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Abstract 
 

Sensor coverage of a unit’s area of operations will be critical to maintaining 
situational awareness for interim and objective force ground units.  As such, sensor 
deployment plans that offer a high probability of covering lines of communication 
(LOC’s) and avenues of approach (AA) while limiting the number of sensors employed 
will become an important part of the Intelligence Preparation of the Battlefield.  Manual 
methods for determining these LOC’s and AA’s can be time consuming when applied 
over large areas of terrain.  We propose a method that combines mathematical 
morphology and a greedy heuristic (single source shortest path algorithm) in order to 
identify channeling terrain along likely routes of enemy movement.  The results of the 
analysis can then be graphically reviewed for quality and used as necessary in the 
Intelligence Preparation of the Battlefield (IPB) process. 

I. Introduction 
 Interim and objective force commanders at the brigade level will be responsible 
for security and intelligence gathering in areas of operations (AO) as large as 2500 square 
kilometers [IBCT 2000]  As a comparison, this area roughly corresponds to the AO 
assigned to today’s legacy divisions [DIVOPS 1996].  In addition to the increased size of 
the AO, the commander’s staff will be significantly smaller than the current division’s 
staff, and, based on the expected operational tempo, have considerably less time to 
conduct the intelligence preparation of the battlefield (IPB).  In order to facilitate these 
two mission requirements, brigades will be equipped with ground sensors designed to be 
employed in a network that enhances situational awareness and targeting capabilities.  
Consequently, a smaller staff will be required to produce in a shorter period of time, the 
standard intelligence products as well as a sensor emplacement plan that supports the 
commander’s critical intelligence requirements and provides maximum AO coverage. 

 A component of the IPB includes extensive analysis of the terrain and its 
suitability in supporting enemy operations.  Much of the information an intelligence 
analyst uses to conduct this analysis is readily available in digital format and stored in 
Geographic Information Systems (GIS).  Thus, with the right set of tools, an analyst 
could rapidly identify mobility corridors and chokepoints throughout the AO.  
Knowledge of this restrictive terrain coupled with likely enemy routes through the area of 
operations could single out tactically significant terrain for nomination as Named Areas 
of Interest (NAI) for review by the analyst.  Additionally, the terrain identified by this 
analysis could be used to generate a sensor employment plan that would provide 
coverage for most activities in the AO.  Finally, these automated processes can be 
executed in minutes rather than hours.  Thus, the analyst is left with more time to explore 
the information and develop the intelligence products. 

 The research described in this paper differs from the bulk of the literature in this 
field in that it focuses on an often overlooked component of the sensor emplacement 
process: selecting locations for which to provide sensor coverage.  The preponderance of 
research in the field of AO sensor coverage assumes either total area coverage or total 
coverage of pre-selected areas of interest within an AO.  The goals of this research are to 
develop a strategy for automating components of the NAI selection process as well as 
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developing a first pass solution for a sensor employment plan.  With this research, we 
attempt to replicate and enhance components of the current IPB process in an automated 
fashion as opposed to replacing the IPB process with technology.  The underlying 
methods supporting the automated analysis in this paper are standard processes with 
accepted results.  What is new is the combining of these processes in such a way as to 
generate tactically significant locations within the AO. 

 The balance of this paper is organized as follows:  In section 2 we summarize the 
related work pertaining to methods of providing sensor coverage in an area of operations.  
In section 3 we present several key processes that are critical to understanding the 
proposed strategy.  Sections 4 and 5 cover the methodology and some simulation results.  
Finally, in section 6 we present areas for further research. 

II. Related Work 
 Previous research in sensor coverage has mostly been concerned with efficient 
total area coverage designed to minimize the number of sensors required to meet 
minimum tolerances for detection[Chakrabarty et al  2002], [Meguerdichian et al 2001], 
[Howard et al 2002].  Underlying assumptions that support this approach are that sensors 
will be cheap, readily available, and relatively small.  Even if we assume that the three 
previously mentioned assumptions bear out, the logistical costs with respect to 
employment time, delivery assets, storage, and transportation associated with such a 
policy could be prohibitive. 

In studies where total area coverage is not considered, authors assume that areas 
of interest have previously been identified [Cheng et al  2002], [Konstantinos et al 2003], 
[Haney and Blatt 2001] and the task at hand is to strategically place the sensors to cover 
these areas of interest.  In research where GIS are coupled with sensor networks 
[Heidemann and Bulusu  2001], the focus has been in using the data for identifying 
sensor location, known as localization, and estimating target location, known as targeting, 
in a network.  No methodology is described however, to determine how these areas of 
interest are identified. 

In current efforts to develop sensor emplacement decision aids for the military 
[Mattice 2002], researchers have developed processes that estimate the probability of 
detection for a moving target within an area of interest, given a sensor location.  The 
analyst however, must select the sensor locations and must have already determined the 
NAI’s.  Another set of researchers [Braswell 2003] have developed a process for 
predicting static enemy positions given terrain, equipment and mission.  While both of 
these technologies are similar to the research presented in this paper, [Mattice 2002] 
requires prior knowledge of NAI’s and [Braswell 2003] does not provide candidate 
NAI’s for mobile targets.  We present in this paper a method that nominates NAI’s for 
mobile targets. 

III. Key Processes 
There are three principle components for this process.  Each is based on standard 

practices.  A better understanding of each of these components will facilitate the 
comprehension of the overall process presented here.  The first process is the generation 
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of a movement cost matrix developed by the NATO Reference Mobility Model 
(NRMM).  The second process identifies all passages through the terrain of a specified 
size.  This is accomplished using a standard mathematical morphological process called 
closing.  Finally we use a shortest path algorithm to generate likely routes through the 
AO.  A more detailed explanation of each of these processes follows. 

NRMM is a vehicle performance prediction model [Haley et al 1979].  The model 
predicts maximum vehicle speed for a given unit of terrain.  The calculations are made 
using vehicle specifications, terrain properties, and weather.  An analyst provides the data 
for the terrain to be analyzed, usually available in Vector Product Interim Terrain Data 
(VITD) format, weather data, a vehicle type, and the dimensions for a terrain unit.  The 
output of this model is a raster file for the entire area under analysis that determines the 
maximum speed the selected vehicle could safely travel within each terrain unit.  This is 
an accredited model that has been in use since 1979.  NRMM includes both wheeled and 
tracked vehicles for friendly and enemy forces.  For the purposes of this research, we 
assume a unit terrain size of 50 meters by 50 meters since this is the standard unit block 
of information associated with VITD [Ryder 1996].  For testing our process, we do not 
use the actual outputs from the NRMM.  Rather, in order to maintain an unclassified label 
for this document, we use false movement cost rasters that simulate the output of the 
NRMM. 

 NRMM creates a digital image of the terrain with respect to target mobility.  The 
next step is to digitally inspect the image to identify restrictive terrain.  For this process, 
we use elements of mathematical morphology that have been used in digital image 
processing since the early 80’s [Pratt 2001].  The two basic operators of morphology are 
dilation and erosion.  The effect of a dilation on an image is to enlarge the boundaries of 
the elements in the image.  The effect of an erosion on an image is to erode the 
boundaries of the elements in an image.  In order to execute either a dilation or an 
erosion, one must have the digital representation of the image and a component referred 
to as the structuring element.  The dilation and erosion of an image are the results of the 
operation on the digital image by the structuring element. 

When dilation and erosion are executed in this order, it is known as a closing 
since it has the effect of closing small openings and gaps in a digital image.  In this 
research we use a closing to identify chokepoints and mobility corridors in the terrain.  
We define the AO as a binary digital image to be processed and use a basic 3X3 grid for 
the structuring element.  The restrictive terrain is defined as the foreground image and 
assigned a value of one (1).  All other terrain is defined as the background image and 
assigned a value of zero (0). 

 Given a digital image I of size X pixels by Y pixels, a structuring element S of size 
X’ pixels by Y’ pixels, where X’ goes from –u to +u and Y’ goes from –v to +v, a dilation 
D of the image is defined as: 

( ) ( )( ), ', 'D x y MAX I x x y y x y= + + ∀; ', '  
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or, each pixel in the dilation assumes the maximum value of the image intersected with 
the structuring element.  Symbolically, this is represented as: 

( ) ( ) ( ), , ',D x y I x y H x y= ⊕ '  

An erosion E of the image is defined as: 

( ) ( )( ), ', ' ; ', 'E x y MIN I x x y y x y= + + ∀  

or, each pixel in the dilation assumes the minimum value of the image intersected with 
the structuring element.  Symbolically, this is represented as: 

( ) ( ) ( ), , ',D x y I x y H x y= '  

Now that we have identified restrictive terrain in the AO, we must identify where 
target vehicles are likely to travel.  We do this using a shortest path algorithm.  A single 
source shortest path problem is defined as finding the least cost path between a source 
node and all other nodes in a graph [Cormen et al  1990].  This is a well studied problem 
with many efficient heuristic based algorithms leading to a provably optimal solution.  If 
we consider the individual cells of the movement cost raster generated by the NRMM to 
be nodes in a grid, and we allow an arc to connect each node to its adjacent nodes (each 
node has at most eight arcs since we are considering movement through a 3X3 grid), then 
we could transform the raster representation of the AO to a network representation of the 
AO.  By using this network, we can predict likely enemy routes throughout the AO by 
finding the least cost path from some set of start nodes to some set of terminal nodes.  
[Cherkassky et al  1996] determined that a network with such a structure as the one 
described above can be solved rapidly (approximately 1 second for a network with over 
one million nodes) using a specialized algorithm known as a double bucket 
implementation of Dijkstra’s Algorithm.  For the sake of ease in implementation and 
explanation, we do not implement his algorithm in this research.  Instead we implement 
the standard Dijkstra’s algorithm at the expense of longer run times. 

IV. Methodology 
We now present the methodology for identifying tactically significant terrain 

within an area of operations.  The goal of our research is to quickly generate a list of 
potential NAI’s that cover the routes a target vehicle could be expected to use in order to 
accomplish its mission.  The objective of this research is to automate this terrain analysis, 
thereby providing the same results as manual methods in a small fraction of the time.  We 
define tactically significant terrain as restrictive terrain that limits the target vehicles 
options for movement and serves as an indicator for the target vehicles possible objective.  
Several significant assumptions are made in this research: 

• In order to reach its objective, a target vehicle’s path will approximate the 
least cost path with respect to time. 
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• The set of paths generated from initial nodes to terminal nodes, while not 
exhaustive, is representative of the paths that could most likely be taken. 

To facilitate the explanation of the process, we use a small piece of artificial 
terrain 1.3 km by .8 km shown in figure 1 and its movement raster representation, after 
having been notionally processed through NRMM using 50 m by 50 m terrain units, 
figure 2.  The dark gray line is a paved road, the light gray line is a dirt road, the black 
line is a river, and the circled feature in figure 1 is a fordable location in the river. 

 

Figure 1: Graphical representation of sample terrain used to describe process 

We begin with the movement raster and modify it to prevent inappropriate 
movement across restrictive terrain.  Specifically, if the movement cost from cell i to cell 
j is represented by the following function: 

( )1
2it i tc c c= + d  

 where: ci = cost in seconds to traverse the initial node 
  cj = cost in seconds to traverse the terminal node 

   
2 if  is diagonally adjacent to ,
1 if  is strictly adjacent to ,  
0 otherwise,  

j i
d j i


= 


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> 24 KPH

24 KPH

18 KPH

12 KPH

6 KPH

0 KPH

Max Speed

Figure 2:  Movement Raster after processing through NRMM 

Then in each of the circled areas in figure 2, diagonal movement across the river, 
represented by the arcs, can be accomplished with no cost associated for crossing the 
river since the initial node and terminal node are non-restrictive terrain.  To remedy this, 
we iterate through the raster and identify locations where restrictive terrain is only 
diagonally adjacent, and replace the counter diagonal raster cells with a restricted terrain 
identifier.  Figure 3 shows the modified raster.   

6 KPH

Max Speed

0 KPH

> 24 KPH
24 KPH
18 KPH
12 KPH

 

Figure 3:  Modified movement raster with impeded diagonal  
movement across restricted terrain 

The value in each raster cell is then converted from maximum safe speed to 
seconds required to traverse the cell, and finally, each arc cost is generated and loaded 
into a two dimensional movement cost matrix, C, to be used in the shortest path 
algorithm.  An extract of C is presented in Table 1. 

In preparation for the closing operation, we create a binary representation of the 
movement cost raster by substituting a one (1) for restrictive terrain and a zero (0) for 
non-restrictive terrain in each cell address and load the data into an array.  In this paper 
we refer to this array as B.   
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Initial Node Terminal Node Arc Cost 

Cell 
Number 

Max Safe 
Speed 

Cell 
Cost (ci) 

Cell 
Number 

Max Safe 
Speed 

Cell Cost 
(cj) cij 

28 17 10.6 1 17 10.6 14.9 

28 17 10.6 2 17 10.6 10.6 
28 17 10.6 3 18 10 14.5 
28 17 10.6 27 17 10.6 10.6 
28 17 10.6 29 18 10 10.3 
28 17 10.6 53 22 8.2 13.2 
28 17 10.6 54 21 8.6 9.6 
28 17 10.6 55 22 8.2 13.2 

 1 2 3

27 28 29

53 54 55

4

30

56

1 2 3

27 28 29

53 54 55

4

30

56

Table 1:  Extract from Cost matrix and conversion from speed to seconds 

For this research we consider the two slowest movement categories ( < 6 kph and 
0 kph) to be classified as restrictive terrain.  Figure 4 shows the binary representation of 
the sample terrain. 

Terrain
Restrictive

Non Restrictive

 

Figure 4:  Binary image of restrictive terrain 

After running the closing operation, we identify gaps by taking the converse of 
the intersection of the binary image with the closing.  Symbolically, this is represented as 

( )iG B C= ∩  (where G is the gap matrix and each element of G is a 0 or 1).  This matrix 
represents all gaps within the area of interest up to a specified size.  For this example, we 
assume a gap size of 50 meters.  It is this matrix that will be used to determine the 
tactically significant gaps. 
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Terrain

50 m Gap

Restrictive
Non Restrictive

 

Figure 5:  Binary image after closing operation with 50 meter gaps identified 

After all gaps have been identified, the process seeks likely paths through the AO 
by executing the shortest path algorithm for all combinations of initial nodes and terminal 
nodes.  This component of the algorithm uses the cost matrix derived from the movement 
raster.  While it is possible to record the paths for future analysis, there is no requirement 
in this process to store each individual path.  Instead, we seek how many paths have 
passed through each node.  These values are stored in a matrix P, with the same 
dimensions as the binary image array mentioned above.  See Table 2 for a representation 
of P.  In this example, the first row of cells served as the initial nodes and the non-zero 
cells in the last row served as the terminal nodes (see figure 3).  Thus each initial node 
has 23 paths originating from it, and each terminal node has 26 paths ending in it. 

P ij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 23 23 23 23 23 23 23 23 44 23 23 23 23 23 23 23 23 23 184 161 138 115 92 69 46 23
2 0 23 46 23 23 8 38 21 0 48 5 45 4 19 46 19 0 230 0 0 0 0 0 0 0 0
3 0 0 23 92 23 8 59 0 0 0 61 41 0 0 27 57 0 230 0 0 0 0 0 0 0 0
4 0 0 0 0 115 8 59 0 0 0 65 0 37 8 19 0 287 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 123 59 0 0 0 17 48 45 0 19 0 287 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 152 121 121 121 106 0 93 0 0 306 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 93 0 0 0 1 113 85 0 40 266 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 93 0 0 0 9 0 145 230 0 266 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 93 0 0 0 9 40 0 0 456 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 93 0 0 49 40 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 93 48 49 0 0 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 141 1 0 0 0 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 104 104 38 0 0 0 0 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 104 0 0 0 38 8 0 0 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0
15 0 26 104 0 0 0 0 0 45 23 15 15 15 118 130 208 208 208 0 0 0 0 0 0 0 0
16 26 26 26 26 0 0 0 26 26 42 59 77 103 26 26 78 52 26 208 182 156 130 104 78 52 26

 

Table 2:  Matrix P results on sample problem 

A matrix T, of tactically significant gaps is created by performing a component 
wise multiplication of the Gap matrix G with the path counting matrix P, or 

.  Any value in T greater than zero represents a gap, 
chokepoint, or mobility corridor of a specified width, with at least one path running 
through it.  In our working example, T consists of 3 significant gaps, see figure 6. 

( ) ( ) (, ,T x y G x y P x y= ⋅ ),
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Terrain

50 m Gap

Restrictive
Non Restrictive

 

Figure 6:  Tactically significant gaps as selected by automated process 

The analyst then selects a lower threshold for the density of paths passing through 
a gap (for example, the three cell gap shown above has a gap density of (121+121+121)/3 
= 121).  Any gap with a density less than the threshold will be filtered out.  This is done 
to eliminate gaps with very few paths running through them.  The remaining values in T 
are then nominated as NAI’s for review by the analyst.  This data can then be viewed 
graphically in conjunction with an image of the mobility raster to cull or add NAI’s. 

V. Results 
 The process in this paper can be run for any terrain for which there is sufficient 
data to run the NRMM.  Size of the AO and the number of initial nodes and terminal 
nodes used to determine the paths are the principle factors in how long the process runs.  
The closing operation is computationally negligible with respect to the shortest path 
algorithm.  As written, the closing operation has a complexity of O(s*n), where s is the 
size of the structuring element and n is the number of nodes.  The shortest path algorithm, 
in contrast, has a complexity of O(c*n2) but can be reduced to O(c*n log n) if a heap 
algorithm is used [Cherkassky et al 1996], where is c is the number of initial nodes.  A 
final example is presented to demonstrate the results when different values for the gap 
size are used on the same terrain.  The source code, “findchokes.cc”, is contained in 
Appendix A.  The data files, “Raster.txt”, “Initial.txt” and “Terminal.txt” are Appendices 
B, C and D respectively. 

 The scenario in support of this sample problem follows.  There are two possible 
assault positions and three possible objectives within this AO of size 5 km X 3 km.  
Figure 7 shows these 5 locations superimposed on the movement raster.  AA1 and AA2 
are the possible attack positions (initial nodes) and obj1, obj2, and obj3 are the possible 
objectives (terminal nodes). 
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> 24 KPH
Max Speed

0 KPH
6 KPH
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18 KPH
24 KPH
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Max Speed

0 KPH
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24 KPH
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Max Speed

0 KPH
6 KPH
12 KPH
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AA2AA2

Obj 1Obj 1 Obj 2Obj 2 Obj 3Obj 3
 

Figure 7:  Raster of larger sample problem 

The terrain is fictitious and has not actually been processed through the NRMM.  
The unit terrain size has been set at 50m by 50m.  Four choke size diameters; 50m, 150m, 
250m, 350m were used for this example.  All terrain with maximum movement speed of 
6 KPH or slower were considered restrictive terrain.  The threshold for gap density was 
set at 1.  This simulation was run on a P4 2.4 GHz computer with 2 GB of RAM running 
Windows XP.  The source code for this process was written in C++ and compiled on the 
GNU compiler (g++ version 3.2-1) and run under the Cygwin UNIX emulator for 
Windows.  The resulting network was 6,000 nodes with 47,044 arcs.  There were 96 
initial nodes and 77 terminal nodes for a total of 7,392 iterations of the shortest path 
problem.  The process run time for each chokesize diameter was 8 minutes with all but 5 
seconds allocated to the execution of the shortest path algorithm.  This process with the 
double bucket implementation of Dijkstra’s algorithm as presented in [Cherkassky et al  
1996] would have been able to execute the same simulation in well under a minute. 

Figure 8 shows the results of the simulation for each chokesize diameter.  The 
black regions represent the restrictive terrain, the white regions represent the non-
restrictive terrain, and the grey regions represent the non-restrictive terrain that has been 
identified as tactically significant. 

Two significant observations can be made from these results.  The first is that an 
artificial chokepoint or mobility corridor can be identified if restrictive terrain is 
sufficiently close to the boundary of the AO (see the solid grey circled gap in 8c and 8d).  
In true tactical scenarios, unit boundaries are rarely chosen in an arbitrary fashion that 
produces appealing geometric shapes.  Unit boundaries are generally selected along 
prominent terrain to facilitate visual recognition of the AO.  Therefore these false 
corridors may not occur.  To guard against such a phenomenon however, the process 
should be modified to consider terrain outside of the AO or to ignore chokepoints and 
mobility corridors adjacent to the AO boundaries. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 8: Results of the simulation on the same terrain with varying chokesize diameters:  
(a) = 50 meters, (b) = 150 meters, (c) = 250 meters, (d) = 350 meters 

The second observation is the closing operation as implemented in this research is 
incapable of identifying gaps created by narrow obstacles along a diagonal trajectory (see 
the dotted grey circle in 8b and 8c).  This chokepoint is identified in 8d, but only because 
it is within 350 meters of other restrictive terrain.  While the features in this example that 
caused this condition (a bridge running parallel to and on top of a river) are artificial, 
such a condition could arise.  A geometry based implementation of the closing operation, 
such as the internal and external buffering tools available in GIS packages, should rectify 
the problem. 

VI. Future Research 
All of the terrain data required to run this algorithm resides in a Geographical 

Information System (GIS).  Therefore significant gains in speed and detail could be 
realized by embedding this process in a GIS in order to exploit its inherent terrain and 
geometry based spatial analysis capabilities.  Such an implementation, if successful, 
would lend this algorithm to serve as a graphical, tactical decision aid for the intelligence 
analyst. 

This methodology could be extended through path analysis to identify decision 
points.  The gaps currently located by this process actually identify terrain which 
confirms the target vehicle has been committed to a decision.  By analyzing the actual 
paths, it may be possible to locate enemy decision points for route selection.  Knowledge 
of these enemy decision points can provide the commander more time to make his 
decisions.  
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By placing sensors clusters on each of the tactically significant gaps identified 
with the algorithm, all likely paths through the AO would be covered.  In effect, this 
would provide coverage of the AO with a significantly reduced set of sensors than would 
be required by total area coverage.  Research must be conducted to determine if the 
benefits gained by reducing the logistical burden associated with such a sensor 
employment plan outweighs the costs associated with the risk of not covering the entire 
AO with a sensor network. 

VI. Conclusion 
In this paper we have demonstrated an automated process that can identify 

tactically significant terrain in a short period of time, thus freeing the intelligence analyst 
to perform other tasks associated with the IPB process.  This method is not designed to 
replace the intelligence analyst’s role in terrain analysis, but is instead designed to 
enhance the terrain analysis process.  We also posit that complete AO coverage could be 
assumed by using the nominated NAI’s generated by this process as a basis for a sensor 
employment plan. 
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