Object Location In A Multiply Reflective Environment

Brendan Walker, Hermann Chong, Iqbal Binderwala, Prof. Tony Woo

University of Washington, Dept. of Industrial Engineering

Overview

- Motivation for object location in a static system
- Related problems
- Methods for signal triangulation
- Reflection and synchronization issues
- Algorithm for solving these problems
- Theoretical and experimental implementations
- Conclusion

Motivation for Object Location

- Want to find an object in a system
 - Inventoried item in a warehouse
 - Someone who called 911 on their cell phone
- Work within the existing constraints of the environment

Related Technologies

- Beaconing bar code
 - Radio sensitive tag placed on inventoried item
 - A radio "ping" is sent out to the tag
 - Tag responds back with reply
- Augmented GPS
 - GPS receiver stations set up at known coordinates
 - End user's receives SAT GPS corrections
 - Possible technology for use in E911 systems

Triangulation Methods

- Application determines receiver type
- Generally, angle distance receivers are more complicated

Reflection and Multi-path

- Bounce path longer than true distance
- Signal direction is changed

Implicit Problem of Synchronization

- Many signal based distance methods use time of flight (TOF)
- Like BBC, assumes we receiver can respond back
- Sometimes synchronization is not possible
- Removing need to respond makes it easier to track objects

Asynchronous Triangulation

- Putting receivers in a line allows for asynchronous distance calculation
- Consider free space (no obstacles)

Multi-path Triangulation

Possible if we know the following

- Geometry of what is reflection
- Position of receiver
- Incoming signal direction
- Distance to origin of signal
- Can then ray trace back to signal's origin

Calculating Signal Direction

t2 (0, Y0, 0) $x^{2} + y^{2} + z^{2} = (r + t_{0})^{2}$ $(x - x_0)^2 + y^2 + z^2 = (r + t_1)^2$ t₁ $x^{2} + (y - y_{0})^{2} + z^{2} = (r + t_{2})^{2}$ (x₀, 0, 0) $x^{2} + y^{2} + (z - z_{0})^{2} = (r + t_{3})^{2}$ where t_0 or t_1 or t_2 or $t_3 = 0$ $\mathbf{x} = \left(\left(\mathbf{t}_0 - \mathbf{t}_1 \right) \left(2 \mathbf{r} + \mathbf{t}_0 + \mathbf{t}_1 \right) + \mathbf{x}_0^2 \right) / 2 \qquad \mathbf{x} \left(\mathbf{r} \right) = \mathbf{r} \left(\mathbf{t}_0 - \mathbf{t}_1 \right) / \mathbf{x}_0 + \left(\mathbf{t}_0^2 - \mathbf{t}_1^2 + \mathbf{x}_0^2 \right) / 2 \mathbf{x}_0$ $y = \left((t_0 - t_2) (2r + t_0 + t_2) + y_0^2 \right) / 2y_0 \longrightarrow y(r) = r (t_0 - t_2) / y_0 + \left(t_0^2 - t_2^2 + y_0^2 \right) / 2y_0$ $z = ((t_0 - t_3) (2r + t_0 + t_3) + z_0^2) / 2z_0 \qquad z(r) = r(t_0 - t_3) / z_0 + (t_0^2 - t_3^2 + z_0^2) / 2z_0$ Solving for Radius in 2 D : $Ar^2 + Br + C = 0$ $A = 4 \left[y_0^2 (t_0 - t_1)^2 + x_0^2 (t_0 - t_2)^2 - x_0^2 y_0^2 \right]$ $B = 4 \left[y_0^2 (t_0 - t_1)^2 \left[t_0^2 - t_1^2 + x_0^2 \right] + x_0^2 (t_0 - t_2)^2 \left[t_0^2 - t_2^2 + y_0^2 \right] - 2 t_0 x_0^2 y_0^2 \right]$ $C = y_0^2 (t_0^2 - t_1^2) [t_0^2 - t_1^2 + 2x_0^2] + x_0^2 (t_0 - t_2)^2 [t_0^2 - t_2^2 + 2y_0^2] + x_0^2 y_0^2 [x_0^2 + y_0^2 - 4t_0^2]$

Theoretical Implementation

- Assume a model in which each surface is perfectly reflective
- Signal is an expanding circular (2D) or spherical (3D) wave front
- Once signal crosses an "Orthant" receiver, back trace to origin

Theoretical Implementation

Experimental Implementation

- Working in the audio domain
- Non trivial to determine when a signal started crossing a microphone
- Incoming data has to be continually processed from a buffer
- FFT and autocorrelation used to find signal thumbprint

Auto Correlation Experiment

Java Implementation

Future Work

- Run some experiments
- Implement a more rigorous simulation
- Implement the autocorrelation in hardware
- Considerworking in the RF domain

Conclusion

- Wide range of applications for this technology
- Asynchronous transmission means little of no hardware on the transmitters end
- Our method of multi-path triangulation can be implemented very cheaply for audio applications

Questions?