay (tf − ts) versus the task window of attack (∆tattack). The
Functional architecture has seven tasks that miss the window and the Divisional has four.
For a consistent Attack Window of 100 simulation seconds, the average window for the
Divisional architecture is 73.8, while for the Functional architecture it is 136.4. In this
case the Divisional architecture has a 46% improvement in Shared Situational
Awareness. This metric was difficult to obtain from the subject experimental data, as
many of the complex tasks were not attempted, and so no window data comparison was
made.

7.0 Conclusion

The task process model was designed in conjunction with a subject experiment
examining the relationship between different command and control architectures and
alternative scenarios; the task process model emulates the series of stages a task follows
over its lifetime. Limitations to the model were identified, specifically the inability to
allow a decision maker to disengage from a task in order to initiate the processing of
another task and the inability to represent complex tasks, i.e., tasks requiring multiple
decision makers to synchronize resources to accomplish a task. Both of these limitations
require a coupling of the task process model with a decision maker model. The five stage
interacting decision maker model depicts the stages at which a decision maker can
interact with other decision makers or the environment, i.e. the task process. The
relationship between the models was made explicit by associating the Detect - Identify
and Select - Attack stages of the task process model with the Situation Assessment (SA)-
Response Selection (RS) stages of the decision maker model. The task process model is
now constrained by the decision maker model during these stages.

The delay times of the enhanced task process model are dependent on the interaction of
the architecture and the scenario, and on the interaction of the decision makers executing
complex tasks. These can be used to define surrogate measures for Speed of Command
and Shared Situational Awareness; the accumulated delay time was used to compare the
Speed of Command across architectures and the task window limit was used to evaluate
Shared Situational Awareness. By using empirical data collected after a subject
experiment, enhancements made to an existing model have resulted in a model that is
more realistic and versatile in evaluating command and control architectures operating
under different scenarios. The performance measures reflect the completion times of time
critical tasks; including the variability of the decision maker’s attention to the task, not
only the initial delay in the Detect stage, but also delays that may occur due to
interruptions in the task processing at the Select stage and the interaction of decision
makers due to the synchronization of the launch of resources. The model will be a
valuable tool for evaluating proposed future command and control centers.

References

[Boettcher and Levis, 1982] Kevin L. Boettcher and Alexander H. Levis, “Modeling the
Interacting Decisionmaker with Bounded Rationality,” IEEE Transactions on Systems,
Man and Cybernetics, Vol. SMC 12, No. 3, pp. 334-344.

[Boettcher and Levis, 1983] Kevin L. Boettcher and Alexander H. Levis,
“Decisionmaking Organizations with Acyclical Information Structures,” IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC 13, No. 3, pp. 384-391.

[Cothier and Levis, 1986] Phillippe H. Cothier and Alexander H. Levis, ‘Timeliness and
Measures of Effectiveness in Command and Control,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC 16, No. 6, pp. 844-853.

[Diedrich et al., 2002] F.J. Diedrich, S.P Hocevar, E.E. Entin, S.G. Hutchins, W.G.
Kemple, and D.L. Kleinman, “Adaptive Architectures for Command and Control:
Toward An Empirical Evaluation of Organizational Congruence and Adaptation,”
Proceedings of the Command and Control Research and Technology Symposium,
Monterey, CA.

[Handley et al., 1999] H. A. H. Handley, Z. R. Zaidi, and A. H. Levis, “The Use of
Simulation Models in Model Driven Experiments,” Systems Engineering, John Wiley &
Sons, Inc, 2:108-128.

[Handley and Levis, 2003] H. A. H. Handley and A. H. Levis, “Organizational
Architectures and Mission Requirements: A Model to Determine Congruence,” Systems
Engineering, John Wiley & Sons, Inc, Vol. 6, No. 3.

[Handley, 2003] Holly A. H. Handley, “Dynamic Modeling of the Strategic Studies
Group Architectures,” Memorandum, January 14, 2003.

[Hiniker, 2002] Paul J. Hiniker, “A Model of Command and Control Processes for
JWARS.” 7th International Command and Control Research and Technology Symposium,
September 16-20, 2002, Quebec City, Canada.

[Levis, 1992] Alexander H. Levis, “A Colored Petri net Model of Intelligent Nodes,”
Robotics and Flexible Manufacturing Systems, J.C. Gentina and S.G. Tzafestas, Eds.,
Elsevier Science Publishers, The Netherlands.

[Levis, 1995] A.H. Levis, “Human Interaction with Decision Aids: A Mathematical
Approach,” in Human/Technology Interaction in Complex Systems, Vol.7, W.B. Rouse,
Ed., JAI Press, 1995

[Levis et al., 1998] Alexander H. Levis, Holly Handley, Zainab R. Zaidi, “Five Stage
Decision Maker Model,” Memorandum, August 28, 1998.

[March, 1978] J.G. March, “Bounded Rationality, Ambiguity, and the Engineering of
Choice,” Bell J. Economics, Vol. 9, pp. 587-608, 1978.

[March and Simon, 1958] J.G. March and H. A. Simon, Organizations, John Wiley and
Sons, NY.

[Remy and Levis, 1986] P.A. Remy and A. H. Levis, “On the Generation of
Organizational Architectures using Petri nets,” in Advances in Petri Nets, G. Rozenberg,
Editor, Springer-Verlag, Berlin.

[Wohl, 1981] J.G. Wohl, “Force Management Decision Requirements for Air Force
Tactical Command and Control,” IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-11, No.9.

Appendix A: Correlation Data and Statistics

For each trial in the subject experiment, indicated by Team, a correlation was performed
between the experimental completion time data and the simulated model completion time
data. This value, indicated by Correlation, was obtained by correlating the tasks that were
completed by both the team and the simulation; this number varies by team and is
indicated by Number of Tasks. For each correlation a significance test was performed by
using the F statistic; the results of the test are shown in the columns F Value and F
Significance. In all cases, the null hypothesis of no predictive value can be rejected.

Table A.1: Original Task Process Model Correlation Statistics Between Experimental and
Simulated Output

Team Correlation Number of Tasks F Value F Significance
FSf2W .77 62 89.60 1.64E-13
FSf2D .83 59 124.14 6.16E-16
FSf2B .75 60 76.02 3.87E-12
FMd2W .81 58 107.95 1.12E-14
FMd2D .88 48 165.78 7.37E-17
FMd2B .92 57 315.21 1.95E-24
DSf2E .90 52 217.20 7.88E-20
DSf2C .84 54 127.74 1.28E-15
DSf2A .88 57 195.66 9.26E-20
DMd2E .84 61 141.15 2.74E-17
DMd2C .95 62 602.50 5.50E-33
DMd2A .97 60 822.47 5.96E-36

Table A.2: Enhanced Task Process Model Correlation Statistics Between Experimental
and Simulated Output

Team Correlation Number of Tasks F Value F Significance
FSf2W .71 70 70.76 3.91E-12
FSf2D .75 74 90.29 2.44E-14
FSf2B .68 74 60.53 3.94E-11
FMd2W .79 75 119.56 4.94E-17
FMd2D .87 63 183.15 4.97E-20
FMd2B .92 72 405.64 7.67E-31
DSf2E .82 63 124.71 2.21E-16
DSf2C .76 66 87.10 1.49E-13
DSf2A .67 70 55.39 2.25E-10
DMd2E .79 71 114.08 2.88E-16
DMd2C .88 78 253.89 6.14E-26
DMd2A .90 77 334.47 2.30E-29

	Modeling for Future Command and Control Architectures
	
	Holly A. H. Handley and Alexander H. Levis
	ABSTRACT

	2.0 Description of the Task Process Model
	3.0 Limitations of the Single Task Model
	
	
	
	Select

	Patrol Boat #218
	Air Attack #406
	4.0 A Five Stage Decision Maker Model
	5.0 Enhanced Task Process Model
	
	
	
	
	5.1 Task Interruption

	5.2 Decision Maker Synchronization

	6.0 Performance Measures
	
	
	
	6.1 Speed of Command
	6.2 Shared Situational Awareness

	References

