

NETWORK-CENTRIC APPLICATIONS AND TACTICAL NETWORKS

Wayne Mandak Sr. Engineer CenGen Inc. <u>wmandak@cengen.com</u> 410 715 1300 Mr. Timothy Krout Vice President Engineering, CenGen Inc. 5356 High Tor Hill Columbia, MD 21045 timkrout@cengen.com (410) 715 1300

Mr. Steven Durbano Sr. Network Engineer, CenGen Inc. timkrout@cengen.com

Ms. Ruth Shearer Enabling Capability Manager, Littoral Combat & Power Projection Future Naval Capability Office of Naval Research Ballston Center Tower 3, Suite 623 Arlington, VA 22217 <u>shearer@onr.navy.mil</u> (703) 696-1358

8th International Command and Control Research and Technology Symposium 17-19 June 2003 Washington, DC

Tactical Networks

- If you have ever worked with Tactical networks
 - Quickly realize
 - Do not match wired networks in
 - Throughput
 - Reliability / packet delivery (loss) / connectivity
 - Are highly mobile
 - They are the mainstay of warfighter connectivity
 - Recent experience shows the benefits, and cost, of having (or not having) reliable tactical networks
 - Knowing where your friends are is very important in fast paced hostile environments
 - » Prevents you from being fired on, allow you to fire / react more quickly
- Nearly unimaginable we would consider a fast paced large or medium scale military action without the deployment of tactical data networks
 - They are, to an every increasing degree, becoming a critical part of modern warfare

- Mostly discussing mobile networks used by warfighters on the pointy end of the spear
 - Wireless, mobile, ad hoc, often air borne relay based, on-the-move, over-the-horizon
- Not discussing Command Post large scale SATCOM type configurations
 - If it arrives on 10s of trucks and takes days to establish, it doesn't meet the threshold for this discussion

Tactical C2 Apps

- Are the critical component that bring functionality to the applications
 - No one cares about communications without C2
 - However, you can't "command and control" without communications
- At user (warfighter) level these systems have always been linked
- GCCS, C2PC, FBCB2, AFADTS
 - Well know "C2" applications in "common" use by warfighters
 - All used in Iraq Freedom
 - None define a communication path
 - All are intended to operate over "network of opportunity"
 - In many cases, they simply don't
 - Or at least have lots of room for improvement

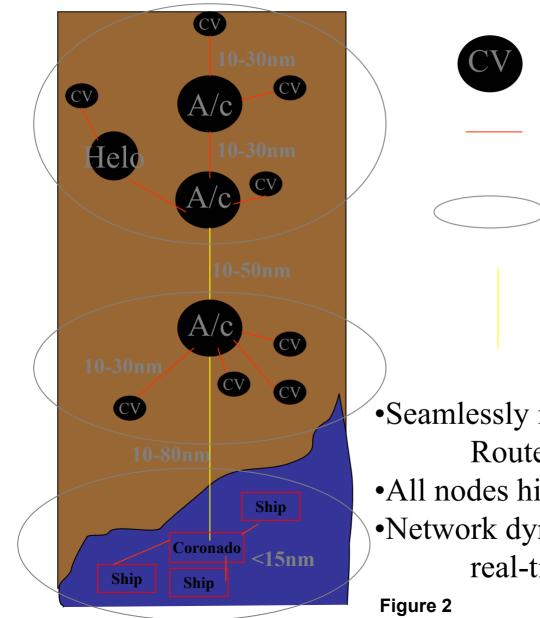
- System approach combination of Apps and network is the "problem"
 - To date we (developers of apps and networks) have done poor job of recognizing and adapting to limitations of the other
 - Result has been rather marginal performance of these systems
 - Rarely do warfighters believe C2 systems meet their requirements
 - Even when they believe C2 systems meets requirements they "blame" comms system for poor performance and resultant poor C2

- "We" must advance the current state of the art
- Next big strides will be made when application developers accept and compensate for "deficiencies" in tactical comms
- Tactical comms will improve, but
 - They will never be ubiquitous
 - There will be total comms outages and sometime they will last for minutes or 10s minutes
 - They will never have enough throughput
 - They will never have packet delivery approaching wired networks

- Tactical networks currently have and will (likely) evolve to support
 - Packet loss on the order of 20-40%
 - Over a several minute average
 - Throughput on the order of 10s Kbps to/from each "major" node
 - Some key nodes will be higher, perhaps much higher, but C2 apps should be designed for the lower end, not the extremes
 - Total comms outages from few minutes to 10s minutes pretty "routinely"
 - Be very heterogeneous in nature
 - Don't try to model any one radio / network approach it isn't necessary
 - Instead, focus on basic "services" network provides
 - Build C2 applications tolerant of the services that can be provided

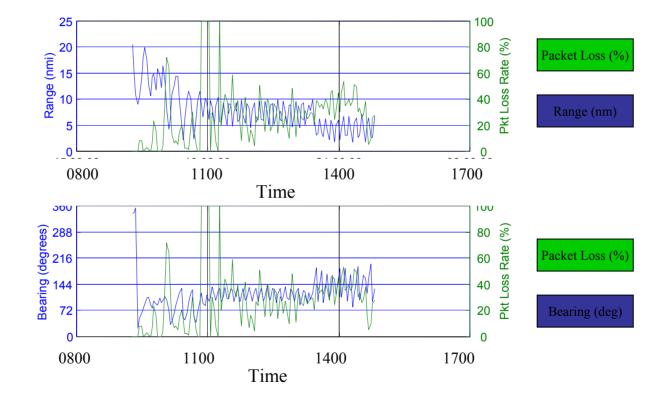
- Realize some in comms community disagree with our summary performance assessment, however
- We have lots of data to suggest we are "reasonably" accurate
- See no major "break through" in technology that will substantially change them
- Believe them reasonable enough to encourage their use by application developers
 - Guarantee they are much closer to reality (past, present, future) then developing on a wired Ethernet

ELB ACTD Architecture



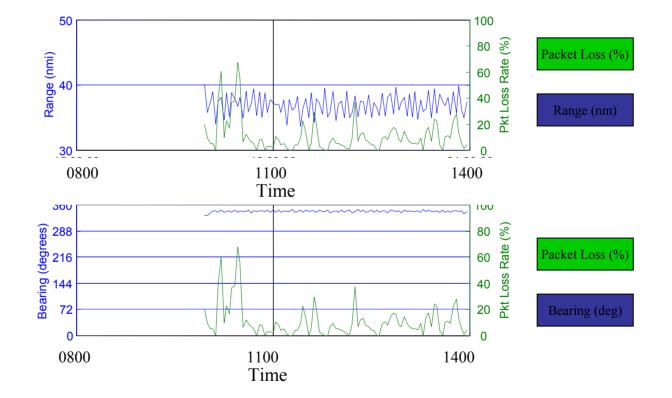
ELB ACTD Technical Architecture

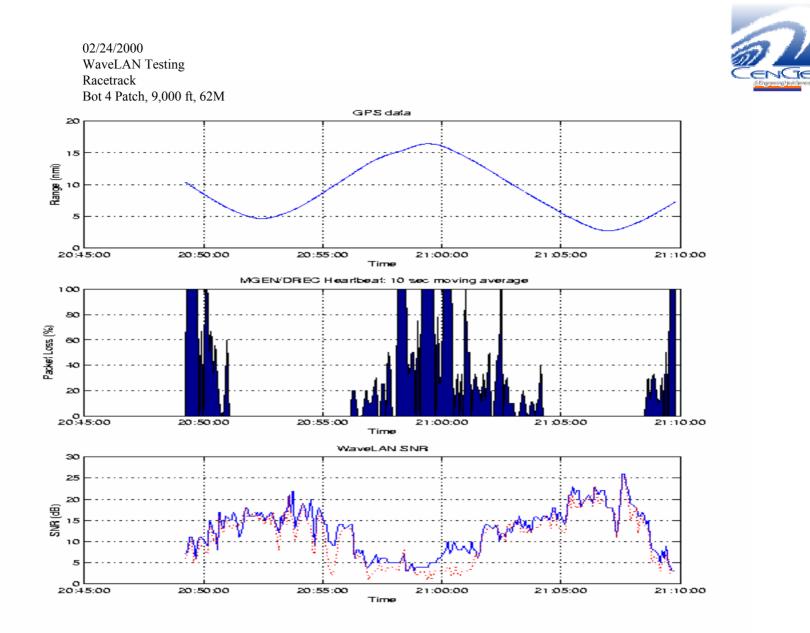
JOA 200nm x 100nm


CV Tier 1 – Wavelan "subnet" Tier 2 – VRC-99 NTDR Tier 2 "subnet"

Tier 3 – TCDL (pt. pt. link)

Seamlessly interconnected via Routers
All nodes highly mobile


•Network dynamically reconfigures in real-time



JUNE 21, 62M to the SIL

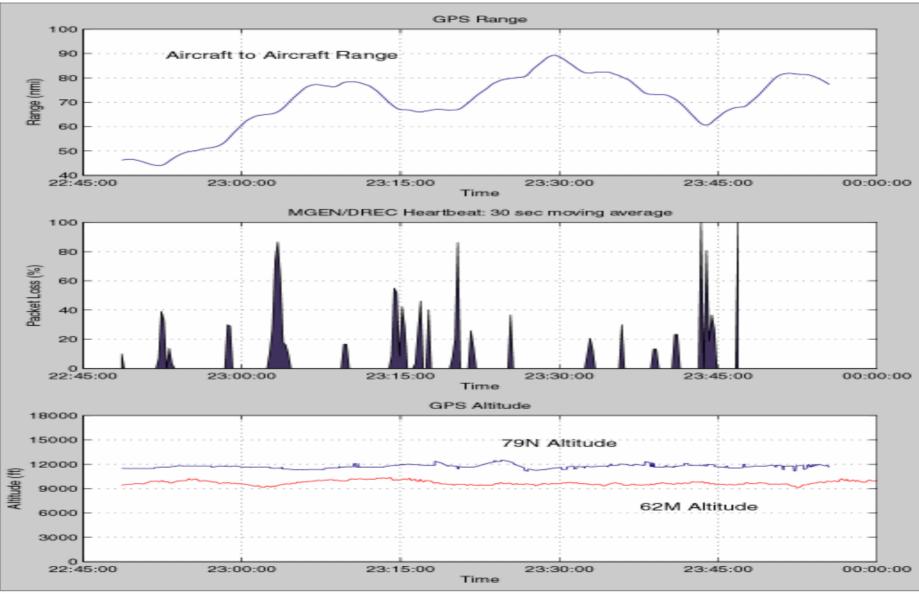
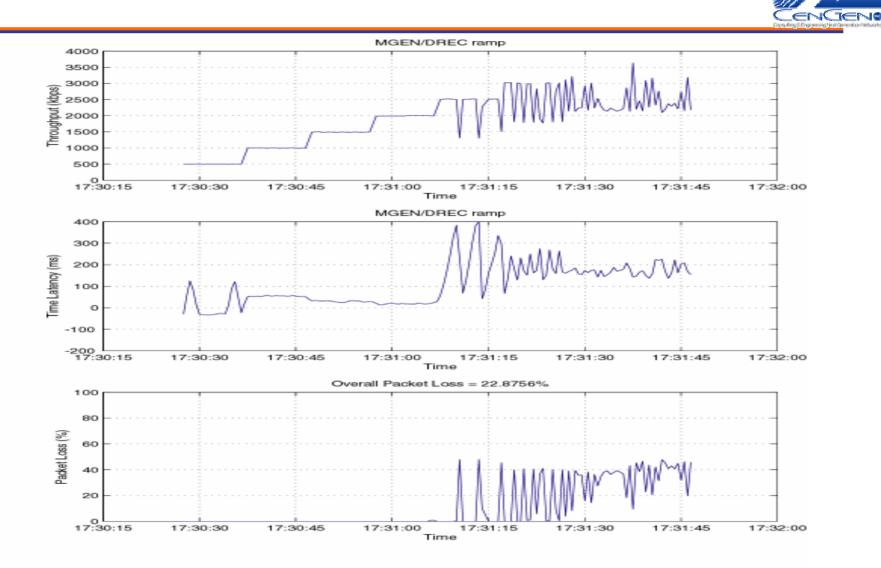
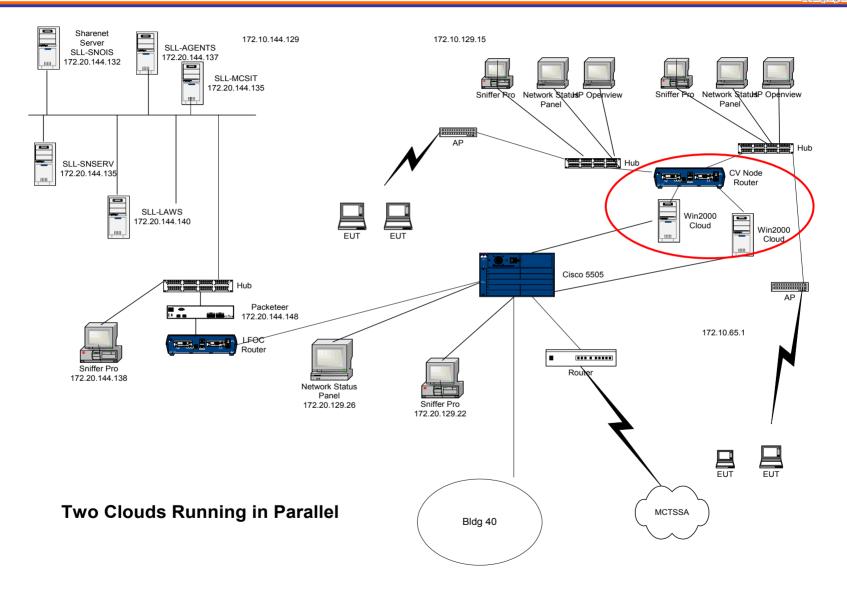



Figure 6

Ramp, 1000 byte Pkts, Air 20 nm, Partial Build, 62-500 Pkts/sec

- Numerous demonstrations / test support basic network performance numbers
- Army / DARPA Future Combat System Lead System Integrator Scalable Mobile Network
 - Winter 2003
 - New Jersey
- Ongoing testing by ONR (LC FNC) at MCTSSA
- Data in paper


Recommendations

- Build applications on networks "comparable" to tactical networks
- Use simulators *all the time* in application labs
- Remain aware of "trends" in tactical networking that could change the "guidance"
- Do not attempt to account for every minor nuisance in radio / network performance
 - Build to the general performance characteristics of a heterogeneous network
 - NOT to the specifics of any one approach
 - Radio / networks and applications should develop utilization abstraction
 - Expect radio / network protocol to change and evolve
 - Should not adversely impact applications
 - If it does it was a poorly designed application

ELB Application Test Network

CICINO

ELB (and other)

- To large extent single biggest contributing factor to success of ELB was "forcing" application developers to develop / test using network simulators
- Application developers rarely had access to "real" network
 - Proved not to be a limiting factor
 - Was not needed simulators proved to be wholly adequate and allowed applications and network to develop in parallel

ELB (and other) Settings

Cloud Settings

Cloud Parameter	Baseline	Worst Case	Goal
Bandwidth Limit – end-to-end (across Simulator, no limits on AP to EUT connection)	80 kbps	80 kbps	240 kbps
Latency – normal distribution (end-to-end)	Avg = 1000 msec Std Dev = +- 50 msec	Avg = 2000 msec Std Dev = +- 1000 msec	Avg = 1000 msec Std Dev = +- 50 msec
Link Fault – BER	10E-7	10E-7	10E-7
Link Fault – Network Disconnection	Avg. Freq of occurrence = 10 min Range of disconnect time = 20 sec - 1 min	Avg. Freq of occurrence = 10 min Range of disconnect time = 30 sec – 5 min	Avg. Freq of occurrence = 10 min Range of disconnect time = 5 sec – 20 sec
Packet Loss – Random Loss	20% loss	30% loss	10% loss

Summary

- Warfighter advances require the closer connection of C2 and comms for next big advance
- Don't develop for or in "perfect" comms environment
 - Comms guys can not now nor ever be able to deliver it
- Develop using network performance specs, not particular radio / network types
- Data does exist to help develop a reasonable set of performance metrics to develop too