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Destabilizing Dynamic Covert Networks 

 

Abstract: 
Most commanders, politicians and intelligence agents have at least an intuitive 

understanding of hierarchies and how to affect their behavior.  However, covert organizations, 
such as terrorist organizations, have network structures that are distinct from those in typical 
hierarchical organizations.  In particular, they tend to be more cellular and distributed.  This 
makes it difficult to apply the lessons of experience in determining how best to destabilize these 
groups.  This problem is further compounded by the vast quantities of, yet incomplete, 
information.  What is needed is a set of tools and an approach to assessing destabilization 
strategies that takes these difficulties in to account and provides analysts with guidance in 
assessing destabilization tactics.  Such an approach is forwarded in this paper.  In addition, initial 
lessons learned are discussed.  The particular approach is extensible and scales well to groups 
composed of 1000’s of members. 

Support: This research has been supported, in part, by the National Science Foundation 
IGERT in CASOS, the Office of Naval Research (ONR), United States Navy Grant No. 
9620.1.1140071 on Dynamic Network Analysis and Grant No. 1681.12.1140053 on Adaptive 
Architecture, DARPA, the NSF under the IGERT award in CASOS - NSF IGERT 9972762, and 
the center for Computational Analysis of Social and Organizational Systems. The views and 
results expressed herein are solely the responsibility of the authors and do not represent the 
official views of the Office of Naval Research, DARPA or the National Science Foundation. 

Approaches to Assessing Destabilization Tactics for Dynamic Networks 
Most commanders, politicians and intelligence agents have at least an intuitive understanding 

of hierarchies and how to affect their behavior.  However, covert organizations, such as terrorist 
organizations, have network structures that are distinct from those in typical hierarchical 
organizations.  A key feature of covert networks is that they are cellular and distributed. 
Consequently, the lessons of experience held by these decision makers may not be applicable. 
Reasoning about how to attack dynamic networked organizations (Ronfelt and Arquilla, 2001), 
let alone figuring out how they are likely to evolve, change, and adapt is terribly difficult.  What 
is needed is a series of tools, techniques, and models for collecting data on and reasoning about 
these covert networks even in the face of overwhelmingly incomplete information. 

To understand the dynamics of covert networks, and indeed any, network we need to 
understand the basic processes by which networks evolve.  Moreover, we have to evaluate 
destabilization and surveillance strategies in the face of an evolving network and in the face of 
missing information.  To ignore either the dynamics or the lack of information is liable to lead to 
erroneous, and possibly devastatingly wrong, policies.  Taking in to account both the dynamics 
and the lack of information should engender a more informed approach to answering various 
policy questions.  Key questions might include “what is the size and shape of the covert 
network”, “how does the nation in which the covert network exists impact its form and ability,” 
and “if we do x to the covert network what is likely to happen?” 

Two approaches that could be applied to the study of covert networks are traditional social 
network analysis and multi-agent modeling (particularly a-life).  However, both of these 
approaches are severely limited.  Traditional SNA is limited in that it only considers the linkage 



among people, is concerned with non-adaptive systems, and most measures have been tested 
only for small (< 300 node) networks.  Multi-agent modeling uses very simple unrealistic agents 
who, although they adapt, move about only on a grid and don’t take actual networks in to 
account.  This paper proposes the use of a third approach – dynamic network analysis.  

Approaches to Assessment 
Dynamic Network Analysis (DNA) extends the power of thinking about networks to the 

realm of large scale, dynamic systems with multiple co-evolving networks under conditions of 
information uncertainty with cognitively realistic agents (Carley, 2002b).  DNA has been made 
possible due to three key advances: 1) the meta-matrix (Carley, 2002a; Krackhardt and Carley, 
1008) connecting various entities such as agents, knowledge and events, 2) treating ties as 
“variable” and so having a weight and/or probability, and 3) combining social networks with 
cognitive science and multi-agent systems to endow the agents with the ability to adapt (Carley, 
2002c).  In a meta-matrix perspective a set of networks connecting various entities such as 
people, groups, knowledge, resources, events, or tasks are combined to describe and predict 
system behavior.  In variable tie perspective, connections between entities are seen as ranging in 
their likelihood, strength, and direction rather than as being simple binary connections indicating 
exclusively whether or not there is a connection.  Finally, the utilization of multi-agent network 
models enables the user to reason about the dynamics of complex adaptive systems.  In 
particular, these computational models combine our understanding of human cognition, biology, 
knowledge management, artificial intelligence, organization theory and geographical factors into 
a comprehensive system for reasoning about the complexities of social behavior. 

A key feature underlying this work is a dynamic approach to the co-evolution of agents, 
knowledge, tasks, organizations and the set of inter-linked networks that connect these entities.  
Multi-agent network modeling is used to capture the complexities by which who people know 
influences what they know and so what they can do and what organizations they join.  Changes 
at each unit of analysis, person to group to organization to society impact changes at the next; 
however, the rate of change decreases and the size of the change’s impact increases as unit size 
increases.  Another feature is that each agent (and indeed each unit) has transactive knowledge – 
knowledge of who knows who, what, is doing what, and is a member of what.  This knowledge 
is typically incomplete, sparse, and potentially wrong.  However, the actions of the agents are 
based on their perception of the network not the actual network.  Cognitive, social, task, and 
cultural constraints limit what entities are present, what/who can be connected to what/who, 
when and how those connections can change, when new entities (such as new agents) can be 
added or old one’s dropped, and so on. 

Proposed Approach 
The basic approach that we use to assess destabilization tactics is the following: 

1. Identify key entities and the connections among them. 
2. Identify key processes by which entities or connections are added or dropped, or 

in the case of connections, changed in their strength. 
3. Collect data on the system (covert network). 
4. Determine performance characteristic of existing system. 
5. Determine performance characteristics of possible optimal system. 
6. Locate vulnerabilities and select destabilization strategies. 



7. Determine performance characteristics in the short and long term after a 
destabilization strategy has been applied. 

Some comments on this approach are warranted.  First, the result of this process is an 
evaluation of both system vulnerabilities and the impact of attacking those spots, with some 
estimate of the robustness of the results in the case of missing information.  By providing both 
the vulnerabilities and the impact of attack, the analyst can use this information to consider the 
possible ability of these attacks to effect other outcomes other than the specific performance 
characteristics examined.  Second, the process as described above is very general. We have 
instantiated at this point, and will describe, a relatively simple form of this process.  It is 
important to note that the approach is broader than this simple instantiation.  It is in this sense 
that we say that the approach is extensible.   

Application of Approach 
We now describe the instantiation of each step in this process.  In order to make this 

illustration more concrete, as we move through each step draw from data collected on an 
embassy bombing in Tunisia.  We refer to this as the embassy bombing data set (EB data set).  
This data was collected from open source files, such as newspaper reports, by Connie Fournelle 
at Alphatec.   

Identify key entities and the connections among them 
For covert networks a number of entities appear to be key:  people (agents), knowledge, 

resources, events, tasks, groups, and countries.  This is a complex set of entities.  In many cases, 
detailed data is not known on all such entities.  For the sake of exposition, and without loss of 
generality, in this paper we utilize a smaller set of entities:  people, resources, and tasks.  We 
note that in making this simplification we are assuming a one-to-one mapping of knowledge and 
resources, and another for events and tasks.  Thus, if we have data on a person having or using a 
resource we assume they have the knowledge to employ it.  Similarly, if we have data on a 
person engaging in an event we assume they are engaged in the implicit task and if doing the task 
are present at the associated event.  Thus, e.g., blowing up and embassy (task) and being present 
when the bomb is set to blow up the embassy are treated as the same entity.  This gives the meta-
matrix defined in table 1.   As a practical note, it is important to recognize that when collecting 
real data it may be necessary to list some of people by the role they fill, e.g., pilot, or some 
characteristic, unidentified red haired male, rather than their name or id.  Similar types of 
generalizations may be needed for the other entities. 

 
Table 1.  Meta-matrix for covert networks 
 People Resources Tasks 
People Social network Capabilities network Assignment network 
Resources   Substitution network Needs network 
Tasks   Precedence network 

 
In addition we specify a number of relations among the entities.  Note, there may be many 

relations among entities; e.g., people can both provide money and provide information to each 
other.  For the sake of exposition, and without loss of generality, in this paper we utilize a 
reduced set of relations as described in table 1.  In this case, we are combining all types of 
connection in the same cell of the meta-matrix and treating it as a single relation that can vary in 



strength and direction.  As a practical note, different connections will come from different 
sources and may have different levels of accuracy or strength.  At the moment, the system does 
not distinguish the strength or frequency of the tie from the trust in the source. Thus, the meta-
matrix just represents a composite of information from all sources. 

 
Identify key processes by which entities or connections are added or dropped, or in the 
case of connections, changed in their strength. 

Logically, the system can change be adding or dropping nodes or relations.  A node can be, 
given table 1, a person, resource, or task.  A relation can be the connection between two nodes.  
Further, unlike nodes, we can talk of change in the strength of a connection.  A number of key 
processes in covert networks affect these types of changes.  Key processes affecting node change 
include: recruitment; the removal (death, isolation, etc.) of a person; change in mission (and so 
the addition or deletion of tasks); change in technology (and so the addition or deletion of tasks 
and resources); the consumption of resources; and the purchase/creation of resources.   Key 
processes affecting the change in relations are re-assignment of personnel, training, co-work 
assignments, and evolution of friendships/communication structure.   

Since we are focused on the destabilization of covert networks particularly in the very short 
term; e.g., two years.  As a first step, we make the simplifying assumption that the rate of change 
in the mission and technology is much slower than the other changes.  Under such an assumption 
we can treat the mission and technology as fixed and ask, how to destabilize a covert network 
with a specific mission and specific available technology. 

Before continuing it is necessary to specify how the extant mission and technology are 
captured in the meta-matrix representation.  In this case, the mission is characterized by the 
precedence and needs networks.   The technology is characterized by the substitution and needs 
networks.  By limiting this study to the case of a fixed mission and technology, we are in effect 
saying that the number of resources and tasks do not change.  Moreover, we are assuming that 
the connections in these three networks (substitution, needs and precedence) do not change. 

Given these assumptions, the only entities that can be added or dropped are agents.  The 
connections that can change in strength are those between two agents, agents and resources, 
agents and tasks.  Previous work indicates that changes in  

 
Collect data on the system. 

Data can be collected from various sources.  For this paper, we utilized data in publicly 
accessible archives, newspaper reports, and professional journals.  Although we have several 
data sets, for illustrative purposes we will use a reduced form of the embassy bombing data (EB 
data set).  Some characteristics of this data are described in table 2. This data set is very small, 
but it does contain all three entities described before.  In creating this reduced form the following 
simplifying assumptions were made. First, regardless of how the people were connected we 
simply identified that they had a connection.  Second, we combined resources and skills – 
treating them all as resources.  Finally, although the system can handle non-binary relations we 
coded only the presence or absence of a relation. To illustrate these networks, only the social 
network is shown in Figure 1. 

 
 
 
 



Table 2. EB data set characteristics 
 People Resources Tasks 
People 

Number of nodes 
  
16x16 

 
16x8 

 
16x5 

Resources 
Number of nodes 

  
8x8 

 
8x5 

Tasks 
Number of nodes 

   
5x5 

Figure 1:  EB Social Network  

Determine performance characteristic of existing system. 
f performance that make sense: 

abil

tion science.  Note, for 
org

previously been shown to reflect team behavior and to map on to actual average performance of 

 
 

For covert networks, there are many possible indicators o
ity to invoke terror, inter-arrival rate of attacks, severity of attacks, ability to spread 

information, and so on.  For many of these, it is difficult to get sufficient information to validate 
the model.  Further, for some indicators, such as the ability to invoke terror, there are 
contributing factors that require an assessment of the environment or the object of the attack.  
This makes the determination of performance potentially intractable.   

To address this problem we borrow on the work in organiza
anizations and teams in general it is difficult to assess performance directly.  Hence, analysts 

have used a variety of indicators of performance including self-assessment, efficiency or 
effectiveness as perceived by a subject matter expert, financial state, longevity, time to complete 
a task, or indicators on hypothetical or stylized tasks. In this paper, we use indicators on stylized 
tasks.  In particular, we use two measures in this paper:  accuracy of performance on a stylized 
task and rate of information diffusion.  We selected these performance measures as they have 



teams (Lin & Carley, 2003; Carley & Krackhardt, 1999; Carley, 2002c).  Performance as 
accuracy is measured as average accuracy of the system in solving a suite of binary classification 
tasks.  Performance as diffusion is measured as the average time it takes all members of the 
system to “learn” a new piece of information. 

To measure performance, we take the extant system and simulate it using DyNet.  DyNet is a 
multi-agent network system for assessing destabilization strategies on dynamic networks. DyNet 
use

sts.  Through hands-on what if analysis the analysts 

netw
n
n

sug

y identifying the mission and technology constrained portions as relatively fixed 
sibility to locating the 

opt

s the Construct code for assessing information diffusion and accuracy (see for details Carley, 
1991, 1999; see also for description of the binary classification task, Carley & Svoboda, 1996).  
In simulating the system, a knowledge network for the system is given to DyNet as input.  We 
define knowledge here as the individual’s knowledge about who they know, what resource they 
have, and what task they are doing.  We make the simplifying assumption that each agent knows 
about the complete set of available persons, resources and tasks and has no knowledge of what 
others know.  Due to the level of granularity of the data, the alternative assumption that each 
agent has perfect knowledge of who knows whom, who has what resources, and who is doing 
what tasks, has little impact on the results. 

DyNet is intended to be a desktop system that can be placed in the hands of intelligence 
personnel, researchers, or military strategi

will be able to reason in a what –if 
fashion about how to build stable 
adaptive networks with high 
performance and how to destabilize 
networks.  Using DyNet we have 
simulated a variety of covert 
networks, including the EB network.   

Figure 2. DYNET:  A desktop 
tool for reasoning about dynamic 
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orked and cellular organizations 
 the structure of the covert network 
d and to be destabilized. The results 

gest that isolation of entire cells is more devastating than the isolation of specific individuals.  
Further, when individuals are isolated, covert networks “heal” themselves.  New leaders emerge.  
Moreover, effective destabilization strategies do not require having full information about the 
network.  Rather than detail these results, we focus on the entire process of analysis. 

 
Determine performance characteristics of possible optimal system. 

B
components of the extant system, at least in the short run, we open the pos

imal form or structure of the rest of the system.  We define the organizational design as the 
set of cells in the meta-matrix that can be varied in the short run – the social networks, the 
capabilities network, and the assignment network.  The system is optimized if the ties in this 
network are arranged such that they minimize vulnerabilities. We define a system to have the 
optimal organizational configuration or design if vulnerabilities due to one or more of the 
following are minimized:  distribution of resources, distribution of communication ties, and 
workload.  Previous work indicated that high performance and adaptive systems tended to 
exhibit a high level of congruence, or match, between what resources were needed for a task and 
the availability of those resources (resource congruence) and in who needed to communicate in 



order to do the task and who actually communicated (Carley, 2002c).  Further, organizations 
typically exhibit better performance and have fewer problems with personnel if workload is 
evenly distributed.  Using heuristic based optimization tools, such as simulated annealing, we 
locate the organizational design that optimizes one or more of these criteria.   

There are two ways in which the optimized code can be used.  First, if the current design is 
far from optimal it may not be worth destabilizing at all.  Since destabilization involves the 
rem

e of illustration.  Resource congruence is defined as: 
Co

rmalizes d to be in [0,1] 
   Then Resource Congruence = 1 – d, s.t., a 1 means complete congruence and a 0 complete 
in inal resource congruence was .475.  For 

Previous work has indicated that, from an adaptation perspective, a) node changes can be 
es, and b) of the node changes 

tho

 who are 
key

oval of critical nodes, the comparison of the relative difference from the optimum of the  
“destabilized” organization and original provides an indicator of the potential relative impact of 
the destabilization. 

In this paper, we are optimizing purely on the basis of resource congruence.  This is 
sufficient for the sak

mpute the network’s need for resources in order for agents to be able to complete tasks: 
let Need = (AR’*AT) - RT 
let d = card{ (i,j) | Need(i,j) < 0 } 
let d = d / (|R|*|T|), which no

congruence.  For the organization examined, the orig
the optimized structure it was .8.  Note, in doing this optimization the needs network was fixed.  
Were the mission of the organization, and so the needs network, allowed to alter an optimum of 
.825 would have been possible.  Collectively, these results suggest that the organization was not 
particularly efficiently designed and/or there is substantial missing data about the organizational 
design.  Further, the mission, as defined by the precedence ordering among tasks, limits what is 
possible in terms of congruence.  The current organizational design requires 88 changes in who 
is doing what and has what resources in order to reach the optimal configuration.  The hamming 
distance between the current and optimized design is indicative of the number of possible 
changes that can be made to move the organization closer to the optimum.  If we treat this as a 
percentage, then 100 minus this number is the percentages of ties that will move the 
organization’s design further from the optimum.  The higher the hamming distance, the easier it 
will be, even by chance, to destabilize the organization.  In this case, the hamming distance of 88 
is 42% of the 208 possible linkages that could be changed. This indicates that a random change is 
slightly more likely to destabilize the organization and move it further from the optimum.  We 
now take the original organization and ask, how should it be destabilized?  Further, will these 
changes move it further from the optimum than a random change in the organizational design. 
 
Locate vulnerabilities and select destabilization strategies. 

more devastating on system performance than relationship chang
se involving change in personnel are the most devastating (Carley, 2002c).  We further argue 

that the removal or isolation of personnel is more practical, in the short term, than adding 
personnel, as the latter, particularly in covert networks, requires infiltration.  For these reasons, 
we focus in this paper only on destabilization strategies associated with node removal.   

In standard social network analysis, node changes are also the standard approach to network 
destabilization (Borgatti, 2002).  Using standard social network techniques, individuals

 in the social network are identified and then removed.  The argument is that their removal 
serves to weaken or break the network so that messages flow slower and so that the network as a 
whole is no longer a single entity.  There are several difficulties with this approach.  First, since 



it only considers the social network it may be missing individuals who are critical due to what 
they are doing rather than who they know.  Second, this approach assumes a static network – a 
single snapshot of who talks to or works with whom.  
Table 3. Illustrative Measures of Criticality 
Measure Definition 
Degree Let M be the adjacency ma
Centrality 

n, 

trix representation of a square network. And let 

(Freema
1979) 

n=|M|. 
let ))(:,(:)),(( iMsumiMsumd i += = out degree + in degree of node i 

Then Degree Centrality = di 
Betweenne
Central

ss 
ity 

Let G=(V,E) be the graph representat

(Freeman, 
1979) 

ion for the network.  Fix a node v∈V.   

 
 w.  If (u,w E, then se =1. 

 

Then Betweenness Centrality of node v = between/((|V|-1)*(|V|-2)), which 
normalizes the value to be in [0,1] 

 
For any (u,w)∈VxV, let ),( wunG  be the number of shortest paths in G from u
to )∈ t ,( wunG )
Define the following: 

let )}{(),{( wvVuS =−∈= )},(),(,(|)2 wvdvududw GGG +  
let ∑= nbetween (

∈Swu
GGG wunwvnvu

),(
),(/)),(*),(

and 
Krackhardt, 
1999

The Cognitive Load for agent i is defined as follows: 
let ATR = AT*RT’ 
let ATA = AT*AT’ 
let x = # of agents th1

         = sum(A(i,:))/|A
let = # of resources agent i manages / total # of resources 2

          = sum(AR(i,:))/|R
x

let = # of tasks agent i is assigned to / total # of tasks 3

          = sum(AT(i,:))/|T| 
x

let = sum of # resources agent i needs to do all its task4

total # resources) 
x

          = sum(ATR(i,:))/(|T|*|R|) 
 sum of # agents w5

total # agents) 
x

           = sum(ATA(i,:))/(|T|*|A|)  
 sum of negotia6

possible negotiations 
x

           = sum(AR(i,:) - ATR(i,:))/(|R|*|T|) 
( ) 6/654321 xxxxxx +++++  

Ashw
Carley, 2003 

r agent i 

∑ −|| )))(:,(1(*),(T jATsumejiAT  
=1j

value. 

Cognitive Load 
(Carley. Lee 

)  
at agent i interacts with / total # of agents 
| 

| 

s / (total # tasks * 

let = ho do the same tasks as agent i / (total # tasks * 

let = tion needs agent  i must do for each task / total 

Then Cognitive Load for agent i = 
Task 
Exclusivity  

orth and 

The Task Exclusivity Index (TEI) fo is defined as follows: 

The values are then normalized to be in [0,1] by dividing by the maximum TEI 



 
In contrast, using dynamic network analysis we focus on criticality across the multiple 

matrices and across time.  Nevertheless, for the sake of comparison, we contrast the removal of 
ind

Stat at CMU.  To determine which individuals ranked highest 
on 

ividuals identified as critical from both the standard and dynamic approach to networks.  
Typical measures of criticality for standard social networks are degree centrality and 
betweenness.  To these we add cognitive load and knowledge/resource exclusivity.   These 
measures are defined in Table 3. 

These and other measures have been operationalized as C and C++ code.  They are available 
as part of ORA and as part of Net

each measure we ran ORA on the data set previously described.  The results are shown in 
table 4.  Note that two individuals are identified as critical.  Moreover, the individual identified 
as critical via DNA measures (5, Ahmed) is actually quite low in the standard measures and 
would not have been picked up using a traditional approach. 

 
Table 4.   Individuals Identified as Critical in EB data set 
Measure Individual with Maximum Value Type of Measure 
Degree Centrality 7  Wadih al Hage Standard Social Network 
Betweenness Centrality  etwork 7  Wadih al Hage Standard Social N
Cognitive Load  5  Ahmed the German Dynamic Social Network 
Task Exclusivity  5  Ahmed the German Dynamic Social Network 

 
Determine performance ch ort and lo ation 
strategy has been applied. 

r distinct strategies for destabilizing the organization have been 
entified:  eliminate the person with the highest degree centrality, betweenness centrality, 

cog

rther from the optimal.  Hence, we would 
exp

aracteristics in the sh ng term after a destabiliz

 
Given these measures, fou

id
nitive load, or task exclusivity.  We will measure the impact isolating the individuals high in 

these measures in two ways.  First, we will contrast the relative resource congruence of the 
organizations without the isolated individual.  This will be done in ORA.  Second, we will 
contrast the relative change in performance in terms of accuracy and diffusion and ability to 
adapt to this change for the organization with and without these individuals.  This will be done 
using DyNet.  As a caveat, we note that although there are four criteria for identifying critical 
individuals, only two individuals are identified.  Hence, for this data set, it is not possible to 
discriminate between the two different centrality measures.  Nor is it possible to discriminate 
between the two dynamic social network measures. 

The results of these removals are shown in table 5.  All differences shown are significant.  
Neither removal substantially moves the design fu

ect the effects to be small.  In addition, the removal of agent 5 actually increases resource 
congruence over the original design.  On first blush, this is not good.  However, keep in mind 
that resource congruence is a strict measure such that congruence is decreased when either agents 
do not have the resources needed for the task to which they are assigned or when agents have 
resources that are not necessary for the task that they are assigned.  Removal of agent 5 is 
reducing the presence of unnecessary resources.  Thus making the organizational design leaner.  
Making the organization optimal by reducing redundancy also make the organization less 
adaptive.  Thus the removal of agent 5 makes the organization both more efficient but less 
adaptive. 



In terms of performance the removal of agent 5 drops performance more than the removal of 
agent 7, and though it slows down the rate of recovery for performance, it has some what less of 
an 

e removal of no agent) and it slows the rate at 
whi

impact than the removal of agent 7.   Basically, think of performance as an S shaped curve.  
The removal of an agent can move the organization up or down on this curve depending on 
whether the individual was in a structurally disruptive position.  But, since more/less change in 
performance is possible with the same degree of learning, some moves retard growth in 
performance more.  In this case, the removal of agent 5 both lowers performance more and 
retards the growth more.  From a performance standpoint, the removal of agent 5 should be more 
destabilizing and show a more prolonged effect. 

If we explore diffusion the opposite is the case.  For diffusion, the removal of agent 7 both 
lowers the initial diffusion more (compared to th

ch diffusion is possible.  Whereas, although the removal of agent 5 does drop the level of 
diffusion, it actually increases the rate of spread.  In this case, the removal of agent 7 is more 
disruptive to the communication flows.  It is important to keep in mind that this is the speed of 
information flow not the quality.  Since the removal of agent 5 actually speeds the rate of 
information flow, it is speeding both the flow of accurate and inaccurate information.  This 
potentially makes the organization more vulnerable to information warfare attacks. 

 
Table 5.  Impact of Agent Removal 
Measure Original 

Design 
After Removal 
of 5 

After Removal 
of 7 

Hamming from Optimal 88 83 86 
Resource congruence 5 .525 .475 .47
Performance as Accuracy – Initial Impact 78 5 7  8  .562 8.22 2.72
Performance Recovery – Percentage 
Increase in Performance 95.55 89.72 93.7 
Diffusion - Initial 21.62291 14.70212 13.27369 
Diffusion Recovery – Percentage Increase 
in Diffusion 71.23304 89.05325 50.87843 
    

Limitations and Future Work 
A key limitation of this work is that it is proceeding as though one had full information.  In 

the case.  Hence, what is needed is a procedure for doing this 
ana

rganization with the removal of a single agent.  Moreover, the 
if th

point of fact, that is unlikely to be 
lysis under varying levels of information assurance, placing confidence intervals around the 

results, and so placing the entire set of results in a decision context. A second limitation is that 
we have only illustrated the procedure with a very small data set.  At issue is whether the 
measures identified are valuable for extremely large data sets.  Work is proceeding on these and 
related issues.  This work will help to define which measures are robust even under missing 
information and which measures are able to discriminate among nodes (potential critical 
individuals) in a meaningful way. 

Herein we applied this procedure to an illustrative case.  The results indicate that it would 
have been possible to disrupt the o

e agent who is high in cognitive load or task exclusivity (critical in the overall meta-matrix) 
is removed the organization will be less adaptive, more efficient, exhibit lower performance, 
recover from the destabilization slower, but move information faster than the removal of an 



individual who was critical only in the social network.   Sensitivity analyses, not shown, suggest 
that this is a robust result.  Removal of high cognitive load individuals tends to be more 
disruptive than the removal of individuals high in degree centrality.  Removal of either tends to 
disrupt the organization slightly more than a random removal.  This latter effect may be increases 
if the organization is initially more optimally designed. 

Future work should expand on this by considering other criteria for optimization, examining 
larger organizations where there are more complex networks, and explore other performance 
out
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comes.  Moreover, a key concern that needs to be addressed is the flow of incorrect 
information and the relative impact of such information warfare as opposed to personnel attacks. 
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