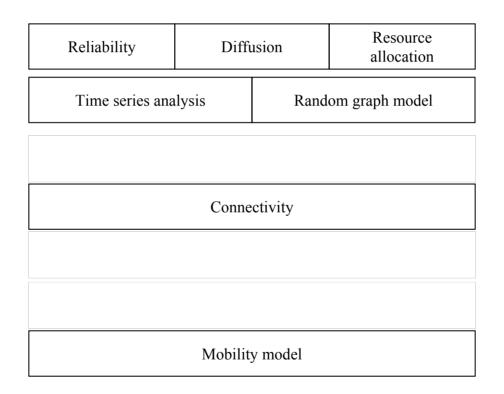
A Flock-Based Model for Ad-Hoc Communication Networks

Christian Carling¹ Pontus Svenson² Christian Mårtenson² Henrik Carlsen¹

¹Division of Defence Analysis ²Division of Command and Control Systems Swedish Defence Research Agency S-172 90 Stockholm, Sweden E-mail: carling@foi.se, ponsve@foi.se, cmart@foi.se, hencar@foi.se

Vulnerability of Command and Control Networks

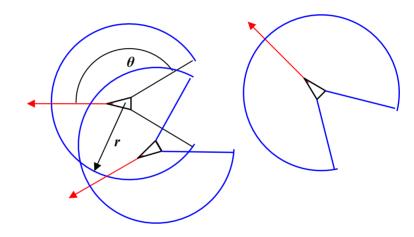
- In network-centric forces, the network itself will presumably be a prime target of enemy attacks.
- Need to assess vulnerabilities of different designs.
- Standard methods of Network Reliability unsuited for highly dynamic, mobile networks.
- Connectivity measures, Performability measures
- Probability of finding functional chains, small subgraphs more relevant for Network-centric operations.



Mobile Ad-Hoc Communication Networks

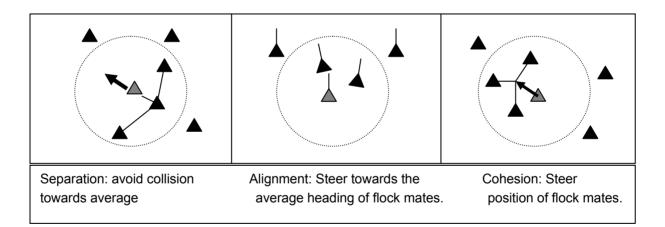
- Distributed communication system
- Messages routed through intermediate nodes
- Complexity caused by
 - Constant movement of units
 - Units enter and leave area of operations

Model structure

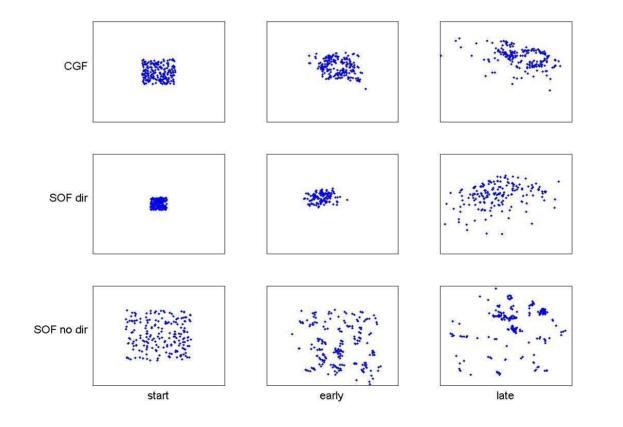


Classes of mobility models

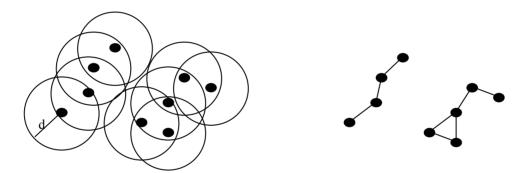
- Random models
 - random walk,
 - random waypoints
- Deterministic models
 - Rule-based,
 - predefined movement path
 - real mobility trace
- Hybrid models



Local neighbourhood for flocking behaviour

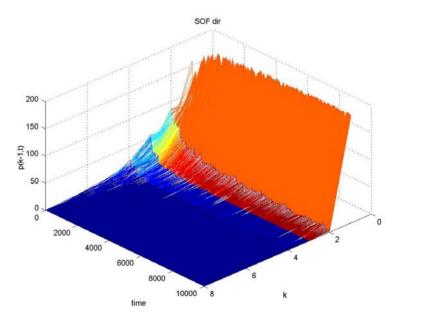

Basic steering rules

Mobility regimes


Swedish Defence Research Agency

A Flock-Based model for Ad-Hoc Communication Networks 8th ICCRTS, NDU, Washington DC, 2003

Connectivity graphs



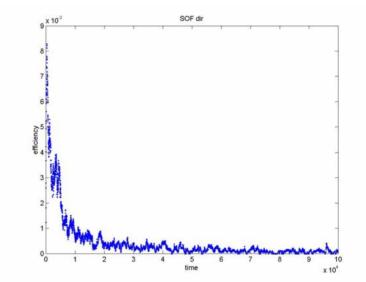
Results

• p(k,t) =#nodes with k neighbours

Swedish Defence Research Agency

• Quick transient behaviour

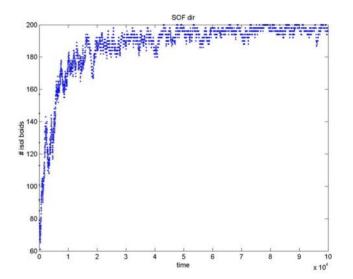
A Flock-Based model for Ad-Hoc Communication Networks 8th ICCRTS, NDU, Washington DC, 2003


Global efficiency

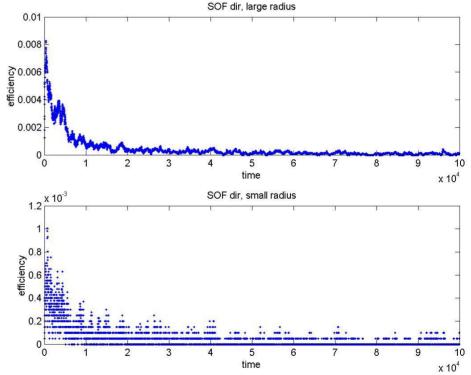
• Latora and Marchiori:

$$E_{glob} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{d_{ij}}$$

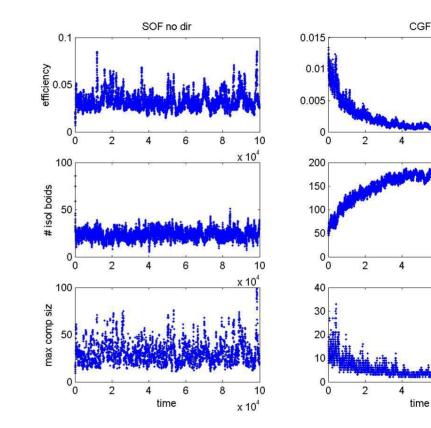
where d_{ij} is the shortest distance


- Works for unconnected graphs
- Quick decay, stabilizes at value characteristic for phase.

Number of isolated nodes


- Fluctuates strongly– many units are periodically out of contact for a short while before they reconnect.
- Reaches stationary behaviour slower

Different communication ranges d


- Large d = almost complete graph
- Small d = isolated nodes
- Global efficiency for d=0.5 r as d=2r using "SOF dir".
- Order of magnitude difference
- Very important to be able communicate longer!
- But this leads to increased risk of detection

Other types of motion

- Direction important
- CGF and SOF dir similar
- Stable against small perturbations

Swedish Defence Research Agency A Flock-Based model for Ad-Hoc Communication Networks 8th ICCRTS, NDU, Washington DC, 2003

10 x 10⁴

10

x 10⁴

Summary of work so far

- Flocking model can simulate various behaviours
- Communication range d gives graphs
- Graphs differ for different behaviours
- Graphs are dynamic
- d has large impact on global efficiency

Future work

- Different types of units, Enemy units
- Network reliability
- Diffusion of information
- Random graph modelling
 - Define ensemble of communication graphs for different behaviours instead of simulating

Resource allocation

- functional chains
- sensor-to-shooter

Vulnerability to attacks

- Physical attack
- Functional attack
- Semantic attack
- Remove nodes or edges
- Nodes change role in time
- Where should we attack enemy's communication nets?
- Hijacking feeding false data to information fusion node

Diffusion of information

- System is dynamical nodes change characteristics
- Edges have lifetimes
- Information can spread not only through the connections, but also via physical movement of the nodes
- Give information to node, measure time needed to propagate to all fusion nodes
- Red and blue teams competing for information

