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ABSTRACT 
 

Command and Control (C2) organizations continue to deal with the problem of 
architecture design, implementation and integration because they still must integrate 
multiple, interconnected, component “architectures” into joint,  entity-wide information 
infrastructures. Experience has shown that most C2 decision-making continues to be 
based upon an infrastructure that consists of “stove-piped,” legacy systems. Even when 
new architectures are designed and systems built to speed up the decision-making 
process, the procurement cycle, typically 10 to 15 years, lags significantly behind the 
current 12 to 24 month technology advancement cycle in IT related areas. In other 
words, an architecture is written, assessed, and published with a review and update every 
couple of years thereafter but never fast enough nor complete enough to keep up with 
technology nor operational needs. The authors continue to see this process as ill-defined, 
disjointed, disorganized, and failing to adequately complete even the first phase of 
architecture definition -- requirements collection and analysis. Indeed, the sheer mass of 
research, information and analyses required prevents it from being a fluid dynamic. In 
this paper, the authors will attribute this to the lack of consistent taxonomies, processes, 
organizational constructs and automated architecture assessment tools, and offer a few 
suggestions toward a solution. 

 
 
INTRODUCTION. Complex information systems built for decision-making are commonplace 
in C2 operations. The ability to build, operate and maintain such systems is crucial to the 
effectiveness of C2. The authors’ argument is that we need the ability to establish a solid 
information infrastructure for C2 decision-making based upon rigorous, standardized architecture 
definition, development, analysis, description and acquisition planning. Considering the vast 
quantities of information required, this can only realistically be achieved with automated support. 
Intelligent systems that support human judgment and choice tend to embody computer-
implemented analytical and heuristic procedures that seek to combine knowledge about a domain 
(e.g., problem or situation) with methods of identifying, structuring, and reasoning about such a 
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domain. They incorporate, additionally, formal methods of reasoning about the domain that we 
must bring to bear when tasks are poorly understood, are ill-structured, or when the information 
available is incomplete, fragmented, or imperfect. 
This paper describes the authors’ attempts, through independent research and development, to 
create an automated toolset that deals with the processes of defining, manipulating, analyzing, 
assessing and selecting architectures and architectural components. The project was called the 
Data Analysis and Visualization Environment or DAVE®. Although the original implementation 
focuses on military systems, this discussion is sufficiently generic to be applied to any 
architecture that can be described by data elements. And, the authors contend, any and all 
architectures should be thus defined. Architectures have become far too large and complex to be 
handled in the traditional way with just textural documents and line drawings. Clearly, in this age 
of automation, better methods are available. 
 
We are getting much better at establishing and managing C2 organizations and operations, but 
we continue to have difficulty assigning such widespread, global responsibility to any single 
organization. We must be careful to resist the urge to allow every C2 organization to design, 
develop and maintain its own separate architectural data structures for their decision-making 
capabilities. This is precisely the problem we are having today. Many organizations have a need 
to collect and maintain the data pertinent to their particular situation but we must be careful to 
prescribe some minimal set of standards so that they can all be seamlessly integrated into a single 
C2 architecture. Through the use of an automated toolset such as DAVE®, the authors are 
creating a data steward that is needed for the accuracy and completeness of a particular class of 
data (possibly by service or functional organization) that will ensure that data elements, format, 
schema, etc., are standard across all architectural data. This paper will give the reader a basic 
understanding of how a C2 decision support toolset such as DAVE® could best accomplish this 
effort. 

 
BACKGROUND. This research originated in the late 1980s as a corporate Independent 
Research and Development (IR&D) project. In the early 1990s the U.S. Navy’s Warfare Systems 
Architecture and Engineering (WSA&E) program at the Space and Naval Warfare Systems 
Command (SPAWAR) was struggling with the integration, analysis and interpretation of more 
than 59 independent, paper-based (i.e., textual) architectures that interconnected both physically 
and functionally. The use of DAVE® to support this effort was an attempt to add rigor and 
repeatability while shortening the architecture life cycle. At the time, the Navy was attempting to 
fold these architectures together like chapters in a book. The process was on a two year cycle; 
i.e., all architectures were supposed to have been written, assessed and published, with a review 
and update, every two years thereafter. Unfortunately, even thought DAVE® was used in small 
pockets within the overall architecture development process, the cycle took longer than two years 
to complete and, while not totally abandoned, the effort was significantly reduced. Later, 
DAVE® was again used to support analysis of Unmanned Aerial Vehicle (UAV) payloads under 
another Navy contract. Recently, additional independent research by the authors has led to a 
more refined paradigm based on Object-Oriented (OO) concepts. 
 
Although the original use of DAVE® was focused on supporting military Command and Control 
(C2), Electronic Warfare (EW) and other such Information System architectures, the concepts 
are generic and can be applied to any architecture that can be described by data elements. And, 
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as the authors contend, any and all architectures should be thus defined. Architectures have 
become far too large and complex to be handled in the traditional way with just textural 
documents and line drawings. Clearly, in this age of automation, better methods are available. 
 
Today the C2 community and the IT community in general have a similar pressing need for the 
exploratory development of their automated information technology (IT) system architectures. 
C2 strategies and IT system acquisitions are undergoing deliberate changes in many large 
organizations, be they military, civil government or commercial. All have stand-alone, “stove-
piped” legacy systems, interoperability issues, cost and security issues giving rise to these 
deliberations. Over the last few years the authors have examined several approaches, most 
recently a top-down approach to R&D and acquisition decisions, guided by high level 
requirements. What we find in nearly every case is an ill-defined process that never seems to 
form a solid foundation – by defining the architecture through requirements collection and 
analysis. Indeed, the shear mass of research, information and analyses required usually prevent 
an IT system from becoming a fluid dynamic. Much of this can be attributed to the lack of 
convenient, consistent taxonomies, processes, organizational constructs and tools [Curts, 1989a], 
[Curts, 1989b], [Curts, 1999]. The use of DAVE® to support these efforts helps to focus on 
compliance with these requirements. Rigorous mission analysis, organizational level 
perspectives, and systems architectures become DAVE®’s end products which thus allow well 
defined, coordinated, smooth and effective upgrades / transitions.  
  
Currently, many large organizations perform this architectural development manually. The 
process is iterative and involves many steps and coordination among large, diverse groups. The 
current method is not only cumbersome; it is also full of inconsistencies. Add to this the fact that 
the accepted format for architecture products (hardcopy text and line drawings) is neither 
conducive nor responsive to either analysis or change. The significance of this problem with 
respect to the current process is that the results of the architecture formation have a major impact 
on the composition of C2 infrastructures and the interoperability of their component systems. 
Therefore, due to the critical nature of C2, the need for an architecture process, and the rapid 
advancements in IT technology, tools are needed to enhance the focus on areas where resources 
and expertise can help develop an efficient IT architecture that is responsive to C2 organizational 
needs and the technology changes that occur in today's world. In the authors’ opinions, the 
DAVE® research project is just about the only, if not the only,  toolset of its kind directly focused 
on C2 organizational needs of their IT systems based on architecture definition, development, 
analysis, description and acquisition planning. 
 
Benefits from Automation. The full-scale development of the tools and databases designed in 
this research effort provide a mechanism to create architectures in an integrated, data format that 
constitutes a one-time creation effort with only maintenance and updates needed for future 
architectures, as opposed to the constant re-creation of multiple architecture documents. 
Automation will save time, money, and personnel resources while adding rigor and repeatability. 
 
Automation would also allow a shift in resources with less time and energy spent on developing 
the functional and physical architecture definitions and more time spent on architecture analysis, 
assessment, option development and acquisition planning where the real benefits lie. There is 
also a higher degree of consistency in both the database representation and analytical results. In 
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addition, it provides the capability to make use of the large amounts of data that already exist in 
various data stores. 
 
Finally, with the capability to isolate which architecture elements are contributing most to the 
deficits in capability (through discrimination analysis), and experiment with increasing the 
capability in some areas to make up the deficit (through sensitivity analysis, what-if analysis and 
options development), the organization is able to increase IT’s capabilities in the most cost 
effective manner. In other words, with the availability of funds always limited and decreasing, 
one of the greatest benefits of implementing this system is the capability to assist analysts in 
determining which acquisition strategies (for systems, platforms, sites and so forth) should 
continue in order to maximize return on investment, by maximizing capability. 
 
DAVE® – WHAT IS IT AND WHERE ARE WE TODAY?  The initial effort for the 
automation of the IT systems architecture development process in the late 1980s was to develop 
innovative system architecture tools. The goal of the prototype system was to automate a portion 
of the architecture process using a generic, artificially generated, sample data set. The tool had 
such promise that it was cloned to support U.S. Navy architecture studies. It successfully 
demonstrated how a fully operational toolset could enhance the performance of the architecture 
process, how it could be used to support budget decisions, and how such a tool could increase the 
fidelity (“goodness”) of a resulting architecture. As a result of this effort, there were three main 
objectives achieved in support of the primary goal. The first was to design the tools (models and 
databases) which would aid in the automation of the architecture process. The second was to 
capture the processes within a C2 environment and establish these processes in a way that could 
be manipulated through automation. The third objective was to then develop a working prototype 
system that automates a portion of that design and the identified C2 processes. This prototype, 
dubbed DAVE® for Data Analysis and Visualization Environment, not only served as a proof-of-
concept for the follow-on goal of automating the entire process, but also served as a model for a 
full-scale system design. 
 
Prototype System Overview. The prototype system for automating the architecture process was 
composed of a database and several analytical modules that analyzed the data individually as 
well as the relationships among data elements. A high level architecture view of this system is 
provided in Figure 1. This particular depiction originated with Andrew P. Sage as a generic high-
level architecture for any Decision Support System (DSS). From the bottom up, Dr. Sage 
referred to the layers as the Database Management System (DBMS), the Model Base 
Management System (MBMS) and the Dialogue Generation and Management System (DGMS) 
respectively [Sage, 1991].  
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User Interface 

Models 

Data 

Figure 1.  Decision Support System (DSS). 
 
The Database Management System (DBMS). The DAVE® database schema was conceived as 
an integrated set of data tables representing system functionality, risk, threat and vulnerability 
data in terms of functional requirements and capabilities. The initial data structure was 
implemented in a set of flat files that could be easily imported into the tool. Although it is 
important to design a single, overarching data schema, there are multiple separate data sets with 
which the architecture process must interact, the most basic of which are functional requirements 
of the goal, “ideal” system and existing capabilities of the current, physical architecture. In 
addition, the data must contain information on system vulnerabilities and potential threats. First, 
a generic design for the database schema was created. The designs for these data sets are 
conceptually the same, the fundamental difference among them being in the data they contain. 
For example, the characteristics of the existing Physical (that is, own organization) and Threat 
(i.e., potential adversaries) tables are identical except that the equipment list (or rows / 
instantiation) for the Physical database contains data pertinent to the owner or those considered 
part of the organization, and that for the Threat database contains hostile organization data (e.g., 
hackers, direct competitors or any other organization from whom we might expect unfriendly or 
competitive action). 

 
It became obvious from the very beginning that instantiating the current descriptions (mostly text 
and line drawings) of physical and functional “things” would make comparison very difficult. A 
single unifying structure was needed. After many iterations and testing of potential schema, the 
authors determined that a functional description would be best overall and a relational data 
schema was designed to capture the appropriate data. As we shall see later, that schema has 
recently been re-cast in the Object-Oriented (OO) paradigm. 
 
One of the most important characteristics of the database design is the capability to select a 
variety of dimensions (or views) of the data. The analyses need to retrieve data elements with 
respect to time frames (e.g., Baseline or Current and Future or Desired/Goal), as well as selecting 
relationships among elements which may or may not be in the same data set (that is, selecting a 
cross section of functions, systems, suites, sites, etc.). The architectural data was initially 
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categorized into four data sets containing functional, physical, adversary, and technological 
architecture data as follows. 
 

 Functional Architecture Database. The Functional Architecture Database is 
composed of the required functionality that must be performed by the physical 
architecture throughout the appropriate phases or timeline for the architecture in 
question. It consists of hierarchically nested functions that must be performed, in 
essence, a very detailed functional specification of the desired, goal or notional 
system. 

 

• 

• 

 Physical Architecture Database. The Physical Architecture Database contains 
the existing hardware components, such as sites, suites, sensors, IT systems, and 
communication links that currently fulfill the functional needs of the organization. 
These components have an explicit hierarchical relationship as well as 
relationships to other physical and functional database elements and are also 
described functionally. I.e., A suite consists of some set of systems that are 
described by the total set of functional capabilities that they provide. For design 
purposes, space allocation, and other obvious reasons, additional information on 
physical systems must be kept such as location, size, weight, etc. Therefore the 
database implementation must allow specification of these relationships. In 
addition to the functional requirements and physical capabilities architectures 
described above, any number of other architectural data sets could be developed 
for analysis. For example: 

 
Adversary Architecture. The Adversary Architecture data set is the current 
physical architecture of the threat (e.g., hackers) or opponent. This database 
would be used in the assessment of how well the physical architecture 
performs the required functions against the threat (e.g., How well does the 
firewall prevent unwanted intrusions while allowing full access to authorized 
users?  How effective are the anti-virus countermeasures?). The database 
elements would have a format virtually identical to the above physical 
architecture example. 

 
Technological Architecture. This is a notional physical architecture 
composed of physical architecture components (that is, platforms, systems, 
and so forth) that appear technologically feasible in some specified future time 
frame. This database is a crucial part of the Options Development Step in the 
architecture process. As before, the systems are described functionally and the 
data elements have a format virtually identical to the above physical 
architecture example. 

 
The Model Base Management System (MBMS). This is the assessment layer and it is at the 
very heart of the automation capability. The goal of the models was to provide an analyst with a 
determination of how well existing components accomplish stated functional requirements 
against, or in light of, a known environment, scenario or threat. Since this is the most critical 
component of the automated tools, we have provided a more detailed design in this section. 
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There are several modules which comprise the Assessment Suite: Discrimination, Sensitivity, 
Performance Evaluation, Explanation, Database Instantiator, and Shortfall/Overlap Analyzer. 
These are briefly described as follows: 
 

Database Instantiator Module. The Database Instantiator module maps the 
databases into hierarchies. In so doing, it selects the view of the database, 
relationships among the elements, and the attributes (or parameters) of objects 
which need to be represented. It is this module that allows the assessment 
algorithms to remain generic, because the objects are instantiated at run-time (that 
is they are not domain or database dependent). 

 

 

 

 

 
Performance Evaluation Module. This module calculates the performance 
values for each of the elements in the hierarchy. The calculation is built upon an 
innovative combination of a semantic network and the Multi-Attribute Utility 
Analysis (MAUA) evaluation paradigm. Each element's total score is based on an 
additive, weighted scoring of related elements in the hierarchy. There are a 
number of ways in which performance might be calculated based on certain 
conditions for the evaluation set in advance by the user, e.g., scenarios, missions, 
environmental conditions, and so forth. Add-on modules can be added to cover 
these relatively easily. 

 
Explanation Module. Very important to the overall functionality of the 
assessment is the analyst’s capability to obtain detailed explanations of the results 
for both performance evaluations and for short-falls and overlap development. 
Analysts will not typically take the results of an automated assessment at face 
value (at least for critical analyses or during the first uses of the tool). Therefore, 
the system must be able to explain how certain conclusions were obtained. This 
explanation will take the form of an audit trail of the inference process and the 
rules used, in a form understandable by domain experts. There will also be a 
justification of the performance scores which were calculated in the form of 
discrimination analysis (see Discrimination Analysis module below). 

 
Discrimination Analysis Module. Another major feature of the initial prototype 
is the capability of performing Discrimination Analysis. Discrimination Analysis 
allows an analyst to view the contributing factors for a particular element's deficit 
from a perfect score. For each contributing factor, the magnitude of the 
contribution to deficit and the percentage contribution to the overall deficit is 
displayed. Examples of typical discrimination analysis displays from DAVE® are 
shown in Figures 2 and 3. 
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Figure 2.  Discrimination Analysis Table. 

 

 
Figure 3.  Discrimination Analysis Graph. 

 
Sensitivity Analysis Module. Sensitivity Analysis provides the capability to 
modify the weights or scores which are contributing to an entity's deficit. After 
the modifications are made, the analyst can then view the impact of these changes 
by re-calculating the scores and updating a color-coded display. In other words, 
the analyst can perform “What-if?” analyses to determine what minimal changes 
could be made to the current architecture to derive improved or even maximum 
benefit. While sensitivity and what-if analyses employ the same concepts and 
techniques, the authors view the two as distinctly separate methods. What-if 
analysis tests specific points in the design to determine the impact of change. 
Sensitivity analysis, on the other hand, focuses on determining which nodes are 
most susceptible to change (i.e., where can we achieve the largest benefit from the 
smallest amount of change?). 

 

 
 

Shortfall / Overlap Assessment Module. This module is designed to perform 
systematic comparisons of the systems' parametric data. While not included in the 
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initial prototype, this module is a high priority for implementation early in the 
next phase. Currently two types of assessments are intended. The first is an 
assessment within a particular data set with respect to other components of that 
same architecture. For example, synergistic components may have an interacting 
functionality such as the combined effect that jamming and chaff together have on 
target masking. Therefore, an assessment of the interactions between supporting 
and, possibly, antagonistic platforms and systems should be completed. 
 
The second type of assessment allows a mapping between databases to identify 
short-falls and overlaps in functional capability. For example, mapping the 
Physical Architecture to the Functional Architecture would identify where the 
current Physical platforms and systems fail to meet a certain requirement (desired 
functionality) specified in the Functional Architecture, thus causing a shortfall. 
Conversely, an overlap or redundancy exists where there are several physical 
platforms and/or systems that meet a specific requirement. It is recognized that 
some overlap (i.e., redundancy) may be desirable, but excessive duplication is 
costly in a number of areas such as space, weight, and cost, and should generally 
be avoided. In another scenario we might compare the parameters of own 
organization hardware systems (potential vulnerabilities) with the counter 
hardware systems of potential threats to see how well they match up on certain 
key parameters thus identifying potential risks. 

 
Option Development Module. Option Development is where the possible Future 
Systems Architecture is created and analyzed, and it is closely tied to the analysis 
of shortfall and overlaps. This module is a tool for analysts to perform What-If 
and Cost-Benefit analyses for development of future architectures. The design of 
this module should also allow the clustering of functionalities when building the 
functional hierarchy. For example, certain functions typically have been grouped 
because they are so grouped on an existing platform; for example, Hard Kill, 
Classify, and Detect functions are typically grouped because they are typically 
performed by an aircraft, such as the F-14. It may be more appropriate to group 
functions that logically and technologically work together, and then identify a 
platform or system that would potentially meet these logically “clustered” 
functionalities. This kind of clustering can lead analysts to create new, innovative 
platforms / sites / systems. 

 

 
The Dialogue Generation and Management System (DGMS). This is the Graphical User 
Interface (GUI) layer designed to give the analyst a graphical overview of the status of the 
architecture elements (e.g., platforms, systems, functions, and so forth). This is done by 
displaying the score of each element using colors: red, orange, yellow, yellow-green, or green, 
corresponding to a rating scale of one (1) through five (5), respectively where 1 is bad (red) and 
5 is good (green). Each element's node is connected to related elements via arcs. Similar to 
Object Oriented (OO) concepts, these relationships are defined as parent / child relationship and 
generally refer to groupings, either physical or functional. In the Navy example, the ALQ-99 is 
modeled as a child of the EA-6B because it is an integral part of the EA-6B platform. Likewise 
for the functional databases, requirements are often grouped by the phases of battle (e.g., 

© Copyright 2003, Curts & Campbell Page 10 of 20 



 

Electronic Intelligence (ELINT) is a child or component of the Surveillance / Reconnaissance 
Phase). 
 
Along with the usual features of a typical GUI, other design features include the ability to define, 
select and display hierarchies in any order required plus the capability to isolate specified 
families (tracks) of nodes and to track them through the hierarchy as illustrated from DAVE® in 
Figure 4. 
 

 
Figure 4.  Functional Hierarchy. 

 
Summary. As can be seen from the above, the designed system and databases simultaneously 
address two critical needs: 1) innovative concepts for future IT Systems; and 2) architecture 
automation tools for multi-site / organization / system architecture. Our methodology and the 
tools designed and prototyped in the initial phase are capable of assessing alternative 
(architecture) performance. Due to evolving technology, advancing rapidly in scope and 
capability, it is critical that we move forward to develop a set of modeling tools capable of 
assessing the integrated capabilities of systems / sites / segments / organizations while they are 
participating in combined, integrated operations. Today, far too much time is spent on constantly 
redefining architectures and producing the resultant documentation leaving little attention to 
analysis and option development where the real benefits lie (Figure 5). 
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WSA&E AFCEA 
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JITC CJCSI 3210.01 DoD Enterprise 
Model 1993 Intelligence CJCSI 6510.01A 

Desert Shield PEO 13010 USAF SAB Info 
Desert Storm DoD JTA v 1.0 1996 DoDD 8320.1 

Figure 5.  How Do We Get There?  When Do We Get There? 
 
 
THE OBJECT-ORIENTED PARADIGM & ARCHITECTURAL ATOMS 
 
Object-Oriented Architecture. Architecture is a planning process or tool. The ultimate goal of 
any such process is, of course, to build a knowledge- and experience-base upon which to 
formulate decisions toward shaping the future. To this end, planners must be able to capture the 
necessary data to be able to organize and/or reorganize the components of a large, complex 
system so that it functions smoothly as an integrated whole. The decision-maker must be able to 
quickly manage, manipulate, and study the effort on a conceptual level so that it can be 
implemented on the physical level in some preplanned, logically structured fashion. 
 
The ability to gracefully accommodate dynamic evolution, such as that needed in shortening the 
decision cycle, is an important research issue in database technology. Databases use several 
concepts, methodologies and programming paradigms to accurately document the “view of the 
world” and to assist the decision-maker in drawing conclusions from that data. In many cases, 
the conclusions arrived at by the decision-maker were not explicitly programmed into the model. 
In recent experience, these projects are more frequently being implemented in the form of object-
oriented systems. This dynamic evolution begins just like the evolution of any living creature—
from a set of common building blocks. 
 
Building Blocks. As we have mentioned, there is an urgent need for a common description of 
architectures. Architectures are typically developed from functional requirements (in the case of 
notional architectures) or functional capabilities (in the case of physical, existing architectures) 
that we consider essential to the successful operation of our entity or achievement of our goals. 
These requirements have been expressed in many forms and at varying levels of granularity. 
However, if we adopt the concept of functional requirements as the building blocks of our 
architectural description, we have the opportunity to conduct direct comparisons of effectiveness, 
interoperability and a large variety of other descriptors that are of interest to us (Figure 6). 
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110
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DoDD 4630.5 
DoDD 4630.8 

CISA Established DoDD TS3600.1 NDIA 
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GAO/NSIAD-98-73 

CADM v 1.0 DSB GS 2000 CAF v 2.0 OPNAV NDIA IA Study OMB M-97-
16 JTA v 3.0 (Draft) 
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Figure 6.  Architectural Atoms 
 
Functional requirements lend themselves quite nicely to the object-oriented approach previously 
described. First, they can be represented as objects where each function or activity has a name, 
attributes are associated with that function, and processes, methods or activities are performed by 
the function. In this definition, Functional Requirement Objects become what the authors refer to 
as “Architectural Atoms,” the building blocks from which any and all architecture components 
can be constructed. This structure allows us to take advantage of the other OO concepts. Here 
Architectural Atoms, the “leaf” nodes in the hierarchy, combine to form higher level objects 
while the unique attributes of high level objects can be inherited down the chain, Figure 7. 
 

 

Figure 7.  Functional Hierarchy. 
 
Components then become systems and systems, in turn form a system of systems, or suite 
(Figure 8). From an architectural perspective these “Architecture Atoms” also allow us to readily 
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Function c 

Function a 

Function b 

Function a 

Function c 

Function d 

Suite X 

System A System B 
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identify shortfalls (gaps in our functional capabilities) and functional redundancies (overlapping 
capabilities from multiple suites, systems or components) for further analysis. Shortfalls usually 
require attention while redundancies are often intentional and required in military C4ISR and 
other critical systems. Some redundancies, however, may be targeted for elimination in the name 
of efficiency and/or cost effectiveness. 
 

 

F F 
Components 

F F 

F F F F 
F F F F Systems  

Figure 8.  Functions and Components. 
 
Thus, from a functional perspective, the entire architecture (functions, components, systems and 
platforms or suites, etc.) can be described using combinations of Functional Requirements 
(Figure 9). 
 

 
Figure 9.  Functional Architecture. 

 
Object-Oriented architectural components, when assembled, might resemble a Rubik’s Cube 
(Figure 10). Each module represents a unique unit, system, or capability that can be combined 
with others in a virtually limitless number of ways. In addition to this physical flexibility, once 
assembled, the architecture can be viewed from multiple perspectives (also nearly limitless) to 
satisfy the requirements of the viewer.  
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Figure 10.  Rubik’s Architecture Cube. 

 
From the authors’ perspective, this is one of the major disappointments with our current view of 
architectures and a primary reason that our systems are still not interoperable despite more than 
fifteen years identifying the issues. Numerous studies have shown that many useful architectures 
and architectural constructs exist. Unfortunately, they were all developed by different 
organizations, for different purposes, using similar but differing data, at varying levels of detail. 
Most were captured as documents (text and graphics) rather than as manipulable data. Though 
undoubtedly useful to the owners and developers of each, they cannot be directly combined nor 
compared in any meaningful way. Information Assurance (IA) has been a significant driver in 
Information Warfare (IW) circles recently. However, IA cannot be accomplished without 
interoperability, and we are not likely to achieve interoperability without a solid architectural 
foundation [Curts, 1999], [Curts, 2000]. 
 
Traditional database systems and visualization tools are limited in their data abstraction and 
representation power, and they fall short of providing important information management and 
data manipulation. The use of object-oriented data structures along with our concept of 
Architectural Atoms to support the decision-maker at various levels of abstraction is an 
important emergent concept where great strides can be made. 
 
Advantages and Disadvantages. Object-oriented programming, and data management systems 
offer a number of important advantages over traditional control / data oriented techniques. For 
our purposes here, the most significant are: 
 

• The modeling of all conceptual entities with a single concept, the object. 
• The notion of a class hierarchy and inheritance of properties along the hierarchy. 

 
Despite its many advantages, the object-oriented view is not perfect. However, though there are 
several drawbacks to OO systems, most are a direct result of their relative infancy and are 
expected to be resolved as the model matures. None are seen as a significant encumbrance to the 
concepts suggested here. 
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A more detailed discussion of advantages and disadvantages of the OO paradigm can be found in 
[Curts, 2001a], [Fowler, 1997], [Andrews, 1990], [Kim, 1990], [Manola, 1987], [King, 1986] 
and [Thomas, 1990]. 
 
SUMMARY. So, how does this concept of Object-Oriented Architecture help us achieve a better 
understanding of our architectural goals through a more robust, useful architecture definition?  
And, what will that do for the process of analyzing architectures, developing options and 
choosing acquisition strategies? 
 
All things start with raw data elements, just as every living creature is composed of thousands of 
deoxyribonucleic acid (DNA) molecules. Whether strands of DNA or strings of “ones and 
zeros,” each helps shape the individual and each controls the way that individual functions. In 
the case of architectures, that data equates to functional capabilities or functional requirements; 
in other words, our “Architectural Atoms.”  Alone they are not much more than well-structured 
data points. By combining these atoms into components we begin to build our architectural DNA 
and build the systems / capabilities hierarchy - collecting more and more information about our 
systems and situation. This leads, in turn, to a better understanding and awareness upon which to 
base our options development and acquisition decisions. In addition, it provides a common, base 
dataset that can be used by all systems so that all architectural views depict the same basic 
information (i.e., everyone operates from the same sheet of music). The simple action of 
standardizing, unifying and utilizing one common building block, coupled with a visualization 
tool such as DAVE® solves many of the problems that we have discussed here and many more 
that were only implied. In synopsis, we conclude the following: 
 

1. Establish one standard method of representing and storing architectural data. 
2. Collect all architectural data into a single central repository or a standardized, 

federated set of repositories to ensure that everyone is working with the same 
“big picture.” 

3. Ensure that the architectural data in standardized, common and available to all 
who need it. If everyone had ready access to the appropriate data in a 
common, useable form, we could make great strides toward solving the 
interoperability issue. 

4. Allow for a more efficient visualization and analysis of capabilities across 
multiple services, battle forces, platforms, systems and organizations so that 
we can make more informed, efficient and effective acquisition decisions. 

5. This higher understanding leads to a heightened level of awareness that allows 
us to see how the architecture fits from multiple views (Figure 10) thus 
enhancing option development and acquisition strategy selection. 

 
Thus, by attacking and resolving the lowest level problem (the Architectural Atom), we can 
achieve a significant impact upon our warfighting capability while maximizing the bang from 
our acquisition buck. 
 
Implementation of the paradigm described here is non-trivial. There are a number of hurdles to 
overcome: 
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1. Organizational – some, probably joint, centralized organization must be 
charged with collection, storage, retrieval, manipulation, comparison, 
maintenance and management of the data and / or data standards. 

2. Technical – the data standards and database schema must be carefully 
designed to provide maximum flexibility and expandability. 

3. Operational – the data must be readily available to whoever needs it. 
4. Collection – very large quantities of data must be collected, verified, 

catalogued, sorted, stored and maintained. 
 
Of these tasks, the first and last probably present the biggest challenges. Although we are getting 
much better at Joint organizations and operations, we continue to have significant difficulty 
assigning such widespread, global responsibility to any single organization. We must be careful 
to resist the urge to take the easy way out by allowing each service, agency or organization to 
design, develop and maintain its own separate architectural data definitions and data structures. 
This is precisely the problem that we have today. While a data steward should, no doubt, be 
assigned responsibility for the accuracy and completeness of a particular class of data (possibly 
by service or functional organization), it is important to ensure that data elements, format, 
schema, etc. are standard across all architectural data. This can most easily be accomplished in a 
single, centralized data repository, but a distributed or federated system will fulfill the same goal 
if properly implemented. 

 
The biggest and most costly challenge will likely remain the collection of the huge mass of data 
required to drive such a system. However, if we consider the large amounts of money that are 
spent today by a very wide variety of offices collecting redundant and, often, inconsistent data, 
we might find that we will end up with significantly more information for less expenditure than 
we currently experience. Costs notwithstanding, what we have shown in this paper is that it is 
quite possible for an architect, acquisition agent or virtually any decision-maker to compare or 
otherwise manipulate large amounts of data in order to “observe, orient, decide and act” without 
suffering from information overload through an object-oriented “view of the world.” 
 
In addition there is the question of tools with which to visualize and manipulate the architecture. 
DAVE® was specifically designed as an architecture analysis and visualization tool, represents 
the perfect environment, and is ripe for upgrade to take advantage of these concepts. 
 
FUTURE WORK. The potential utility of our exploratory research and development of an 
automated tool for the systems architecture process extends throughout the military and 
commercial systems domains. We have developed a generic capability to automatically define 
systems architectures based upon required functions (which derive from the anticipated 
operational environment) and available and anticipated technologies and existing physical 
systems (current embodiments of those technologies). One can imagine such a capability being 
readily extended to other types of architectures. 
 
What we have goes beyond the typical Computer Aided Systems Engineering (CASE) tool to 
address analyses of entire architectures of systems. It presents the potential for an innovative 
exploitation in a societally critical domain of database management systems, rule-based expert 
systems, object-oriented programming, and conventional programming technologies. 
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DAVE® has proven useful in its current implementation but was intended as a proof of concept 
and suffers from age. With implementation of the concepts enumerated here, the next version 
could have significantly increased utility and flexibility. The following are the major upgrades 
currently planned for DAVE®: 

 
1. Upgraded GUI – The graphic user interface was the state of the art at the time 

of its development in the early 1990’s but has received no attention since. The 
current Windows environment has shown significant improvement in the 
years since DAVE® was first implemented. 

2. Additional Analysis Tools – As described above, several analysis modules 
already exist in DAVE® but many others could be added. A simple Expert 
System for architecture comparison and analysis would likely be the first on 
the list [Curts, 1989b]. 

3. Upgrade to OODBMS – Migrating to the Architectural Atom and OO 
database concepts described above are probably the single most significant 
changes planned. Not only does this unify the data description but it allows 
more OO programming concepts to be utilized. 

4. Reprogram in C++ - DAVE® was originally written in the C programming 
language. Since the first three things on this list require major changes 
anyway, this would be a good time to completely rewrite the software in C++ 
or another OO language that will provide better interaction with the 
OODBMS plus other benefits attendant with OO concepts. 
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