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Abstract 
In some rapidly approaching future, on a battlefield, deep-space or planetary mission, teams of 
agents will be confronted with a problem beyond their computational capability, putting missions 
at risk. This risk arises from a lack of social theory based on first principles for decision-making 
in the face of ill-defined problems (idp’s). Also, no first principles exist to address the downside 
of cooperation (e.g., terrorist cells; corruption; and, regarding agents, reductions in 
computational power from communication costs when an increasing number of agents 
cooperates interactively). These problems make traditional social models impractical for a 
multiple-agent system to solve idp’s. In contrast to logical positivist models, such as command or 
consensus decision models, quantizing the pro-con positions in decision-making may produce a 
robust model that increases in computational power with N. Previously, optimum solutions of 
idp’s were found to occur when incommensurable beliefs interacting before neutral decision 
makers generated sufficient emotion to process information, I, but insufficient to impair the 
interaction, producing more trust compared to cooperation. This model has been extended to the 
first quantum information density functional theory of groups, especially mergers between 
organizations; we begin now to integrate our model with Markovian models. 

Introduction 
 
To address how systems of computational agents, working alone, in teams, or with humans, 

can cooperate autonomously to solve problems better than the current generation of remotely 
controlled unmanned systems (Darpa, 2002), it is increasingly clear that a revolution in 
computing foundations is necessary to achieve multi-agent autonomy. For example, a staff of 20 
humans is now required to operate a single Predator drone, yet the crash rate is 100 Predators to 
one piloted USAF aircraft (e.g., Pfister, 2002). To reverse this relationship will require the 
rational control and optimization of group processes, beginning with the major unsolved problem 
in Social Psychology of how individuals become a group (Allport, 1962). The related problem in 
game theory (Luce & Raiffa, 1967) is the mathematical inability to distinguish between an 
organization such as IBM and the aggregation of individuals who comprise IBM. While being 
able to determine the optimum structure for decision-making or the formation of organizations 
may offer the greatest opportunity for advancements in computational agent technology, the 
“groupness” problem remains not only unsolved, but also virtually unstudied simply because 
social scientists have until now been unable to study groups except from the perspective of the 
individual (Levine & Moreland, 1998), a critique applicable to game theory for different reasons. 
As the first attempt to analyze social interdependence, game theory only produces static 
information, I (Von Neumann & Morgenstern, 1953, p. 45), including repeated or “evolutionary” 
games. Luce & Raiffa (1967) concluded that logic based on the individual perspective, such as 
game theory, was unable to solve the “groupness” problem. 

The “groupness” problem arises by recognizing that once members have been surveyed with 
questionnaires or polls, summing individual data does not reconstitute the group (adapted from 
Zeilinger, 1999). Nash (1950) avoided this issue in bargaining situations by assigning zero social 
value to groups with dissent, assuring that game theory only addressed the more stable groups 



 
where values might be summated. But even for stable, homogeneous, dissent-free groups, Lewin 
(1951) famously recognized that a group is different from the sum of its parts.  

 

Disadvantages of the Traditional Approach 
 
The idea that “cognitive systems might be best characterized as systems that know what they 

are doing” (Darpa, 2002) is a traditional rational vision of human behavior that sharply contrasts 
with vacillations between “rationality … [and] enormous irrational feelings” humans commonly 
experience as they anguish over difficult decisions (2002 interview of Fiona Shaw, the star of the 
acclaimed new interpretation of “Medea”; in www.washingtonpost.com). Besides not integrating 
emotion, there are three distinct disadvantages with traditional rational individual models of 
human behavior. 

First, the knowledge, K, an organism holds about itself compared to observer K about the 
organism is replete with errors (Baumeister, 1995; e.g., alcoholic denial and hypochondria are 
common but opposite examples in the amount of extreme error possible with human self-K). 
Observer K is also error prone, such as eye-witness testimony (Loftus & Ketcham, 1992), 
captured in Umberto Eco’s new novel by his character Bondolino: “The problem of my life is 
that I’ve always confused what I saw with what I wanted to see.” Yet Simon (1992) speculated 
that an expert’s K can predict the expert’s behavior. Theoretically, however, if the I between an 
agent’s actions and its perceptions of that action are conjugate (Lawless et al., 2000a), then the 
more perfect is either I or I flow the greater the divergence between them. Field evidence from a 
study with USAF combat fighter pilots of air combat maneuvering versus air combat K, and a 
replication of the combat pilot study in the laboratory with mathematics students of mathematics 
skills versus math skills perceptions, did not support Simon, but did support the conjugate or 
social quantum model (SQM) (Lawless et al., 2000b).  

Second, the wide-spread and traditional belief, noted by Benardete (2002), that there always 
exists a single rational decision superior to the same decision made in a democracy (a democracy 
promotes autonomy and, from self-organizational processes, factional diversity among agents), 
remains the premise of game and decision theory (Luce & Raiffa, 1967), even though neither 
theory has been validated in the laboratory or field (Jones, 1998; Kelley, 1992; Klein, 1997). 
Interestingly, both theories use processes similar to convergence theory in the social sciences, 
eventually rejected by its founder Campbell (1996), and also in machine learning (e.g., genetic 
algorithms, neural nets, fuzzy logic, etc.), the premise being that an optimum solution exists at a 
global minimum in rational space (e.g., minimum cost functions), rejected early on by Bohr 
(1955; see also Von Neumann & Morgenstern, 1953, pp. 147-8) when I is interdependent and 
conjugate, as always occurs during social interaction. The convergence process in machine 
learning fails to capture the social interaction for two subtle, other reasons: Convergence governs 
social learning theory (i.e., classical and operant conditioning and modeling), whereas in groups 
governed by democratic decision-making, convergence is delayed by I processing, captured by 
SQM (Lawless & Castelao, 2001); and social learning theory is predicated on a lack of cognitive 
awareness (Skinner, 1978), but awareness is the sine qua non of democratic decision-making and 
self-roganization, also captured by SQM (Lawless & Schwartz, 2002).  

SQM is congruent with dissonance learning theory. Surprisingly, dissonance learning theory 
offers a link between machine learning and cognitive awareness processes. Assuming that first 
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interactions before structure exists are approximately Markovian, then social (e.g., stable 
relationships, organizations, laws, cultures, business practices) and psychological structures (e.g., 
habits, stable beliefs, personal K) are social mechanisms that reduce randomness by increasing 
predictability (i.e., if I = -∑ p(x) log2 p(x), and I flow is ∆I/∆t, or a, K occurs as ∆I -> 0 ). 
Management reduces to managing I to make rational decisions (e.g., Farber, 2002). According to 
Nicolis and Prigogine (1989, p. 255), by construing society as a dissipative system with chaotic 
attractors, predictability recovers along the direction of flow in contracting phase space (e.g., 
axes of I and I flow), while variety and choice generate along the expanding directions of flow. 
This leads us to postulate that outside of the range of social structure, randomness is more likely 
(e.g., the stock market as a random walk; in Malkiel, 2000). But with dissonance learning theory, 
randomness can be mindfully injected within structures. Examples are plans (e.g., in 2003, on the 
national stage the U.S. and N. Korea have lurched between plans for conciliation and 
confrontation; new recovery plans have recently been published by Ford, Gateway, United 
Airlines, and Fiat; new political plans have been announced for the 2004 Presidential race; and 
the Catholic Church struggles to plan past the issue of priest-child abuse); disagreements and 
arguments (e.g., Lawless & Schwartz, 2002); and a wide range of many others (war, art, 
entertainment, innovation, technology), including mergers (e.g., Lawless & Chandrasekara, 
2002). Mergers occur in environments where uncertainty increases (∆I -> ∞), as when a sector 
loses pricing power (e.g., airlines in 2002), in an attempt to regain predictability by 
consolidation, just as slime molds and ants do (Nicolis & Prigogine, 1989, pp. 33 and 236, 
respectively). Randomness can be mindfully marginalized from structure (e.g., crime, 
dictatorship, consensus, bureaucracy), but by proportionately slowing its evolutionary rate. To 
generalize, increasing uncertainty among autonomous agents increases their emotional 
temperature (T, where T = ∂E/∂I), producing more I and anxiety, thereby motivating efforts to 
reduce uncertainty by processing I to increase K (Lawless, 2001).  

Returning to disadvantages, the third disadvantage is the belief that group decision-making is 
inferior (Darpa, 2002; see also Stroebe & Diehl, 1994, for lab support using toy problems). This 
overlooks the three greatest decision-making groups in the world today: the American stock 
markets (Insana, 2000), the U.S. Congress (Schlesinger, 1949), and the U.S. Courts (Freer & 
Perdue, 1996). In the Fall of 2002, The New York Times cited doubts by Hong Kong’s Secretary 
of Security Regina Ip, a top aide to Tung Chee-Hwa, its Chief Executive, about the usefulness of 
democracy. But in contrast to command or consensus decision-making (CDM), we have found 
that democratic decision-making is significantly associated with scientific wealth, human health, 
economic freedom, increased trust, and reduced corruption (Lawless & Castelao, 2001). For 
example, unlike the experience of Soviet Russia, Communist China, or numerous countries in 
Africa during the 20th century, and despite a dogmatic belief in the value of communism and 
other command economies by Skinner (1978), the founder of operant conditioning, Sen (2000) 
concluded that no democracy has ever suffered from famine. Taken together, these findings 
illustrate the theory behind Western systems of justice, markets and science is that the same data 
can lead to multiple, incommensurable, or orthogonal interpretations that can be exploited with a 
social mechanism to power information processing in observers neutral to argument, evolving a 
social system (Lawless & Schwartz, 2002), crudely analogous to quantum computation (Lloyd, 
2000).  

Von Neumann (1961) admired that physicists signaled the limits of rational thought by 
conflict, they never avoided conflict, yet their resolution of conflict created the largest advances 



 
in rational thinking. Encouraged by Von Neumann’s insight, we combine Nash’s (1950) criteria 
for the absence of conflict as a prerequisite for negotiation with the quantum I approach which 
allows us to combine two orthogonal states simultaneously, specifically cooperation and 
competition. If opinions are diametrical (180 deg out of phase; e.g., “Concept A is right”and 
“Concept A is wrong”), versus orthogonal (“Concept A is right” and “Concept B is right”), 
diametrical concepts represent conflict while orthogonal concepts represent I processing.  

In sum, it has been found that the weakest decisions are made by individual rational logic, 
teams, or consensus seekers, the underlying rationale to CDM (e.g., authoritarian decisions, 
military failures such as the USS Vincennes incident, and bureaucracies; in Lawless & Schwartz, 
2002). Even the previously consensus-minded European Council has rejected the consensus 
method as inefficient (WP, 2002). Thus, to build a computational system aware of its goals and 
internal states to determine where and why its B strayed from the desired, while laudable, is a 
traditional approach unlikely to solve idp’s, to save scarce resources, or to be computationally 
efficient, making it unwise to assemble these agents into teams or systems that would be able to 
coordinate in unprecedented ways.   

As an alternative, because social reality is bistable (action I and observation I are conjugate), 
to eliminate redundancies and gaps in large complex systems and reduce their overall cost, a 
system of agents with multiple factions of complementary beliefs and actions, producing 
something akin to a virtual K characterized by increasing belief strength associated with 
decreasing observational accuracy about agent actions (Lawless et al., 2000a), strangely, will 
increase information processing power as the number of decision-makers increase (Lawless, 
2001), precisely the opposite of what happens as traditional computational power increases: As 
systems get larger and more complex, there is evidence that utility and productivity are 
increasingly falling off the curve that tracks pure processor size and speed leading to the 
conclusion that no amount of pure computational power will afford us the kind of intelligent 
computations that we need to address new problems, thus investing in more of the same will not 
get us where we need to go (Darpa, 2002). Traditional models cannot easily account for 
information processing among agents, trust, the value of emotion between agents, or what it is 
about groups that make them superior or inferior decision makers, natural derivatives of 
conjugate or quantum models (Lawless, 2001). Nor can traditional models explain the power of a 
plan that succeeds, like the U.S. Constitution—an imperfect plan written by imperfect men that 
has allowed imperfect leaders and imperfect power centers to excel—with its system to 
maximize autonomy among multiple deciders and to minimize autonomy with checks and 
balances, yielding a system to reduce corruption, increase trust (from Montesquieu), and balance 
cooperation and competition with tension (Berken, 2002), but the quantum model can (e.g., 
Lawless & Castelao, 2001). The value of SQM is that it helps us to see that in contrast to the 
“efficiency” of CDM, and with it Plato’s model of the “ideal leader”, the social tumult associated 
with oppositional decision making in democracies and decision centers allows for continuous 
tuning of a decision with feedback that converts argument into a source of bifurcations and 
uncertainty (near zero or incommensurable social forces; i.e., ∑F = 0 = Force(argument 1) – 
Force(argument 2)), whereas a single leader or bureaucracy slows the rate of evolution by 
promoting consensus or homogeneity (Lawless & Schwartz, 2002).  

To computationally simplify cognitive models, Simon believed that rationality was bounded, 
but that is insufficient to characterize conjugate I. The chief characteristic of an optimum 
decision-making system is one that can exploit the conjugate I that exists in every social 



 
interaction, yet at the same time accepts that conjugate I precludes participants from accurately 
articulating their own decision processes (Lawless et al., 2000a; also, see Zeilinger, 1999), e.g., 
legal decisions sometimes become highly valued as precedents even as the best rational 
justifications for them decline in social value (Polanyi, 1974); similarly in physics, Planck spent 
years attempting to rationalize his own accidental discovery of discrete energy packets that 
ended the traditional view of causality so important to his own mechanical view of reality, R.  

Mathematical approach 
 
The question of “groupness” has puzzled Aeschylus, Plato, Descartes, James, and Bergson, 

but it was finally solved by Heisenberg with his uncertainty principle for atomic objects, then 
extended to human systems as an interdependent interaction between action and observation by 
Bohr (1955; see also Von Neumann & Morgenstern, 1953, pp. 147-8). While considerable 
research into quantum effects has already addressed signal detection theory (i.e., the Békésy-
Stevens model; see Luce, 1963, 1997, who considers it to be a satisfactory alternative), little 
research has added to Bohr’s initial insights for social systems, leaving open many key issues. 
However, Bohr’s approach has several advantages that have begun to pay off with SQM. Given 
conjugate action I uncertainty (∆a) and observational I uncertainty (∆I), the relationship 
becomes:   

∆a∆I > c     (1) 
Since c is unknown, boundary conditions are necessary to solve (1). The first case, already 
discussed with the USAF study (as ∆I -> 0, ∆a -> ∞), found that expert versus non-expert K was 
conjugate, supporting the interdependence of training and learning (Lawless et al., 2000b).  

The second case (as ∆I -> ∞, ∆a -> 0) establishes the value of argument (Lalwess & 
Schwartz, 2002), leading to the finding that the rational logic of an optimal individual (e.g., 
command and consensus decisions) is significantly inferior to group decisions that exploit 
randomness (e.g., decision centers and democracy), leading to the discovery of techniques that 
prevent decision stalemates (van Eeten, 2002) by engaging both sides (∑F= 0 = F1 – F2) and 
those neutral to an argument, increasing I processing and creativity to solve idp’s, producing 
optimum decisions. It has also helped us to recognize similarities between signal detection theory 
and decision-making (“detecting” solutions to idp’s; Lawless & Schwartz, 2002). 

Revising (1) with j as inertial reactance, with time, ∆t, and energy uncertainty, ∆E (Lawless 
et al., 2000), ∆a∆I = ∆ (∆I/∆t) • ∆t/∆t • ∆I = j• ∆ (∆I/∆t)2 • ∆t becomes 

 
 ∆t∆E > c            (2) 

 
Equation (2) predicts that as time uncertainty goes to zero, E becomes unbounded (e.g., big 

courtroom cases, science, or urban renewal projects); inversely, when ∆E goes to zero, time 
becomes unbounded (e.g., at the low E expenditures around resonance, voice boxes operate for a 
lifetime). Equation (2) allows the interaction to be quantized, producing E wells localized around 
ideas or beliefs as set points, accounting for the stable reactance to social change we defined as 
information inertia, j. As increasing E levels approach set points, emotions increase, forcing a 
return to stability (e.g., in set point theory, an “insult” provokes an agent’s response as its set 
points are engaged, or a group when its “laws” are broken; for a review, see Lawless, 2001).  



 
Countering the current belief that prediction with agent systems is not possible (e.g., Bankes, 

2002), mathematical formulations of a group (Lawless & Chandrasekara, 2002), including 
heterogeneous couplings (e.g., terrorist sleeper cells), can be determined ab initio with vocal 
cross-sections by construing the group as a series of interdependent interactions between 
individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an 
organization fits a pattern, with different processes, P, like diffusing or adsorbing recruits, given 
by: 
 

ΓP = nAnB a σAB exp (-∆A/kBT).        (3) 
 
where nA and nB are the numbers of recruits and leaders interacting; a = ∆I/∆t; σAB is the cross-
section (the probability an interaction produces usable E, ∆A, is an area determined by the vocal 
frequency of indoctrinators, ω, and recruits, ω0, increasing rapidly as language “matches” 
increase or differences decrease; i.e., f(ω4/(ω2-ω0

2)2)); exp(•) is the probability of sufficient free 
E, ∆A, for the activity to go forward; kB is Boltzman’s constant; and T is emotion temperature 
(Lawless, 2001). Equation (3) indicates that the more ∆A required for an activity, the less likely 
it occurs; that friendship is optimal for those who listen to synchronize with each other, similar to 
a state of resonance between harmonic oscillators; and that terrorists cooperate to manipulate 
their cross-section to preclude warning observers about their hidden intent.  

Information Density Functional Theory-IDFT 
 
IDFT approximates the function of I density and discrete E effects in an organization of 

adding or removing members. A group forms or reforms by entangling I from an aggregation of 
individuals to solve an idp (Ambrose, 2001), like designing a complex weapon. The chief 
characteristic of an idp is that K concepts do not correspond to objects or actions in R. Once 
solved, however, an idp becomes a well-defined problem, wdp, characterized by a 
correspondence between K, skills and R (Sallach, 2002) (cooperation implies low I density, 
maximum K, and E ground state). In the solution of wdp’s, individuals function in roles bonded 
into a stable network oriented by a shared emotional potential E field (set point theory).  

The potential E surface (EPES) represents the function, hierarchy and geo-cultural differences 
across a group, organization, or society (Sallach, 2002). A recruit moves across the E surface of 
an organization, Rorg, where ETOT is the ground state and PES the minimum total E along the z 
coordinate of the organizational configuration, including its hierarchy, until reaching a minima 
(stability).  

 
EPES (x,y) = minz,R-org ETOT (x,y,z,Rorg)        (4) 

 
A bond forms between two members, A and B, proportionately as its joint ground E state 
becomes less than the aggregate ground state of its members, the difference being the binding E, 
W. The E required to reverse the process and break apart the group becomes ∆A + W (Figure 1). 
W is calculated from the configuration of barriers and nearest and next-nearest neighbors.  
 
Figure 1. The binding E to form a group or break it up. Shown here, two followers (2A) bind 
together with each other and then to one leader (B) to form a group (A2B).  
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Assuming that two recruits (A) bind to one another and to one leader (B), the Hamiltonian 
consists of a site contribution, H0, and an interaction term, Hint, giving:   
 

H0 = Eb
A ∑knk + Eb

B ∑kmk + VA-B  ∑knkmk      (5) 
 
where k as a role site, nk, is either 0 or 1 if k is empty or filled, mk is the same for leader sites, V is 
an interaction parameter, and 

 
Hint = 1/2V1n

A ∑k,anknk+a + 1/2V2n
B ∑k,bnknk+b +1/2V1n

B ∑k,amkmk+a +  
1/2V2n

B ∑k,bmkmk+b+ 1/3 Vtrio
B ∑k,a,a’mkmk+amk+a’+ …    (6) 

 
Here k + a and k + b denote nearest and next nearest sites.   

The processes above (Equations 3-6) can be used to model a heterogeneous group. Stresses 
resulting from a mismatch between an organization and new members can also model the merger 
between two organizations (e.g., HP and Compaq). As a heterogeneous island nucleates on the 
surface of a consolidator, the tension on it to be absorbed relaxes the larger the island grows, 
creating a distance between the consolidator and the island’s leaders, the release of E acting as a 
driving force in the island to choose a hierarchy of leaders less like those in the consolidator, 
motivating the need to integrate both cultures (e.g., the inability to integrate is the putative cause 
of the failure in 2003 of AOL and Time Warner).  

In sum, joining a group promotes the survival of individuals by reducing E expenditures in 
exchange for membership: social loafing (Latane, 1981); audience effects enhance skills (Zajonc, 
1998); greater interaction density promotes health (House et al., 1988); and protecting belief 
systems (Rosenblatt et al., 1990). In exchange, a group exploits the E and skills it collects 
(Ambrose, 2001), forming a structure around a network of interactions between roles bonded to 
each other (Sallach, 2002). Generally at the lowest E state, interaction exchanges —voice, 
visuals, products, and money— between agents cycle I back and forth in interactions coordinated 
by common K (Wendt, 1999). Among the groups that gain more E than it costs to survive 
(Coase, 1937), some gain sufficient free energy, ∆A, to grow in size, experience and wealth, 
deepening E wells to process more I, while others merge to offset competitive weaknesses (e.g., 
HP merged to offset its weakness in computer servers, Compaq’s strength).  

Most interactions within a stable organization serve to fulfill a mission, defend a worldview, 
or acculturate members, but interactions to solve idp’s are different. Modeled by Equations 1-2, 
these interactions temporarily shift members from roles to bring into play factions 
(underdetermined R), neutrals and decision making, where ∆t is the time for the system to evolve 
to an orthogonal state to reach a decision (Aharonov & Bohm, 1961). For optimal decisions, 



 
dissonance (argumentation) between polar opposite views processes I uncertainty into K (e.g., 
political, legal, and scientific dissonance usually precede optimal decisions; in Lawless & 
Castelao, 2001). Identifying the optimum solution of an idp is analogous to signal detection, the 
time (∆t) to detect and adopt a solution lasting until the solution signal is separated from social 
noise; e.g., air-to-air combat, environmental cleanup, environmental disaster recovery, or 
weather prediction (Lawless & Castelao, 2001).  However, given the unreliability of self-reports 
(measurement collapses the interaction into individual histories that cannot recreate it), a new 
approach must be initiated to measure physiological E states, such as vocal energy changes, to 
contrast normal and dissonant states (see Figure 2).   
 
Figure 2: Picard’s liquid model of emotion suggests that social perturbations caused by dissonant 
I produce a spectrum of emotional responses. Significant vocal E changes from normal to angry 
speech have been confirmed (Lawless, 2001).  
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In earlier work, we associated quantum-like square E wells with emotion and decision-
making (e.g., Lawless, 2001). After finding that interaction cross-sections are related to vocal 
frequencies (Lawless, 2002), we speculated that it also applies to brain waves: if gamma waves 
(≈ 40 Hz) mediate the binding of sensory features into objects (Engel et al., 1999) and concepts 
(Lawless & Chandrasekara, 2002), transitions between opposing views in an argument act as 
concept reversals that reflect the time required to sufficiently grasp and apply difficult concepts 
to solve idp’s, linking solution “detection” to signal detection. It may be this time is necessary 
for decision-makers to determine whether an argument can be defended “against all 
contestations” (McBurney & Parsons, 2001, p. 76).  
 

Conclusion  
 

The primary advantage of using SQM is that it is an analytical model that simulates the 
conjugate aspects of decision making and organizational growth (IDFT). SQM explains why 
traditional models based on the individual perspective of rationality fail, or why ABM’s cannot 
be validated; IDFT accounts for differences between an aggregation and a group constituted of 
the same individuals; and, more importantly, both suggest new approaches to study the 
interaction. If language is the assignment of meaning to physical vibrations between human 
oscillators (speech from vocal sounds), and if the primary tool of social science is the self-report, 
then SQM and IDFT suggest many opportunities for interdisciplinary collaborations that could 



 
lead to new tests of falsification by contrasting single versus social E states with neuro-
physiological-psychological data (self-reports, voice, qEEG’s, fMRI’s, EMG’s, Lie Detectors, 
etc.) to determine whether as predicted during decision-making for idp’s and wdp’s that ground 
and excited states can be distinguished, whether competition produces I and, and whether 
cooperation enhances deception. Finally, by recognizing how uncertainty is injected into 
decision-making via argument, the potential compatibility of SQM and Markovian models opens 
a new avenue of research. 
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