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Abstract

In this paper, we present techniques for modeling the detisiaking processes of a team of synthetic
agents operating in task selection and resource allocagttings within the third generation distributed dynamic
decision-making (DDD-III) paradigm. The DDD-III simulatprovides a controllable, multi-player, multi-platform
organizational environment. The paper provides two majpoitributions. First, motivated by the need for a network
of intelligent agents within C2 experimental settings, &boverview of modeling techniques for the design of
a network of collaborating agents is provided. Second, rtiegles for modeling the decision-making processes
of synthetic agents in task selection and resource allotagettings are presented. In the proposed framework,
the decision-making processes of a network of intelligeyenas are addressed via limited look-ahead, auction-
based scheduling and resource allocation algorithms flwenphase | of the three-phase organizational design
process. Preliminary results of operationalizing the DBd3ed multi-agent-network paradigm are presented in
two different mission scenarios. A coordination-free su@nillustrates the basic structures of the intelligergrag
design, in terms of stimulus-hypothesis-option-respd8$tOR) model-based three-stage decision-making process.
The second example, derived from the A2C2 Experiment 8 ligigis the potential of utilizing the agent framework
in C2 experiments.

. INTRODUCTION

VER the years, C2 researchers have come to appreciate éseafolar games to provide a simulated,

highly dynamic, creative and challenging environment, imaln military organizations can explore
their strategic thinking and tactical planning, in ordernieet the challenges of the increasingly agile
environments in which they operate. A war game providesaldtiinsights into the possible strategies
that the organization can employ, as well as develop andeggdnggmpacts of alternative strategic responses
of the adversary. The safe, but highly-charged, competigrvironment fostered by the war game often
results in some surprisingly creative and innovative thigk

The scope of problems that the military organizations neecddress, however, call for dynamic
simulation of large-scale organizations. This is becaulme interesting insights of how human teams
coordinate cannot be revealed within teams of mere 6 or 1Withdhls, as is being done in current
A2C2 experiments. Often times, however, the cost and dvliflaof subject matter experts prevent
larger team experiments from being operationalized. Stithagents, which can reasonably mimic the
decision-making processes of human players in such war gdmee the potential to facilitate large-scale
experiments.

This paper serves two purposes. First, motivated by the foes network of intelligent agents within
C2 experimental settings, presented in section Il, we pewai brief overview of modeling techniques for
the design of a network of collaborating agents. This is thigext of section Ill. The second purpose
is to present techniques for modeling the decision-maknoggsses of synthetic agents in task selection
and resource allocation settings within the DDD-III [24&rmework. We propose to employ limited look-
ahead, auction-based scheduling and resource allocdgornitams from the phase | of the three-phase
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Fig. 1. A Screen-Shot from the A2C2 Experiment 8

organizational design process ([28], [29]) to model dyrarasource allocation and scheduling strategies of
an agent. This is the subject of section IV. In section V, wespnt preliminary results of operationalizing
the DDD-based multi-agent-network paradigm. As an illatsbn, we utilize a simple air defense scenario
as well as parts of scenarios used in the A2C2 Experiment B {@8rein two organizational structures,
namely the divisional D) and functional {’) organizations, are to perform two missiofisand f. We
employ various measures introduced in ([27] and [30]) to sueateam performance.

II. DDD-IIl E NVIRONMENT
A. Overview

HE third generation distributed dynamic decision-makiBgpD-111) simulator [24] provides a flex-

ible, controllable research paradigm, which allows redeans to examine the interactions between
task (or mission) structure, and the way in which the orgation tasked to execute the mission is
structured. In essence, DDD-III simulator provides a aalidble, multi-player, multi-platform, real-
time organizational environment to support laboratorgdshempirical experiments in a UNIX/LINUX
environment. The DDD-III allows for constraints and mangiions of organizational structures, such
as authority, information, communication, resource owhgr, task assignment, etc., as well as mission
and environmental structures, such as air, sea, and gramncbement, a variety of task classes, and
controllable platforms with sub-platforms, sensors andpons (resources).

A typical experiment within the DDD-III framework involves group of subject matter experts, who act
as a team of decision-makers (DMs) — in a hierarchical or agt&d organization, in an environment that
simulates a military operation. Following [28], we define B[as an entity with information-processing,
decision-making, and operational capabilities (via itsotece capability, viz., platform ownership) that
can control the necessary resources to execute a set ohedsigission tasks, provided that such task
execution does not violate the DM’'s concomitant resourgabaity thresholds. During the course of an
experiment, a DM, through use of platform capabilities, ifeao detect, measure, identify, pursue, and
eventually process tasks. The DDD scenario requires thgegdao follow a set of predefined mission



requirements, while simultaneously defending one or mpenétration zones’, and possibly their own
assets, against potential land, sea, and air adversariesudh the scenarios, the designers craft an
experiment to uncover key issues in the organization'ssi@timaking and coordination processes. A
typical screen-shot of DDD-IIl experiment is shown in Fig. 1

B. Structures and Attributes of Mission Tasks and the Omgtion

During the real-time playout of an experimental run, tasppear, move (maneuver), and disappear
according to a scripted scenario. The experiment desigrers the ability to define various dimensions
of task structure in order to closely align the mission scenaith a real-life military operation. The
characteristics of each task — its class, attributes, deztee constraints, and resource requirements — can
be tailored to specify a threat (such as a hostile fighterefrgld, etc.) and to create intra-team conflicts
for assets needed in the execution of those tasks.

A mission tasKI; (or simplyi) is characterized by the following basic features: (i) slastype, i.e., air,
surface, or ground; (ii) attributesl; = [a;1, ...], that define various characteristics of the task quantébti
one attribute of interest is the first attribute that repnesehe task valueyal(i) = a;;; (iii) estimated
processing time;; (iv) geographical constraint vector (e.g., the ’locatidnm;, y;) in a phase space that
specifies the concomitant 'distancé; to be traveled between tasksand j); (v) resource requirement
vector [R;1, Ris, ..., Riz], were R;; is the number of units of resouréerequired for successful processing
of taski: (I =1,...,L, whereL is the number of resource types); this feature defines tloairess required
to successfully process (attack) the task; and (vi) taskgatences or prerequisites.

In DDD-III framework, a platform represents a physical asfean organization that provides resource
capabilities used to process tasks. Examples of platfoomagsets) are ships, helicopters, ground units,
bases, etc. Each platform,, (or simplym) (m = 1,..., K) has several features that uniquely define this
platform: (i) sub-platforms, i.e., additional assets ttemtide on-board a parent platform that only become
active after being 'launched’ from the parent; (ii) ownepsh.e., only owners of the platforms are able
to move, carry a pursuit or attack with them, or launch swdifpims; owners of parent platforms are not
necessarily owners of the sub-platforms; (iii) sensoes, specify effectiveness ranges for task detection,
measurement, and identification or classification; (iv)ggaphical location, i.e.(x,,, ¥, ); (V) maximum
velocity v,,,, defines how fast a platform can travel; and (vi) resourcels#ipy vector[r,,1, m2, .-, "mz],
wherer,,; specifies the number of units of resource typavailable on platformn. A platform can be
used to attack any task, but the range of the platform’s wespepends on the task type or class. Further
details of the DDD-III structures can be found in [24].

C. Real World Challenges

The scope and size of an experiment to simulate and revealythamics of military organizations
operating in real world mission scenarios can be enormause¥ample, a small-to-moderate size military
mission is typically conducted by several hundred indigidu In theory, DDD-III framework allows for
several hundred players to conduct an experiment togatheractice, however, the cost and availability
of subject matter experts will be prohibitive.

The ability to re-run the same experiment is another import@ature for military strategists. Results
from a single run of an experiment are less dependable thasetlof several hundred experimental
runs. Since the DDD-III framework accounts for uncertaimtighin a scenario and the communication
environment, the players’ strategies are random as welhs€@quently, Monte-Carlo runs of the same
scenario provide confidence estimates on the experimeesalts and allow experimenters to extract
valuable insights from the experiment.

In addition, human-players may introduce biases into thEeermental results. As an example, we draw
experience from conducting the A2C2 Experiment 8. The deaigl conduct of this experiment provided
some significant training challenges. The actual experinvas a between-subjects-design on organization,
but a within-subjects-design on scenario. Thus, subjectsldvstay in one organization (eithér or F),



but would play bothf and d scenarios in a counterbalanced manner [23]. It was impbttaibuild a
training schedule and training scenarios that would nat bither organization to scenarfoor to scenario
d. Similarly, it was critical for the experiment to have eqgealordinating skill from both organizations.
Failure to account for these biases will critically impaue texperimental results.

These arguments point to the need for utilization of ingeltit agents within the DDD-III experiments
to operationalize large-scale (reduced bias) experimeatall agent teams or hybrid human-agent teams.

IHI. INTELLIGENT AGENTS AND MULTI-AGENT NETWORKS
A. What Constitutes amtelligent Agent?

HE general consensus on the teagentis the notion ofautonomy Maes [32] defines an agent
as a computational system with the objective of fulfilling et sf goals in a complex, dynamic
environment. More precisely, Wooldridge [47] charactesian agent as a computer system that is situated
in someenvironmentand is capable cdutonomousctions in this environment in order to meet its design

objectives.

The notion of autonomy means that agents are able to act wtihtervention of humans or other
systems, i.e., they have control over their own interngkestand over their behavior. In most domains of
reasonable complexity, an agent will not have completerobotser its environment. It will have at best
partial control in what it can influence. From the point ofwief the agent, this means that the same action
performed twice in apparently identical circumstances mayear to have entirely different effects, and,
in particular, it may fail to have the desired effects. Thagents in all, but the most trivial, environments
must be prepared for the possibility of failure. This leadghe notion of flexibility, viz., intelligence.
For all practical purposes, an agentingelligent if it is capable offlexible autonomous actions in order
to meet its design objectives. Following [47], flexibilitp@mpasses three ideas, which are (i) reactivity,
i.e., ability to perceive its environment and respond inraety fashion to changes that occur in it in
order to satisfy its design objectives; (ii) pro-activenidse., a display of goal-directed behavior in terms
of taking initiatives to fulfill its objectives; and (iii) smal ability, i.e., ability to interact with other agents
(and possibly humans) within the organization.

The key problem facing an agent is that of deciding which ®Aittions it should perform to manipulate
its environment in order to best satisfy its design obj@givn this vein, agent models are really software
architectures for decision making systems that are emisedden environment. The complexity of
the decision-making process is greatly affected by a nunsbenvironmental properties. Russell and
Norvig suggest the following classification of environmenbperties [38], which in turn dictate a suitable
decision-making process for the agent:

« Accessible vs. inaccessibken accessible environment is one in which the agent canrobtanplete,
accurate, up-to-date information about the environmestéite. The more accessible the environment,
the simpler it is to build agents to operate in it.

« Deterministic vs. non-deterministi@& deterministic environment is one in which any action has a
single guaranteed effect — there is no uncertainty aboustdite that will result from performing an
action. Non-deterministic environments present greateblpms for the agent designer.

. Episodic vs. non-episodidn an episodic environment, the performance of an agenepexdent
on a number of discrete episodes, with no link between théopeance of an agent in different
scenarios. Episodic environments are simpler from the tageweloper’s perspective, because the
agent can decide which action to perform based only on theeguepisode — it need not reason
about the interactions between this and future episodes.

« Static vs. dynamicA static environment is one that can be assumed to remaihamged except
by the agent’s actions. A dynamic environment is one thatdtlasr processes operating on it, and,
hence, changes in ways that are beyond the agent’s control.

. Discrete vs. continuousiAn environment is discrete if there are fixed, finite numbeactions and
observations in it.



Simply said, from this perspective, intelligent agents mexely computer systems that are capable of
autonomous action in order to meet their design objectikasagent will typically sense its environment
and will have available repertoire of actions that can becetexl to modify the environment, which may
appear to respond non-deterministically to the executfoin@se actions.

B. Intelligent Agent Models

In this subsection, we attempt to formalize agent modelst,Five characterize the circumstance of
the agent’s environment as a set of environment states. YAtgaen instant of time, the environment
is assumed to be in one of these states. The capability of ent ag represented by a set of actions.
Then, conceptually, an agent can be viewed as a functionhwinigaps sequences of environment states
to actions.

The basic idea is that an agent decides what action to peréorrthe basis of its history, i.e., its
experiences to date. These experiences are representega@geace of environment states, namely, those
that the agent has thus far encountered. The (non-detetio)jnbehavior of the environment can be
modeled as a function, which takes the current state of thieagrment and an action (performed by the
agent), that maps them to a set of environment states.

From a computational view point, an agent model involves datuctures, the operations that may be
performed on these data structures, and the control flowdstwhem. From this abstract view of an
agent, we distinguish among three classes of agents ([34], [39]):

« Purely Reactive Agentfkeactive agents decide what to do without reference ta thsiory. They
base their decision making process entirely on the presetit,no reference at all to the past. We
will call such agents purely reactive, since they simplypmesl directly to their environment.

« Perception A more sophisticated design. Here, an agent’'s decisiontifium is separated into two
subsystemsperceptionand action The idea is that the perception captures the agent’s yabdit
observe its environment, whereas the action representagdet’s decision making process.

« Agents with StateThe main idea of this model is that the agents have somengiteiata structure,
which is typically used to record information about the eomment state and history. An agent’s
decision making process is then based, at least in part, ese timternal states.

From the point of view of how an agent’s decision making pssceay be implemented, we consider

four classes of agents:

« logic-basedagents: decision making process is realized through lbgeduction;

« reactive agents: decision making process is implemented in some fufrmirect mapping from
situation to action;

« belief-desire-intentiomgents: decision making process depends on the maniputHtitata structures
representing the beliefs, desires, and intentions of tleatagind finally,

. layered modelsdecision making process is realized via various softwayens, each of which is
more-or-less explicitly reasoning about the environmerdifferent levels of abstraction.

Within the DDD-III framework and from a C2 perspective, BDlodels are particularly attractive.
These models have their roots in the philosophical tragditbunderstanding practical reasoning, i.e., the
process of deciding, moment by moment, which action to perfom the furtherance of desired goals.
Practical reasoning involves two important processesidder what goals we want to achieve, and how
we are going to achieve these goals. The BDI model essgntialances pro-active (goal-directed) and
reactive (event-driven) behaviors.

The process of practical reasoning in a BDI agent is summariz seven main components:

. a set of current beliefs, representing information the agas about its current environment;

« a belief revision function, which takes a perceptual inpud $he agent’s current beliefs, and on the

basis of these, determines a new set of beliefs;

« an option generation function, (options), which deterraitiee options available to the agent (its
desires), on the basis of its current beliefs about its enwnrent and its current intentions;



« a set of current options, representing possible coursestmiaavailable to the agent;

« a filter function (filter), which represents the agent’s detation process, and which determines the
agent’s intentions on the basis of its current beliefs,rdssiand intentions;

a set of current intentions, representing the agent’s ntufoeus, i.e., those states of affair that it is

committed to trying to bring about; and

an action selection function (execute), which determimeadction to perform on the basis of current

intentions.

Belief-desire-intention models originated in the work bétRational Agency project at Stanford Re-
search Institute in the mid 1980s. The origins of the modeirlithe theory of human practical reasoning
developed by the philosopher Michael Bratman [2], whichu®s particularly on the role of intentions in
practical reasoning. The conceptual framework of the BDéetas described in [3]. One of the interesting
aspects of the BDI model is that it has been used in one of tre suzcessful agent models to date, e.g.
([12], [13], and [16]).

In the early 1980s, a similar framework has been developédirwihe C2 community. The model is
the stimulus—hypothesis—option-response (SHOR) framewaoWohl ([43], [44], [45]). Similar to BDI,
the SHOR model involves several stages:

o Stimulus(S) — A received stimulus initiates the decision-makingcess.

« Hypothesis(H) — Based upon the stimulus and other information avasleddl that time, various
hypotheses are generated concerning the actual situatitve @ctual state-of-the-world faced by the
DMs.

« Option(O) — Depending on the possible situations (the hypothg#esPM generates a set of options
or possible actions.

« ResponséR) — The effects or outcomes of the options are evaluatedein wf the uncertain nature
of the situation, and an appropriate action or responsdastsel. The response then interacts with the
external system generating additional stimuli, which meadl to additional iterations of the process.

Other assessment-response type of structures for varjgplicaions have been developed by other
investigators within the C2 community, e.g., ([5], [17]5]2[31], [34]).

C. Why Multi-Agent Networks?

A single agent is limited by its knowledge, its perspectigad its computational resources. As the
domain becomes larger and more complex, open and distdipasan DDD-III, a set of cooperating agents
is needed to address the distributed decision making pesasiore effectively. A multi-agent network
(MAN) in this situation is attractive because it offers rgess, efficiency, and inter-operation of existing
legacy systems. Although centralized solutions are géipenare efficient, when the problem being solved
is itself distributed, distributed decision making becemaenore natural and efficient approach to consider.
In addition, there are many instances where a centralizpdoaph is intractable, as, for example, when
the systems and data belong to independent organizatidrsyant to keep their information private and
secure for competitive reasons.

Multi-agent network (MAN) can be defined as a loosely couphetwork of problem solvers, who
work together to solve problems that are beyond the indalidapabilities or knowledge of each problem
solver [20]. MAN may be comprised of homogeneous or hetaregas agents. An agent in the system is
considered a locus of problem solving activity; it operatgschronously or asynchronously with respect
to other agents, and it has certain level of autonomy [26}hia context, autonomy refers to an agent’s
ability to make its own decisions about what to do, when totdwhat information to communicate with
others, and how to interpret the information received.

Jennings et. al. [20] note that the main characteristics ANMnclude: (1) each agent has incomplete
information or capabilities for solving the problem, i.eacl agent has a limited view point; (2) there
is no global system control; (3) data is decentralized; afjdcOmputation is asynchronous. Similarly,
Huhns and Stephens [19] note that information involved in N\M& distributed, and typically resides



in information systems that are large and complex in theofalhg ways: (1) geographical sense, (2)
component wise, and (3) scope and conceptual sense, bdtke mumber of concepts and in the amount
of data about each concept.

The challenges in MAN lie in how to formulate, describe, dapose, and allocate problems and
synthesize results among a group of intelligent agents; toognable agents to communicate and interact;
how to ensure coherent coordination and cooperation; hovadditate situation awareness, namely,
agents’ reasons, perception, and knowledge about othetsadeow to resolve conflicts of interest, etc.
That is, the locus of MAN design is to facilitate effectiveesption and productive interaction among
the agents involved, which are assumed to have incompletauacertain knowledge about the domain
and incomplete, and possibly uncertain, observations.desgyn involves a computational infrastructure
for such interactions to take place. The infrastructurd intlude protocols for agents to communicate
and interact with. These protocols enable agents to exehang understand messages, and facilitate
cooperation in solving the global problem.

D. Inter-Agent Interaction

The rationale for interconnecting agents is to enable themobperate in solving problems, to share
expertise, to work in parallel on common problems, to be gexl and implemented modularly, to be
fault-tolerant through some form of redundancy, to repmeseultiple viewpoints and the knowledge of
multiple experts, and to be reusable [19]. Agents in MAN maydharacterized by whether they are
benevolent or self-interested. Benevolent agents workthey toward achieving common goals, whereas
self-interested agents have distinct goals, but may stiliract to advance their own goals. In our work,
it is assumed that the agents are designed to work togethimabthe payoffs to self-interested agents
are only accrued through collective efforts. Thus, probksiving, i.e., decision making, in MAN is a
process of constructing a sequence of actions, which iegohn agent’s own goals, capabilities, its view
of environmental constraints, and a fair degree of coherabout additional constraints from other agents’
activities, commitments to other agents, and unpredietabture of their interaction due to their limited
view of others.

Coherenceas the notion of how well a system behaves as a unit. Agents thwm private goals and
share some common goals. The agents’ private goals are nessaily known to other agents. One of
the challenges for a multi-agent network is how it can mamnggobal coherence without explicit global
control. In this case, agents must be able to determine goals theg shith other agents, determine
common tasks, avoid unnecessary conflicts, and pool knowlexhd evidence. In this light, agents
communicate in an effort to enable them to coordinate theiloas and behaviors, resulting in systems
that are more coherent.

The power of MAN lies in the existence of sophisticated pateof interactions among the problem
solvers. The common types of interactions inclugd®rdination (organizing problem solving activity so
that harmful interactions are avoided and beneficial intevas are exploited);ooperation(coordination
among non-antagonistic agents who work together towardsnamon objective), and negotiation (co-
ordination among competing or simply self-interested &gewho are coming to an agreement that is
acceptable to all the parties involved).

The need for interaction in MAN occurs because agents salbepsoblems that are interdependent
through overlaps in the sub-problems, the situation in thite sub-problems are parts of a larger
problem whose solution requires that certain constrairist @mong the solutions of the sub-problems,
or through distributed locations of information, expestiprocessing, and communication resources. In
cooperation, wherein coordinating agents are non-antafiorand see themselves as working together
towards a common objective, agents’ behaviors are guidedobperative strategies meant to improve
their collective performance.

To produce coherent behaviors, the early models emphapiaading to resolve the interdependence
among sub-problems by utilizing a synchronizer agent thebgnizes and resolves sub-goal interactions.
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A more flexible approach in later models, where agents amvell to dynamically coordinate without
particular assumptions on the distribution of sub-proldeexpertise or other resources. Coordination is
operationalized in the form of communicating plans and g@dlsome levels of abstraction. Communi-
cation among agents facilitates mutual expectation ambagboperating agents and, in turn, improves
coherence. Work on these approaches can be found, e.g, [T10)]

Current approaches of cooperation favor explicit modeldeainwork, wherein teams monitor their
performance and adjust their responses based on the cuwitaation. Explicit models of teamwork
are particularly important in dynamic environments, wirenaarious unexpected events (such as agents’
failures or arrival of new tasks) may occur. These approaere natural extensions of the BDI single
agent model. Examples of work done in this category incly@g]( [22]); related work can be found in

([6], [15)).

IV. DDD-IIl B ASED MULTI-AGENT NETWORK

IMILAR to OMAR agent design ([7] and [8]), we will illustrateur modeling paradigm of a col-

laborative synthetic agent via two examples, an air defasgse@ario and parts of A2C2 Experiment
8 [23], operationalized in the distributed dynamic deaismaking (DDD-III) team-in-the-loop real-time
simulator. The overall system architecture within thisnfeavork is as shown in Fig. 2. Details of the
DDD-IlIl components, described in Fig. 2, can be found in @B [24]) and in section Il of this paper.

A. DDD Agent Design

We have adopted the concept of an intelligent synthetictag®a computational system that is situated
in an environment, and is capable of flexible autonomousastin this environment in order to meet
its design objectives ([32] and [47]). Within the DDD-III rzaligm, a set of cooperative decision-makers,



who share a commoaobjectiveof successfully completing a set of assigned tasks undeures and time
constraints, work together to achieve this common goal.

The synthetic agent acts as a decision-maker (DM). The DDéhtaig characterized by its ability to
recognize its own capability and that of others in its teatrsuiccessfully schedules its assigned tasks
to not only its own resources (platforms) but also coordisawith other agents so as to minimize the
overall mission completion time.

Taking an abstract view of the agent model as a map of its datatsres, potential manipulations
of the data structures, and control flow between them, wesifjasur DDD agent as perceptive agent
with states([37], [39]). That is, the DDD agent's decision function isparated into iterceptioni.e.,
its ability to observe its environment, a@adtion, i.e., its decision making process, which is based in part
on its internal states. The DDD agent’s states represemitésnal data structure, which is used to record
information about the environment state and history.

From a concrete perspective of implementing the agent’'ssiecmaking process, it is natural within
our problem context to adopt theelief- (viz., perceptionpesire-(viz., objectivesjntention(viz., probable
actions), i.e.BDI paradigm ([2], [12]). In this framework, an agent’s decisimaking process depends
on the manipulation of data structures representing thefeeldesires, and intentions of the agent, as
discussed in section Ill. Naturally, we are employing theCdHparadigm of Wohl [43]: thestimulus-
corresponds to task detectiomypothesistepresents task identificationption- models deliberation of
possible actions based on the agent’'s hypotheses aboudvbesary andesponsecorresponds to pursue,
attack, coordinate, etc. In this vein, our modeling paradig also similar to the design of multi-stage
interacting DMs [17]. That is, the state-based DDD agentleyspthe following processing stages (see
Fig. 3):

1) Environment sensin¢ES): defines the agent’s perception of existing tasks and afrodigents. In
the DDD-III context, this step consists of task identificati which is operationalized through the
agent’s platform sensing capabilities and direct commatioa with other agents in the organization.

2) Information processingiP): identifies the agent’s active mapping between the typesdly, hostile,
or neutral) and requirements (precedence constraints esulirce requirements) of active tasks in
the system, its own capability, and perceived capabiliiesther agents in the organization.

3) Action SelectiorfAS): specifies the agent’s strategy to achieve its objectivethe DDD-III context,
the agents choose to wait, obtain additional informatiornpursue and attack a task alone or with
other agents.

Finally, in accordance with the bounded rationality cor¢dg], the agents should halienited cognitive
resourceswith which they can accomplish their objectives either iformation processing or in task
processing. The optimal decision strategy must distritiieeinformation and activities among agents so
that the decision-making and operational load of each agenains below the corresponding thresholds.

B. DDD-III based Multi Agent Network Design

The DDD mission scenarios can be modeled to allow each DM e la@cess to only a portion of
the information available to the team. The total informat&et maybe incomplete and inaccurate due
to lack of updating, missed detection, or communicatiomaleaerrors. Therefore, theam information
processingis characterized by a significant degree of uncertainty \pdhtial overlap among DMs. In
this context, the critical issue to be addressed in the ragkint information processing is 'who should
communicate what, with whom, and when’. Furthermore, theDDbission scenarios afford a reasonable
degree of task processing overlap among DMs. That is, widhrcketo resource constraints, two or more
agents must share responsibility for a given task. The rdaigsues inteam task processing 'what
should be done, who should do what, when and with which ressur

Recall that the critical shortcoming of a single agent isitih knowledge, perspective, and compu-
tational resources. The nature of the DDD-III framework gegjs that amulti-agent-network MAN),
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wherein a loosely coupled network of cooperating agentsb{pm-solvers) work together to solve prob-
lems that are beyond the individual capabilities or knogkedf each agent [20], is more suitable. Within
the DDD-III framework, the MAN is comprised dfeterogeneous, communicating, and cooperatyents.
Recall that the locus of MAN design is to facilitate effeetioperation and productive interaction among
the agents involved, which are assumed to have incompletaiacertain knowledge about the domain
and incomplete and, possibly uncertain, observationshiwihe DDD-III framework, the challenges in
MAN lie in how to facilitate situation awareness, namely agemt’'s perception and knowledge about
other agents; how to enable agents to communicate andatitarad how to ensure coherent coordination
and cooperation. Within the three stage decision-makiongess, these issues were resolved as follows.

1) Environment Sensing (ES)

2)

In the DDD-III paradigm, each DM is allowed a set of platformiz., resource capability, and at the
same time is assigned a set of tasks (individually or as a)teasrhuman players are able to see the
current tasks and available platforms, it is assumed th&Mk in the organization share the same
common knowledge about these objects. The knowledge tionitéies in the fact that, based on its
resource capability, i.e. identification range, idensitad existing tasks may not be available to an
agent unless the tasks are within its identification rangeh&nowledge has to be communicated
among agents within a team (or possibly only among poteatiatdinating partners). In the current
implementation, all new task identification regarding ipd and requirements is communicated
to all agents (all players broadcast their new findings). Thenmunication between agents is
conducted in accordance with the DDD-IIl communicationtpcol ([24], [8]). This approach,
in essence, partially alleviates the issue of 'who shouldmaoinicate what, with whom, and when’.
Communication channel (viz., socket) errors can still octhat is, the total information set may
still be incomplete and inaccurate due to communicatioarsrr

Information processing (IP)

Recall that due to task processing overlaps among DMs, MABdsd€o address the issues of
'what should be done, who should do what, when and with whedources’. That is, in MAN,
IP stage, which emphasizes 'what should be done’, requitessaction among team members.
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In the DDD-III context, the nature of interaction is one ofoperation, wherein the coordinating
agents are cooperatively working together towards a comofpective. Consequently, behavior of
agents is guided by cooperative strategies meant to impiweie collective performance. As the
task information is communicated to all team members, thestjon of 'what should be done’, viz.,
which task should the team consider at the present time, afatysbe addressed as a team, i.e.,
centralized approach. In this vein, we need to formalizeaverall team scheduling problem.
Conceptually, thecentralized scheduling problem is formalized as follows. A set of cuthen
existing taskseadyto be processed with '’known’ type, resource requiremeatstlons, precedence
relations, and specified processing times must be assigmkaeecuted concurrently by a set of
platforms with given resource capabilities, ranges of apen, and velocities. Tasks are allocated
to groups of platforms in such a way that for each such platfpackage to task assignment, the
vector of task’s resource requirement is component-wisetlgan or equal to the aggregated resource
capability of the platform group. The task processing caly degin only when the processing of
all of its predecessors is completed and all platforms frbmen group assigned to this task have
arrived at the appropriate location. Furthermore, taskgssing by all assigned platforms must be
executed in a limited time window. It is assumed that a reswan only process one task at a
time. Available platforms are to be re-routed among thedas& as to minimize the overall mission
completion time. A detailed mathematical formulation of tentralized scheduling problem can be
found in [28].

Aside from the fact that the scheduling problem is NP-hartk oan argue that no human team
will behave optimally in a similar situation. Therefore etibDD-based MAN paradigm focuses
on heuristic scheduling algorithms with good performarigetails on various heuristic scheduling
algorithms can be found in [28].

The DDD-based MAN employs the multi-dimensional dynamsgt Bcheduling method (MDLYS),
wherein it finds the platform-task allocation and missiohestule by sequentially assigning tasks
to platforms until the task set is exhausted. MDLS heuriséis two main steps: (1) select the task
to be processed; and (2) select the group of platforms to sigreed to it for processing. This will
fit nicely within our three stage decision-making paradigm.

In the information processing stage, we address the firgtafteelecting a task to be processed from
the ready tasks (a task becomes ready when all its predesdsse been completed). The selection
is determined by the current assignment information andgakence structure [28]. The priority value
to select task, P(i), is operationalized by the following criteria: (1) opparity window to process
taski, win(i); (2) value of taski, val(i); and possibly other criteria as introduced in [28]. Formall
the priority value is calculated as follows:

P(i)

Accordingly, we have the task selection procedure shownign &

val(7)

= T win@) (@)

Action Selection (AS)

The AS stage of the decision-making process addresses tbhadsstep of the MDLS heuristic.
A group of platforms is selected for processing the seletasd. A task is assigned to groups of
platforms in such a way that the vector of task’s resourceirements is component-wise less than
or equal to the aggregated resource capability vector ofjthap of platforms assigned to it:

> rm =Ry V=1L 2)
meGROUP

The salient issue is how to distribute the processing of lauaser resource requirement constraints
among available platforms to achieve minimal executionetifar the overall mission. Similar
to [28], we obtain a trade-off between minimizing a task’sngbetion time and minimizing the
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Find the set:
READY1 = {2 € READY| > rmu> Ry, V=1, ...,L}

meFREFE
DO UNTIL READY1 =10
Task selection

i* =arg max P(i)
i€EREADY1

READY 1« READY1\ {i*}
Platform group selection for = ¢*:
Find the set:

L
FREFE1 = {m € FREE|S. min (rp, Ry) # 0}

=1
Vim = Wim, Vm € FREFE1
GROUP =10
DO UNTIL > > Ry, Vl=1,...,L

meGROUP
m* =arg max U,
meFREEL

FREE1 «— FREE1\ {m*}
GROUP «— GROUP U {m*}
END DO
END DO

Fig. 4. Centralized Task and Platform Group Selection Rtoee

allocated resources, which may be needed by other tasksp@fatmnalize the first consideration
by minimizing the travel time of platform to taski, ¢;,, = ‘f}m which depends on the distanég,

and the platform’s maximum velocity,,. The second consideration is operationalized by maximizin
the ratio of accuracy when assigning platfonmto task: compared to assigning it to any other task
j # 1. Accuracy of taski, when it is assigned to platform depends on task-resource requirements,

platform-resource capability, and task value. It is coreduas follows:

, 100 x val(i) <~ [ min Tmi, I ?
gy < 05 (i ) ®
v =1 ¢

Note thatnR; represents the number of resource types a task requiresrdagly, we have the
platform group selection procedure shown in Fig. 4.

Within the DDD-III paradigm, a task is executed concurrgr(tvithin a small time window) by
all assigned platforms. Since the travel times of the assigratforms differ, the closer or faster
platforms should wait for others before attacking the taskatternately, all assigned platforms
should synchronize their departure times so as to arrivieeatask location concurrently, viz., begin
task execution together. An assignment is considered wieerge task (or a group of tasks) is
completed. At that time, all the platforms processing thegpleted task become free.

The platform to task allocation procedure can be condudtbdreas a centralized or as a distributed
process. The centralized allocation procedure is as showig. 4, wherein all players are being
told (by a central processor) of which platforms are needegrocess the current tasks and when
they should start the task processing sequence. Our apptoaihe distributed platform to task
allocation employs the auction algorithm, wherein a seteafdy tasks bid for available platforms
in the organization.The platform owners, viz., the decisivakers, adjust the 'prices{p,,}, so as
to achieve their common objective of minimizing the overalssion completion time. Unlike the
centralized approach, the tasks and the DMs (viz., theglas) find their matches through bidding
and price adjustments.
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Find the set:
READY1 = {2 € READY| Y. rpu> Ry, V=1, ...,L}

meFREFE
READY?2 =)
DO UNTIL READY1 =10
Task selection
i* =arg max P(i)
1 €EREADY1
READY1 «— READY1\ {i*}
READY?2 « READY2U {i*}

FREE2 =10

Platform group selection for = 7*:
Find the set:

L
A(i) = FREE1 = {m € FREE|Y. min (rp, Ry) # 0}

Vim = Wim — Pm,¥m € FREE1

GROUP (i) =0

DOUNTIL Y ru >Ry Vli=1,..,L
meFREFE1

m* =arg max Uj,s,T; = MaX Ui
meFREEL meFREEL

IF FREE1={m*} U0
¢; = —00
ELSE
END IF
d=min{m — A\, — ¢, + €, — pp+ }
Dim ::pm**_é
FREFE1 «— FREFE1\ {m*}
GROUP (i) « GROUP (i) U{m*}
FREE2 «— FREE2U {m*}
END DO
END DO
Bidding process fol : € READY2:
B(m)=0,VYme FREE?2
DO UNTIL READY2 =10
Selecti (breadth first)
Bid at b;,, onV m € GROUP (i) = B (m) «— B (m) U {i}
READY?2 «— READY?2\ {i}
END DO
Assignment procesem € FREE?2:
DO UNTIL FREE2 =10
Selectm (breadth first)

= max Vim
meFREET\{m*}

IF B (m) # 0

D = Ar%%x)bim, announce new pricg,, to all B (m)
eb(m
i* = arg I%Z%X)bim, assign task* to platformm : z;«,,, = 1
1€B(m

Deassign previous assignmehto m : x;,, =0

END IF

FREE2 — FREFE2\{m}

END DO

Fig. 5. Decentralized Task and Platform Group Selectiorc&tare



14

In adopting the auction method, we view the platform-tdctalocation as an asymmetric-multi-
assignment problem, wherein ‘ready’ tasks are to be assigmesome (possibly not all) of 'free’
platforms. The problem can be formulated as follows:

max Z Wi Tim
(i,m)eE
s.t mez1vz_1
meA(i (4)
Z Tim < 1LYm=1,.. K
i€B(m)
Tim > 0,Y (i,m) € E

where E denotes a set of tasksand platformsm that can be matched to form paif$i, m)}.
For each task, we denote byA(i), the set of platforms that can be matched witBuch that
A(i) = {m| (i,m) € E} and for each platform, we define y(m), the set of tasks that can be
matched withm such thatB(m) = {i| (i,m) € E}. The cost of assigning platform to taski, w;,,
which depends on the platform travel time and the ratio oftieay (see Eqg. (3)) when platform

is assigned to task compared to assigning it to some other task ¢, is computed as follows:

i (mln(r'ml Rzl) ) 2

5 (1+val(9‘))%ojl:i1 <%2Rl))2

JEREADY1\{i}

(1 + val(i)) 12

()

The assignment problem as described in Eq. (4) can be easiieted to an equivalent assignment
problem [4] as follows:

(i;m)eE
s.t Z Tim — Ty = 1,Vi=1,..., N
meA(i)
> Tim A T =1,Ym =1, K
zEB(m) (6)

K
szz Y tpms =K —N
=1
m >0,V (i,m)eE
ZO,V’L— 1,...N
xms >0,Ym=1,..,. K

The dual of the asymmetric assignment problem is given by:

N K

min > 7w+ >, pm— (K —N) A
i=1 m=1

st W4 pm > Wi,V (i, m) € E (7
A< pm,Ym=1,.... K
)\ZWZ‘,\V/Z':]_,...,N

An auction algorithm is developed from the dual optimizatgroblem and consists of two phases:
() bidding phase, wherein each ready taskomputes the current value of platforms (i.e.,
potential profit if i is assigned to a set of platformign}) and bids for the platforms of its
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Platform Group Prunning
m* = arg min Vi«
meA(i)
Al = A(i)
WHILE A1 #

m* = arg min v,
meAl

Al — A1\ {m*

IF S rm >RV =1,..,L

meA(@\{m=} .
A(i) — A(i)\ {m"}
END IF
END WHILE

Fig. 6. Platform Group Prunning Procedure

choice; (ii) assignment phase, wherein each platform (tearpy) offers itself to the highest bidder.

Accordingly, we have the platform-to-task-allocation ggdure as shown in Fig. 5.

Note that, we have not accounted for the resource requirenmrstraint shown in Eq. (2) in the

multi-assignment problem, in Eq. (4). Neglecting this,tguypossibly, leads the auction algorithm
to a situation, wherein all platforms are allocated to one @referred task while ignoring other

tasks. We address this problem by introducing platform grnowning after the assignment process
is completed. The platform group pruning guarantees tlatnore than the needed platforms, are
allocated to a task. The platform pruning procedure is shimwrg. 6.

V. PRELIMINARY RESULTS

Methodology for quantifying similarity, in terms of a fit (@) between a mission scenario and an

organizational strategy, is presented in [27]. It is sugggeshat structural fit can be characterized
in terms of workload balance, communication requiremeants, DM-to-DM dependency. It is argued that
balancing the necessary coordination to maintain goodopadnce and minimizing excessive DM-DM
interaction are keys to successful organizational styateg

In the following, preliminary results from the DDD-IlI-bad intelligent agent network are presented.

To illustrate the basic structures of the agent design, glsirnoordination-free scenario is presented.
This example emphasizes the inner-agent model, viz., treetstage decision-making process, and its
performance within the DDD-III environment. The secondrapée is derived from A2C2 Experiment 8,
wherein only the first eight to nine minutes of the experimerdonsidered. The latter example illustrates
the agent coordination capability in performing complesk&® which require inter-platform coordination,
and points to the potential of utilizing the agent framewaikhin C2 experiments.

A. Defending a Friendly Air-base Scenario

A team of seven homogeneous agents is assigned to defendndlyriair-base from an adversary.
Each team member, who shares similar traits, is able to ishaly process a single incoming task
without external workload coordination. That is, the raseucapability of each agent, shown in TABLE
I, matches or exceeds the resource requirements of eaclomissk. The tasks arrive randomly and
impose no precedence constraints. See Fig. 7. The scesasuripted within the DDD-III framework,
and is executed fully by a network of intelligent agents, weeach agent utilizes the three-stage decision
making process described in section V.

Accrued task gain is used to measure the task processingeeffjcof the team as a function of time.
It is argued that an efficient team achieves high accuracytameliness. Details of accrued task gain
calculation can be found in [27]. Another efficiency metransidered is the workload distribution among
DMs within a team. Balanced workload over all team memberdeisired, since higher workload and
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Fig. 7. Arrival Time of 100 Tasks in an Air-base Defense Sciena

increased workload imbalance lead to degraded organmadtiperformance. Due to the nature of the
mission scenario, only internal DM workload is relevant e ffirst example. The internal workload of
decision-makey; is calculated as follows:

N

K
1
I (]) - m221 Ui zzl Lim y]m (8)

wherez;,, = 1 if platform m is allocated to task andy;,, = 1 if DM j owns the utilized platform
m. The internal workload depends on the maximum velocity efdlksigned platform to account for the
fact that a faster platform will be unduly penalized for presing more tasks.

The basic strategy, adopted in the action selectikf étage, takes into account the knowledge that all
DMs have identical capability to undertake the incomindgsasience, individual DM strategy favors task
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Fig. 8. Accrued Task Gain Over Time
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Fig. 9. Team’s Internal Workload Distribution

processing with minimal effort, viz., platform fuel efficiey, or, equivalently, minimum platform-to-task
distance. That is, any agent who is geographically closenioincoming task should be assigned to the
task.

Simulation results, in the first plot of Fig. 8, show that, apexted, the team of agents achieves high
accrued gain over the entire mission duration. The intenmakload distribution, shown in the first graph
of Fig. 9, however, indicates that the team is inefficientsrprocesses. The basic strategy fails to recognize
poor placement of platforms. Poor platform placement ldadsneven platform-to-task distances, which
in turn, leads to uneven team workload. By appropriate phece of platforms belonging to different
DMs, the scenario leads to a balanced team workload disivipuas shown in the second plot of Fig. 8,
and, in turn, to more efficient task processing, as shownernstttond graph of Fig. 9. Efficient platform
placement leads t6% improvement in the timeliness measure (mission completio).

B. Congruent-Incongruent Scenarios Derived from Earlyk$asf A2C2 Experiment 8

The second example utilizes organizational architectara$ a set of tasks (excluding most of the
hostile mosquito tasks, which have very short windows ofcofymity to be executed, e.g. only 1.0, 3.0,
or 5.0 seconds) used in the A2C2 Experiment 8. It should bedydiowever, that the purpose of this
example is only to illustrate the agent coordination caghbn performing complex tasks, which require
inter-platform coordination, and is not to replicate theulés of experiment itself.

A2C2 Experiment 8, from which the architectures and missame derived, considers two organizational
structures, functional {) and divisional ) [23]. A functional organization is a team of decision-
makers with non-overlapping resource capabilities, weie divisional organization is a geographically-
organized team (with a reasonable degree of overlappimgires capabilities). The architectures represent
two extreme cases of organizational structures, and, firereare thought of as suitable test cases
for organization-to-mission congruence study. Two sdesatermed functional f{; requiring minimum
overlaps in the task resource requirements) and divisi@Ghatequiring overlaps in the task resource
requirements), were designed to create the matched smgdtr £ on f (functional structure - functional
scenario) andD on d (divisional organization and divisional scenario) casey] to create mismatches
for F ond and D on f cases.

The example supposes that a network of intelligent agewtsjgaas organizationg” and D, carry
out real-time agent-in-the-loop decisions on the earlytspaf f and d scenarios. In order to capture
the overall scenario within a short simulation time, thecpdence constraints of the mission tasks are
deliberately ignored. The accrued task gain and workloatricseare used to evaluate the simulation
results. The results for accrued task gain, with confidem¢ervals, based on 10 simulation runs, for
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organizationF’ performing early parts of missiofi are shown in the first graph of Fig. 10, whereas the
same results on missiahare displayed on the second plot. Recall that scenAneas designed to be
congruent with organizatior and incongruent (misfit) with organizatial, and similarly for scenario
d. The preliminary simulation results indicate that, in tlegruent situation, viz.f" on f, organization
F performs better than in the incongruent situation, viz.on d. The results are consistent with the
hypothesis of congruence theory and human-in-the-loograxental results in [27]. Results for the
organization performing mission are presented in Fig. 11.

Note that, for both organizations, the mission tasks withhlpayoffs are selected first. This is consistent
with the DDD agent'sAS stage, which favors high-valued tasks. Since the team of @DQénts follows
a prescribed team strategy as described in section IV, thétsefrom 10 simulation runs indicate similar
task selections and platform-to-task allocations. Théhces are attributed to the uncertainty in the
communication channel (between the DDD-IIl and the agetha) lead to varying delays affecting the
DDD agent’sIP stage, rather than a changing strategy. It should also bednib@at the results only
indicate the tasks completed by the team at the indicated tioration and not all of the tasks that are
being processed (i.e., pursue or get close to the task).ihtlite organizations are doing more than that
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indicated by the number of completed tasks.

The internal workload metric, which, in this case, is catetl as the number of platforms of each DM
utilized to process tasks, and is presented in Figs. 12 arfdri@ganizationst’ and D, respectively. As
only a small number of the overall mission tasks was consitighe interpretation of the results is limited.
It can be observed that for organizatiéhperforming missionf, only DM,, D M3, and DMs, D Mg are
busy, whereas fof’ performing missioni, DM, is also busy. For organizatioh performing missioni,
DMy, DM,, DM3 and D Mg are in charged of the tasks.

The team decision-making process was implemented via aatieetl approach. The choices of the
completed tasks indicate that most completed tasks ara-ptattorm-high-valued tasks requiring inter-
DM coordination. Future improvements in agent models wilpiement distributed agent-based strategies
and will include human cognitive biases and limitations.
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VI. CONCLUSION

HE need for a network of intelligent agents within C2 expenmtal settings was presented. A brief

overview of modeling techniques for the design of a netwdrkallaborating agents, followed by
techniques for modeling the decision-making processegrhstic agents in task selection and resource
allocation settings within the DDD-III [24] simulation, we discussed. In the proposed framework, the
decision-making process of a network of intelligent agevese addressed via limited look-ahead, auction-
based scheduling and resource allocation algorithms fleemphase | of the three-phase organizational
design process ([28], [29]).

Preliminary results of operationalizing the DDD-based tiradjent-network paradigm were presented
via two different mission scenarios. A coordination-freersario illustrated the basic structure, in terms of
the three-stage decision-making processes, of the DDBgéint. The second example, which is derived
from A2C2 Experiment 8, highlighted the potential of utitig the agent framework in C2 experiments. It
is argued that as the agent models matured, they can be utsmdenscale experiments involving hybrid
human-agent teams.
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