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Abstract 
 

Tracking maneuvering targets with radar is a difficult problem, but making a fair 
comparison between two or more maneuvering target trackers may be even more 
difficult. At the very least, it is tried less often. In this paper we present a method for 
comparing trackers based on the probabilistic notion of sufficiency.  The advantages of 
our approach are twofold. First, comparisons are made across tens of thousands of 
trajectories, not just a few. Second, if one tracker is sufficient for another then it is better 
no matter how better is defined. We demonstrate the sufficient comparison technique for 
two trackers; one sets noise levels adaptively based on a statistic of accelerations first 
introduced at the 7th International Command and Control Research and Technology 
Symposium, the other is the well known and widely used Interacting Multiple Model. 
 
Introduction 
 

Many papers compare maneuvering target trackers for at most a few different 
measures of performance and trajectories. Bar-Shalom and Li [Bar-Shalom 1993], de 
Feo, Graziano, Migliolo, and Farina [deFeo 1997], and Kameda, Tsujimichi, and Kosuge 
[Kameda 2002] are typical examples. Some report one measure of performance: position 
accuracy. Some report position and speed accuracies.  Averages and interval estimates 
are sometimes reported, but it is not unusual to see these statistics reported for a single 
trajectory and maybe even a single simulation run. Other measures of performance like 
heading and range rate accuracy are rarely seen. The reader wonders why the authors 
choose particular trajectories, simulation runs, and measure of performance. Or 
conversely, why they did not choose others. Were they chosen at random, because the 
results are typical, or because they favor one tracker over the other? 
 

 
Occasionally, different papers report results for the same tracker. This happens in 

[Schutz 1997], [Schutz 1999] and [Kirubarajan 1999]. [Schutz 1997] describes what the 
authors call a Combined Kalman Filter (CKF) tracker. It has one mode, switches process 
noise levels based on a statistical threshold test of the position measurement residual 
history, and is intended for a military airborne early warning and control system. 
[Kirubarajan 1999] compares that tracker to an interacting multiple model (IMM) 
intended for the same application. Both papers test their trackers against the same 120 
target simulation. The papers have some common authors. In fact, the company that 



 

 

 

 
Figure 1. Position error statistics for the same 120 target scenario. (left) from [Schutz 

1999], (right) [Kirubarajan 1999] 

employs the authors of [Schutz 1997] and [Schutz 1999] partially funded the research in 
[Kirubarajan 1999]. 
 

Figure 1 shows two graphs reporting root mean squared position error. The graph 
on the left is for the CKF [Shutz 1999], the one on the right for the CKF and IMM 
[Kirubarajan 1999].  The solid line on the right is IMM error data, the dashed line is CKF 
data.  The IMM’s errors average about 4000 ft, the CKF’s about 7000 ft.  The IMM 
appears better. 

 
Notice that the left hand graph in figure 1 shows that the CKF errors average 

about 3500 ft.  This is about one half the value reported in [Kirubarajan 1999]. Now, 
compare these errors to the IMM and the CKF appears better. The same phenomena 
occur with speed errors.  The IMM has lower speed errors according to [Kirubarajan 
1999], but higher errors when compared to the original results. The reader wonders not 
only why the authors choose particular trajectories and statistics, but how the CKF errors 
double or triple from one day to the next against the same simulation. 

 
There is obviously a need to compare trackers fairly, across many trajectories, and 

against more measures of performance than just speed and position. In this paper, we 
present a methodology for making this comparison and demonstrate it for two different 
trackers. First, we state and interpret the definitions and theorems necessary to establish 
the desirability of using the sufficiency relation. Second, we define tens of thousands of 
maneuvering target trajectories.  Third, using simulation, we generated error statistics for 
two trackers against each trajectory. The data are analyzed and found to conform with the 
assumptions for a sufficient comparison. Finally, we make a sufficient comparison 
against seven measures of performance and discover not only how often one tracker is 
better than the other, but also how much better. 

 



Sufficiency 
 
 Blackwell [Blackwell 1953] introduced sufficiency and sufficiency comparisons 
in 1953. The probabilistic notion of a sufficient estimator is analogous to the more 
familiar notion of a sufficient statistic. If statistic X is a sufficient statistic for an unknown 
parameter θ, then any other statistic Y contains no more information about the parameter 
than X and can be interpreted as X plus some noise.  In the same way, given probabilistic 
estimators A and B for a predictand ω, if A is sufficient for B then B contains no more 
information about the predictand than A and can be interpreted as A plus some noise.  
 

The analogy is imperfect. A sufficient statistic summarizes all information about a 
parameter in the data. A statistic is either sufficient or not, and statistical sufficiency does 
not depend on any other statistic. Probabilistic sufficiency implies only that A contains at 
least as much information as B. There is no such thing as a sufficient estimator because 
probabilistic sufficiency is a relation between estimators. Probabilistic sufficiency 
establishes a partial order so it is possible that A is sufficient for B, or B for A, or neither, 
or both. It is also possible that there exists another estimator C that is sufficient for both A 
and B. 

 
We now state two definitions and two theorems about sufficiency. We assume 

that the reader is familiar with Bayesian decision theory. The theorems are stated without 
proof. 

 
Definition 1 (Informativeness) It is said that estimator A is more informative than 
estimator B, denoted AIB, if RA ≤ RB for all prior distributions and all loss functions, 
where Ri is the Bayes Risk of estimator i. 
 

If we can show that AIB then our Bayes risk of making a decision based on A is 
lower than our risk of making a decision based on B, no matter what we already know 
and no matter how we calculate our losses. In other words, A is “better” than B however 
“better” is defined. Unfortunately, this definition does not provide a constructive way to 
find the relation I, or even show that it exists. 

 
Definition 2 (Sufficiency) It is said that estimator A is sufficient for estimator B, denoted 
ASB, if there exists a stochastic transformation ψ:B×A→Re such that the following are 
satisfied, where ω denotes the predictand or true state of nature. 

 
fB(b|ω) = ∫Aψ(b|a)fA(a|ω)da, for all ω in Ω, and all b in B 

ψ(b|a) ≥ 0 
∫Bψ(b|a)db  = 1 

 
Intuitively, if ASB then B equals A plus some noise ψ, as diagrammed in figure 2. 

Now we state two theorems. The first states that sufficiency implies informativeness, the 
second provides a constructive way to determine sufficiency. 
 
Theorem 1 (Sufficiency => Informativeness) If ASB, then AIB. 



ω
fA(a|ω) ψ( b|a)

a b

 
Figure 2. If ASB, then interpret B as A plus noise. 

 
Theorem 2 (Gaussian Sufficiency, [Krzysztofowicz 1987]) If the estimators are univariate 
and have Gaussian likelihoods, that is, f(x|ω)=N(αω+β,σ²), then ASB if and only if  
 

σB² / αB² ≥ σA² / αA² 
 
 Notice that the location parameter β has no effect on the association relation. That 
is, the estimator bias, so long as it is known, is irrelevant to the quality of the estimates. If 
the parameter α is unity then sufficiency can be determined by a simple comparison of 
variances. In this case the ratio of their variances indicates the relative quality of the 
estimators: ASB  if and only if σB² / σA² ≥ 1. The larger the ratio, the more improvement A 
offers over B. 
 
 We now have all the mathematical machinery we need. If the tracker’s error 
distributions for the chosen measures of performance are Gaussian then: by theorem 2 we 
determine the sufficiency relation by comparing variances; by theorem 1 we know that 
the sufficient tracker is more informative; and by definition 1  we conclude that the more 
informative tracker is better. 
 
Defining Trajectories and Generating Error Statistics 
 
 We define maneuvering trajectories based on the type of acceleration and the 
relevant parameters. Simulated air targets fly at constant velocity for three hundred 
seconds, maneuver for twenty, then fly at constant velocity for another one hundred fifty. 
We identify three types of maneuvers: coordinated turns, linear accelerations, and altitude 
changes. Maneuver parameters and their test levels are shown in the following tables. 
There are 17,280 different coordinated turns, 1,620 linear accelerations, and 1,980 
ascents and descents. The total number of different trajectories in the analysis is almost 
21,000. 
 

Table 1. Parameters for coordinated turns 
Parameter Levels Number of Levels 
Range from radar at start of 
maneuver 

20, 40, …, 300 miles 15 

Initial heading 0, 30, …, 330 degrees 12 
Initial speed 100, 200, …, 800 knots 8 
Centripetal acceleration 0, 1, …, 5 G 6 
Turn direction Left, Right 2 
 



Table 2. Parameters for linear accelerations 
Parameter Levels Number of Levels 
Range from radar at start of 
maneuver 

20, 40, …, 300 miles 15 

Initial heading 0, 30, …, 330 degrees 12 
Initial speed 500 knots 1 
Linear acceleration -1, -0.75, ..., 1 G 9 
 

Table 3. Parameters for ascents and descents 
Parameter Levels Number of Levels 
Range from radar at start of 
maneuver 

20, 40, …, 300 miles 15 

Initial heading 0, 30, …, 330 degrees 12 
Initial speed 500 knots 1 
Ascent Rate -500, -400, …, 500 knots 11 
 
 Using the radar model from [Schutz 1997], we generate 100 sets of simulated data 
for each trajectory and turn them through four different tracking algorithms. We collect 
error data for seven measures of performance at times just before the maneuver starts, at 
ten and twenty seconds into the maneuver, and at ten, twenty and thirty seconds after the 
maneuver ends. Thus, we use more than three billion data points in the anlaysis. 
  

The first tracker is a Kalman filter that switches between nonmaneuvering and 
maneuvering modes based on the statistical test of the position residuals defined in 
[Schutz 1997]. The second uses the range rate measurement to calculate a statistic of 
acceleration, and switches based on a threshold test of that statistic. Bizup [Bizup 2002] 
introduced the statistic of accelerations at the 7th ICCRTS. The third tracker adaptively 
sets the noise levels based on the statistic of accelerations. The fourth is a two mode IMM 
described by Bar-Shalom and Li [Bar-Shalom 1995]. 

 
The intent of collecting data just before the maneuver starts is to compare trackers 

during long periods of constant velocity motion. During the maneuver, the obvious intent 
is to compare performance while the target is accelerating. After the maneuver, the intent 
is to see how quickly the trackers converge back to constant velocity performance. We 
collect error statistics for gross position, speed, heading, range and bearing from the radar 
to the target, range rate and cross range rate. The intent is to capture all relevant 
measures, not just one or two. 
 
Results 
 
 During the analysis it became clear that the error statistics did not conform to the 
assumptions of theorem 2. Their variances were not the same for every trajectory. For 
example, position error variance increased with range from the radar. This is perfectly 
reasonable. The same bearing errors in degrees equate to larger position errors in miles as 
range increases. Further analysis showed that within any given trajectory, the error 



statistics do conform to the assumptions of theorem 2; they are approximately Gaussian 
with location parameter β=0 and scale parameter α=1.  
 

We could not determine overall sufficiency so we determined the sufficiency for 
each measure of performance within each trajectory. Then, we counted the number of 
cases where one tracker was sufficient for another and reported the proportion. If tracker 
A is sufficient for tracker B for most trajectories, then we concluded that it should be 
better most of the time in real environments. Knowing that tracker A is sufficient for 
tracker B tells us nothing about how much better A is than B. So, in addition to the 
sufficiency relation, we also report the ratio of the average variances.  

 
The following tables summarize the sufficiency relations and variance ratios for 

the adaptive tracker and the IMM, averaged over all coordinated turns. The data used to 
generate the statistics in the first row were collected just before the maneuver started, 
after a long period of constant velocity flights. The second and third rows are based on 
data collected ten and twenty seconds into the maneuver. The last three rows on data 
collected ten, twenty, and thirty seconds after the maneuver ends. There is one column 
per measure of performance. 

 
Table 4. Proportion of coordinated turns where Adaptive Tracker 

is sufficient for the IMM. 
Time 2D Pos  Speed  Heading  Range  Bearing Rng Rt  X-Rng Rt 
0 
10 
20 
30 
40 
50 

0.9938   0.9938   0.9750   0.9938    1.0000   0.9938   1.0000 
0.9875   0.9812   0.9750   0.9063    1.0000   0.9000   1.0000 
1.0000   0.9938   0.9750   0.9000    1.0000   0.8750   1.0000 
0.9938   0.9063   0.9437   0.9375    1.0000   0.9000   0.9313 
0.9375   0.8500   0.8875   0.9812    0.9625   0.9313   0.8500 
0.8750   0.8500   0.9250   0.9313    0.8625   0.9500   0.8500 

 
Table 5. Error variance ratio, IMM : Adaptive tracker 

Time 2D Pos  Speed  Heading  Range  Bearing Rng Rt  X-Rng Rt 
0 
10 
20 
30 
40 
50 

2.1389   2.0861   1.3792   2.7807   2.2701   2.3414   2.5977 
1.8145   1.7185   1.3794   1.0231   1.9893   0.8957   2.3956 
1.9385   1.6507   1.3863   1.0990   2.5884   0.7674   2.2729 
1.5389   1.1635   1.1375   1.2705   1.9991   0.9436   1.2503 
1.1658   0.8484   1.0844   1.3650   1.2327   1.1546   0.8440 
0.9768   0.8024   1.1548   1.1683   0.9796   1.2984   0.8053 

 
 Consider the number 0.9938 in table 4., located in the cell for 2D position error at 
time 0. This means that the single mode adaptive tracker position estimates are sufficient 
for the IMM position estimates 99.4% of the time that the target is not maneuvering. The 
number in the next row, 0.9875, means that the adaptive tracker’s position estimates are 
sufficient for the IMM position estimates ten seconds into 98.8% of all simulated 
coordinated turns. As the target continues to maneuver and then resumes constant 
velocity motion, the numbers in the following rows fluctuate. But, at all times, the 



adaptive tracker’s position estimates are sufficient for the IMM’s for at least 87.5% of the 
coordinated turns. 
 
 Now consider the same cells in table 5. These are ratios of the IMM error 
variances to adaptive tracker error variances. Just before the maneuver starts, IMM 
position error variances are about twice as large as the adaptive tracker’s. They are 
always larger, on average, during the maneuver. Twenty and thirty seconds after the 
maneuver they are about equal. Eventually the adaptive tracker will start to dominate the 
IMM again. 
 

Similar tables for other maneuvers, or conditional on the trajectory parameters 
were generated with similar results. The only time the IMM was usually sufficient for the 
adaptive tracker rather than the other way around was when the target was heading 
directly toward the radar. For all other trajectories, the adaptive tracker was sufficient for 
the IMM 80% of the time or more. 

 
Conclusion 
 
 We observe a deficiency in the tracking literature: most comparative studies 
report only a few error statistics for only a few different trajectories. We propose a new 
methodology in which tens of thousands of trajectories are defined. Simulation is used to 
generate error statistics for several trackers for every trajectory. Trackers are compared 
using the probabilistic notion of sufficiency. Sufficient comparisons are a powerful, 
mathematically rigorous way to show that one tracker is better than another however we 
define better. We demonstrate the new methodology for an adaptive tracker and an 
interacting multiple model against coordinated turns, and find that the adaptive tracker is 
almost always better.  
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