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Estimating the Shape of Covert Networks 

 
Abstract: 
Social network analysis has been used to understand groups of individuals and how they 

operate. Most of the literature in social networks has dealt with overt organizations with an easily 
discernable network structure. This paper examines the possibilities of using the inherent 
structures observed in social networks to make predictions of networks using limited and missing 
information. The model is based on empirical network data exhibiting the structural properties of 
triad closure and adjacency. Triad closure indicates that if person i has a dyad with person j and 
person j has a dyad with person k, then there is a higher than chance likelihood that person i and 
person k have a dyad. Adjacency is a corollary of triad closure stating that if person i has a dyad 
with person j, it is more than likely that person i has a dyad with person k. The model exploits 
these properties using an inference model to update adjacent dyads given information on a 
reference dyad. The model is tested against several networks to understand and discern its 
behavior. The paper illustrates that if the model is built with careful consideration towards the 
network being predicted, it may assist in making better decisions regarding uncertain 
organizational phenomenon. However, the model performs relatively poorly if there is a 
disproportionate amount of information either supporting or not supporting a dyad and/or if 
dyadic priors are well informed. The method is applied in a covert network example, and has 
been extended for epidemiological networks and improving performance in organizations 
operating under stress. The paper opens up new avenues in the development of models designed 
to make network predictions and use those predictions to make better decisions. 
 

Support: This research has been supported in part by the National Science Foundation 
IGERT in CASOS, the office of Naval Research ONR 1681-1-1001944 and the center for 
Computational Analysis of Social and Organizational Systems. The views and results expressed 
herein are solely the responsibility of the authors and do not represent the official views of the 
Office of Naval Research or the National Science Foundation. 

Unknown Network Structures 
TRADOC PAM 525-5 (1994) hypothesizes that Command and Control will face new and 

unconventional threats in the post Cold War environment. These threats, largely a result of 
increased global instability and the rise of regional conflicts, require a change in the tactics and 
techniques of Command and Control. Arquilla and Ronfeldt (2002) indicate that future conflicts 
will take place against asymmetric threats consisting of networked forms of organization. These 
networked forms of organization would have the ability to cloak their activities from detection 
using dispersed organizational forms and swarming tactics. The events of September 11, 2001, 
the USS Cole bombing, and embassy bombings in Africa by terrorist cellular units illustrate the 
effectiveness of networked forms of organization and swarming tactics in the post Cold War era. 
Such threats require sophisticated tools and technologies to coordinate information and construct 
an accurate picture of threats and the particular risks they pose for the United States and its 
Allies. Such techniques must recognize the multifarious nature of such threats, both in the 
organizational structure of such terrorist threats, and the particular skills, tasks, and resources 
characteristic of individuals in these groups (Krackhardt and Carley, 1998).  

 



Social network analysis has been used to understand organizational dynamics in a variety 
of application areas (e.g., epidemiology, technological diffusion, and management consulting). A 
group’s behavior, values, and/or performance can be articulated by understanding the 
relationships that exist within the group. Most applications to date have been on open groups or 
societies in controlled experiments. Currently there have been very few network applications to 
covert or “hidden” networks of interest. Sparrow (1991) discusses the prospects for using social 
network analysis as investigative tools for intelligence and law enforcement. Sparrow discusses 
the prospects of using traditional social network centralization measures to identify key 
individuals in a covert organization and inferring their activities through their connections. 
Erickson (1981) and Baker and Faulkner (1993) discuss the structure of covert organizations and 
their distinguishing structural characteristics. Baker and Faulkner conclude that the requirement 
for secrecy distinguishes the covert organization from the overt organization, which permeates 
every aspect of the organization including its structure and productivity. Covert organizations 
with high task loads that require coordination are generally more hierarchical than organizations 
with lower task loads and less coordination, although all covert organizations studied exhibited 
flatter and more dispersed forms of organization than comparatively sized overt organizations. 
PCI (2002) has developed software and tools to assist law enforcement professionals to 
coordinate information gathering techniques on illicit organizations and their structure through 
the use of Anacapa charts and link analysis to build social networks. The FBI’s Big Floyd is a 
template matching system designed to link archived criminal tactics and organized criminal 
groups with current criminal investigations (Bayse and Morris, 1987). Although the tools and 
techniques described up to this point would be useful to Command and Control for detecting and 
understanding the activities of networked criminal and terrorist organizations, a tool that can 
infer the structure of these covert organizations using known social network properties and 
limited observational data does not currently exist. Such a tool would not only be beneficial in 
building a more complete picture of covert networks using limited data, but could also allow 
policy makers to make better-informed decisions. 
 This paper presents an empirically based probabilistic model, grounded on observational 
social networks, to infer network structure using limited and incomplete information. First, 
relative similarity information is used to build a prior probability assessment of who 
communicates with whom. As direct information on dyadic likelihood is received, these priors 
are updated. Adjacent dyads are updated through an empirically based inference model. This 
continues until the likelihood of every dyad in the probabilistic network is inferred and updated. 
The resulting network provides an estimate of the actual network and may be used to guide 
policy analysis. 

Network Properties 
Researchers have uncovered inherent structural properties in social networks (Skvoretz, 

1990). These properties arise from the structure of the network itself and not from the behavior 
of the individuals in the network. They include reciprocity, triad-closure, and triad-closure 
reciprocity. A corollary of the triad properties is an adjacency property.  Simply stated, if persons 
i and j are talkative with each other, then they are likely to be talkative with others.  Formally, if 
A and B are adjacent dyads, then 

if nnEnn AB >⇒> )( , and 
if nnEnn AB <⇒< )( , 



where nB is the number of interactions recorded on dyad B, E(nA) is the expected number 
of interactions on dyad A, and n-bar is the mean number of interactions for the whole network.  
In other words, if B has above average activity then the expected value of the distribution of 
interactions for all of its adjacent dyads will also exceed the mean number of interactions. The 
degree to which these properties exist varies from network to network (Krackhardt, 1987). 

Constructing the Model 
The problem domain will determine the relationship of interest (ROI). In most real-world 

situations, only samples of interactions between individuals can be observed. Depending on the 
type of interaction, knowing that i and j interacted will inform our belief about the likelihood of a 
ROI existing between the individuals.  But, what, if any, inference can be made about these 
individuals’ relationships with others in the network?  

For illustrative purposes and to facilitate model development, we focus on one social 
network dataset, Bernard and Killworth’s 1979 observed interactions between 58 fraternity 
brothers at a West Virginia university. Because of the size of this data set, it was not possible to 
develop a robust inference model based on the triad-closure property. Instead, the model is based 
on adjacency properties found in the data. Figure 1 shows this relationship between interactions 
on a reference dyad and the expected number of interactions on an adjacent dyad.  As the number 
of communications for the reference dyad increases, so does the expected number for the 
adjacent dyads. 

 Adjacency Property-A plot of Conversation Counts
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Figure 1—Adjacency Property Illustrated using Bernard and Killworth Fraternity Data 

Transforming Data 
In order to build a model of dyadic dependency, the network data of “counts of 

interactions” has to be converted into probabilities that an ROI exists between any pair of 
individuals.  To do so, requires a careful definition of what constitutes an ROI. Two important 
considerations must be made.  

1. The number of interactions needed to define when a ROI exists 
2. The marginal increase of each additional interaction towards the probability of a 

ROI existing 
We also need to establish the functional form that relates additional interactions to the 

probability of ROI.  In this paper, we are assuming a concave function (marginal decreasing 
value). A standard exponential functional form is used: 
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where dij is the probability of the relationship of interest, λ is the shape parameter of the function 
(higher values more concave), xij is the interaction dyadic data, and max (xij) is the ROI threshold 
value. For this model, a ROI threshold of 21 interactions and a λ value of 0.14 were used. The 
21-interaction threshold value was chosen so that strong relationships could be modeled and that 
a large distribution of reference probabilities could be considered. The 0.14 λ value was chosen 
as a moderate value to attain some concavity to the curve.  

Building a Model of Dyadic Dependency 
The dependency relationship between dyads can be illustrated by plotting adjacent dyads’ 

probabilities against reference dyads probabilities, for all dyadic pairs.  Figure 2 shows the 
percentile contours for the transformed fraternity data. Note that the percentile contours are 
generally increasing with probability. 
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Figure 2---Raw Fraternity Data Showing the Dependency Relationship Between Dyads 

 
Fitting lines through these data and smoothing the parameters can clearly show the 

dependency between dyadic probabilities in the fraternity data. For this application, the 
relationships shown in the plots were modeled using a neural network. (Freeman and Skapura, 
1991) The neural network consists of 9 nodes and 3 layers. 

Implementation 
Priors to dyads may be assigned using homophily (McPherson and Smith-Lovin, 1987, 

McPherson, Popielarz, and Drobnic, 1992, Valente et al., 1997) and a database of social 
relationships and attributes such as the PCANS methodology (Krackhardt and Carley, 1998). As 
an observation comes in to inform the model, Bayes Rule performs the direct update and the 
inference model can then propagate the information to update other relationships in the network. 
Suppose that Iij is the event that an interaction is observed between nodes i and j. Suppose also 
that Lij is the event that the ROI exists between nodes i and j. P (Iij|Lij) and P (Iij|Lij

C) can be 
assessed for each piece of incoming information. Then the conditionals can be used to update the 
probability of the reference dyad, P (Lij). 
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Once the probability of the initial dyad is calculated using Bayes Rule, there are several 
choices for how to propagate the update through the rest of the network. In this paper three 
alternative models are considered: 

1. Bayes Rule is used to update only the reference dyad. 



2. Bayes Rule is used to update the reference dyad.   A secondary round of 
updates are applied to the dyads immediately adjacent to the reference dyad, 
using the inference model. 

3. Bayes Rule is used to update the reference dyad.   A secondary and tertiary 
round of updates are applied to the dyads immediately adjacent to the reference 
dyad and adjacent dyads using the inference model. 

Simulation and Analysis 
 In order to test the model implementations and understand its effectiveness under 
different parameters, the models were simulated on a sample 20 node network from the fraternity 
data set. The following parameters were varied in the simulations. 

• Input Data Accuracy 
• Prior Assessments 
• Proportion of Information Supporting Existence of Dyads 

The metric chosen to evaluate the simulations is absolute error, which is defined below: 

))((Error Absolute
1
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−=
ji

N
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where pij is the predicted probability for the dyad between nodes i and j and Aij is the 
actual probability for the dyad between nodes i and j. Simulations consisted of 20 runs under 
each condition where an interaction was sampled from the real network of interactions and used 
to build a prediction. Positive and negative dyadic data were sampled; where it is assumed that 
using 1-Aij can generate negative dyad data. Each simulation consisted of 1000 updates, 
although the graphs below only plot the first 250 updates. Significance of differences between 
the models was calculated using a paired t-test at the 0.05 level. A base case was assumed with 
the following parameters from which deviations were made in the input parameters in later 
simulations: 

• 0.2 uninformed uniform probability for each dyad 
• 0.5 probability of receiving updates supporting a dyad 
• P (I12|L12) = 0.56, P (I12|L12

C) = 0.24 
Using an informed prior, model 3 performed significantly worse than model 1 across all 

updates and models 1 and 2 were indistinguishable. This is not a surprising result since the 
network is essentially already updated when an informed prior is used. Since models 2 and 3 
affect all dyads with each update, erroneous priors get corrected much more quickly than for 
model 1. Model 3 would be expected to converge quicker to the real network since it changes 
more priors than model 2. However, the result indicates that model 3 might be over-inferencing 
the network, making it less effective than model 2. 
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Figure 3---Simulation results by varying the prior assessments for different network prediction 

models showing that inference outperforms the control in all cases except an informed prior 
 

 It was found that the models’ results are sensitive to the proportion of updates supporting 
the existence of the ROI for a dyad. In both extreme cases where the probability of receiving a 
supporting update was 0.2 and 0.8, models 2 and 3 performed well in the first 50 updates, but 
were quickly surpassed by model 1 thereafter. Because an imbalanced number of supporting 
(non-supporting) updates are arriving, the models that use the adjacency property amplify this 
imbalance and drift to over (under) predict.  It appears that these models work well when there is 
large network uncertainty and limited data. At some point it would be optimal to switch from the 
inference models to model 1, but knowing when to do this would likely depend on several 
unknowable properties of the network. Future research will examine this scenario in greater 
detail. 
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Figure 4---Simulation results by varying the proportion of incoming data that supports the existence of a 
dyad illustrating that the inference models over predict the network when a disproportionate amount of 

information comes in 
 

Changing the conditionals to 0.8 and 0.1 resulted in model 2 outperforming model 1 in 
the first 50 updates, but the results are not significant. With random conditionals the inference 
models perform significantly better than model 1 for the first 250 updates. This is an important 
result and leads to the conclusion that the inference could be effective when operating under 
uncertain conditions. Highly accurate data will not distinguish the performance of the models. 
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Figure 5---Simulation results by varying the reliability of the data by varying conditionals illustrating 

that the inference models perform well when conditionals are random, but do not perform well when very 
reliable 

Decision Analysis-Covert Networks 
Consider a subpopulation of conspirators is being examined to determine its network 

structure and who to target in that population with an unknown network structure. Borgatti 
(2002) identifies a key player metric for network analysis that we use to develop inoculation 
strategies. Suppose that resources are available to remove 7 out of the 20 individuals. We can 
examine the efficacy of the recommended strategy by comparing the recommended strategy 
(developed from a network prediction after 100 updates) to that of the real network. Minimums, 
averages, and maximums for the 20 simulation runs under models 1, 2, and 3 are plotted in 
Figure 3. 
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Figure 6---A comparison of models for covert networks; for all possible isolations, model 2 has a 

higher average value for the number of fragments created 



 
Table 1-- Evaluation of models for covert network scenario showing the expected values of fragments, given 
different models, and EVPI 

 

total isolates subgroups
perfect information 12 11 1
E(Model1) 4.9 3.45 1.45
E(Model2) 5.4 3.6 1.8
E(Model3) 4.9 3.55 1.35

Fragments

 
Figure 5 and Table 1 indicate that on average, model 2 is best at breaking up the network, 

but model 3 attains a maximum number of fragments that is higher than model 2 for isolates and 
total number of fragments. Comparing these values to what they would be with perfect 
information we see that model 2 performs best of all the models, but none of the models perform 
as well as perfect information. None of the models for any runs attain the perfect information 
values. The results in Table 4 indicate that on average, model 2 will result in 0.5 more total 
fragments than either model 1 or 3. But there is uncertainty, as choosing model 3 might yield a 
better result than model 2. 

Conclusions 
The simulation results show that the inference models’ performance is mixed. The 

simulations were run against a portion of the data that the model was built from, meaning that the 
results shown are a best-case scenario. The models do perform relatively well when there is a 
proportionate amount of information supporting and not supporting the existence of a dyad. If 
there is a disproportionate amount of information in either direction, the model has a tendency to 
over or under predict the network. Future work will examine whether or not misinformed 
network predictions from over or under informed networks leads to poorer decisions by applying 
those network predictions to the decision component. The models also seem to perform well 
when priors are either uninformed or possibly misinformed. Future work will explore why the 
inference models perform relatively poorly when priors are well informed. It is likely that with 
informed priors, one may not need to use inference to inform the network and the effect shown in 
this paper is the result of well-informed priors being manipulated by inference to become less 
informed. The decision analysis illustrates that the inference models may lead to better decision-
making than the control model, although the improvement in decision-making might be 
relatively small. It must be emphasized that this is a best-case scenario and as a result if this 
model is to be applied on uncertain networks, then a great deal of care must be taken to ensure 
that the network used to build the model must be very close to the uncertain network that is being 
predicted. In addition, the model tends to over infer dyads after 300 updates in all simulation 
scenarios and as a result, care must be taken to consider when to stop using the inference model 
to prevent systematic errors in prediction. Nevertheless, keeping these principles in mind, paying 
close attention to the network used to build the model, and paying close attention to the 
distribution of input information used to inform the network and infer or not infer dyads, the 
models have the potential to improve decision-making under uncertainty. 

Future work will examine the model in greater depth and integrate new prediction metrics 
and tools into the model, such as new biases, both structural and behavioral, to increase the 
effectiveness of the prediction. Homophily, or the tendency for individuals exhibiting similar 



characteristics to be in contact with each other, provides a useful behavioral bias that could be 
integrated into the model in the future to improve network predictions under uncertainty. The 
model indicates that using the adjacency property for network prediction likely leads to a modest 
improvement in network prediction versus the alternative of not inferring structure. However, a 
more powerful property, such as triad-closure, would likely lead to better prediction results. 
Unfortunately, current datasets do not provide the density required for a rigorous statistical 
analysis needed to construct a similar triad-closure model. 

An important conclusion to draw from this analysis is that different organizations exhibit 
different network properties to different degrees. Because the results from this analysis are 
mixed, a great deal of care must be exhibited when choosing a sample dataset with which to 
build this model from and use it for network prediction. Specifically, the social network literature 
identifies work related organizations as exhibiting different properties from social related 
organizations. Terrorist and organized crime organizations likely exist as a hybrid between work 
and social oriented organizations in their structure, while also exhibiting their own unique 
characteristics (Krebs, 2001). We can hypothesize of a suite of models, each one modeling a 
different organization or set of organizations that may be used for network prediction, such as 
work-team relationships, friendship relationships, and project coordination relationships. Each 
model could be used to characterize different organizations or the same organization, but from 
different perspectives, which could offer insight into the organization and its functions, activities, 
and resources. We can also use such models to understand the evolution of an organization and 
the collective understanding of that organization. As more and more information about a covert 
organization becomes available, different models can be employed to predict the structure of the 
organization as Command and Control becomes more familiar with the organization and its 
structure. 

This study has also indicated that although gaining insight about the organizational 
structure of a covert organization is important, it should not supersede the requirement for 
traditional information gathering techniques that focus on the resources and tasks that 
characterize individuals in the organization. Unfortunately, network construction techniques and 
tools such as this one, may put a strain on valuable investigative resources that could be used for 
other investigative tasks. Future work will link network prediction tools, such as this, with multi-
agent technology to simulate covert organizations, their information diffusion behaviors, and 
illicit activities. This research will focus on destabilization techniques to determine whom to 
isolate in a covert organization under uncertainty. If the objective is to destabilize and break an 
organization apart, removing the most central individual (from a social network perspective) in 
the organization may not be the most effective strategy. 

Future work will continue to explore the decision scenarios that this model can be applied 
to. As shown in the paper, the simulation results translate into better overall decisions by 
breaking the network apart into more pieces by inferring dyads than not inferring dyads. Future 
work will expand on the decision analysis component, not only applying the model to other 
decision contexts, but exploring the space where improved decisions can be made and where 
poorer decisions can be made. Specifically, an analysis of the effectiveness of destabilization 
will be examined at different numbers of updates to determine the point at which in a decision 
context a decision maker becomes indifferent between inferring dyads and not inferring dyads. 
This study will compare the decision analysis results back to the simulation results to see if there 
is a correlation between absolute error in the simulation and the effectiveness of the predicted 



destabilization strategies. Such an analysis will improve assessment techniques of simulations in 
the future, relating the results back to the required decision context. 
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Appendix-Significance Plots of Differences Between 
Absolute Errors of Model Simulation Results 
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Figure 7---Absolute Error Statistical Comparison Plots for Different Network Priors— Bold circles-
Significant (0.05 level) differences of model 1 (no inferencing) minus model 2 (inferencing on immediately 
adjacent dyads) absolute error---Standard circles-Non-significant differences of model 1 minus model 3 
(inferencing on entire network) absolute error---Bold triangles-Significant (0.05 level) differences of model 1 
minus model 3 absolute error---Standard triangles-Non-significant differences of model 1 minus model 3 
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Figure 8---Absolute Error Statistical Comparison Plots for Different Probabilities of Supporting 
Information— Bold circles-Significant (0.05 level) differences of model 1 minus model 2 absolute error---
Standard circles-Non-significant differences of model 1 minus model 2 absolute error---Bold triangles-
Significant (0.05 level) differences of model 1 minus model 3 absolute error---Standard triangles-Non-
significant differences of model 1 minus model 3 
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Figure 9---Absolute Error Statistical Comparison Plots for Different Conditional Probabilities— Bold circles-
Significant (0.05 level) differences of model 1 minus model 2 absolute error---Standard circles-Non-significant 
differences of model 1 minus model 2 absolute error---Bold triangles-Significant (0.05 level) differences of 
model 1 minus model 3 absolute error---Standard triangles-Non-significant differences of model 1 minus 
model 3 
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