

George Mason University

Modeling for Future Command and Control Architectures

Holly A. H. Handley Alexander H. Levis

> 8th ICCRTS June 17-19, 2003 Washington, DC

Introduction

- Models can be used to predict and evaluate the behavior and performance of proposed command and control architectures
 - Arrangement of resources, decision makers, and responsibilities.
- A previously developed Decision Maker model focused on the interactions of decision makers required to complete tasks
 - Information on how specific decision makers behaved during task completion.
- A Task Process model was developed for a recent subject experiment that focused on the stages of a task as it was completed
 - Information on how specific tasks were completed by different architectures.
- Combining these models results in a more sophisticated model that allows
 complex tasks requiring multiple decision maker interactions
 - Develop surrogates for current metrics of interest
 - Speed of Command and Shared Situation Awareness.

Task Process Model

- The Task Process model explicitly represents the stages of the task
 process
 - Each task is represented and evaluated separately.
- The model was developed to exploit the data recorded by a simulator used for subject experiments
 - The stages are from Dynamic Distributed Decision-Making Simulator
 - The simulator records task timing information for each task at different task stages.
- Each stage of the sequential model has a delay determined by the attributes of the task, decision maker, or resource.
- The output of the model is a task completion time for every task in the scenario.
- The model was developed and validated using experimental data.

Task Process Model

System Architectures Laboratory

Limitations of the Single Task Model

- The performance of the model was validated by correlating the model output to the experimental output
 - The average correlation between the model data and the experimental data was .86.
- However, there was a discrepancy between the model data and the experimental data for some of the results
 - The experimental data indicated that often tasks were interrupted in the middle of the process, and then resumed later on,
 - The model, once initiated, continued uninterrupted through the process.
- Secondly, many of the tasks in the scenario required the interaction of one or more decision makers in order to execute
 - These were not included in the model simulation.

Task Process Interruption: Sample Experimental Data

	Arrive	Detect	Identify	Select	Attack	Destroy
Patrol Boat #218						
Team MA	370	371	372	430	434	439
Team MC – Interruption	370	371	372	584	588	593
Air Attack #406						
Team SA	1251	1254	1322	1340	1342	1347
Team SE – Interruption	1251	1254	1322	1380	1389	1394

Decision Maker Synchronization: Sample Experimental Data

Stage	Time	DM	Resource
04-Select	1726	2	
04-Select	1756	3	
11-Attack	1759	2	SOF-500
12-Assist	1761	3	SOF-501
18-Destroy	1789	2	

Five Stage Interacting Decision Maker

- The Decision Maker model explicitly depicts the stages at which a decision maker can interact with other decision makers or the environment while processing a task.
- A decision maker need not exercise all five stages when performing a task
 - Depending on the inputs and outputs required, a decision maker can instantiate different subsets of the five stage model.

- In order to represent task interruption in the model the relationship between the decision maker model and the task process model must be made explicit
 - It is the decision maker that causes the interruption.
- Associate the Task Process *Detect Identify* stages
 - with the Decision Maker Situation Assessment Response Selection stages
- Associate the Task Process *Select Attack* stages
 - > with the DM Situation Assessment Response Selection stages
- Note that the Select stage was identified in the empirical data.
- Allows for two opportunities for variability based on Decision Maker workload.

Single Task Coupled with Decision Maker

Task Completion Time: $t_{finish} = t_{appear} + t_{detect} + t_{identify} + t_{select} + t_{attack} + t_{destroy} + t_{disappear}$ Task Delay Time: $t_{delay} = t_{finish} - t_{appear}$

Decision Maker Synchronization

- In order to represent decision maker synchronization in the model the different roles a decision maker assumes in terms of the decision maker model must be made explicit.
- <u>Independent Role</u> a decision maker acting on a task that he can execute without interacting with other decision makers.
 - Current Task Process Model
- Leader Role a decision maker needs to interact with other decision makers to execute a task, however this decision maker sends the synchronization signal.
- Follower Role a decision maker needs to interact with other decision makers to execute a task, however this decision maker waits for the synchronization signal.

Leader Role

- <u>Leader Role</u> a decision maker needs to interact with other decision makers to execute a task, however this decision maker sends the synchronization signal
 - Detect Identify => Situation Assessment Response Selection w/ y' output

System Architectures Laboratory

 Select – Attack => Situation Assessment/Information Fusion – Response Selection w/ y' output George Mason University

June 2003

12

Follower Role

- <u>Follower Role</u> a decision maker needs to interact with other decision makers to execute a task, however this decision maker waits for the synchronization signal
 - Detect Identify => Situation Assessment Response Selection w/ y' output
 - Select Attack => Situation Assessment Command Interpretation/ Response Selection _{George Mason University}

June 2003

System Architectures Laboratory

Speed of Command

- Defined as the time from when a threat is detected until it is engaged.
- Surrogate measure is the task delay
 - The time from the detect stage to the attack stage.
- Use measure to evaluate different architectures in same scenario.

Speed of Command Results

Shared Situation Awareness

- Defined as the ability of a team of decision makers to perceive and understand a tactical picture that is complete and consistent across the team.
- Complex tasks that require multiple decision makers have a time window in which all required resources must be fired: *Window of Attack*
 - The time difference between the launch of the first resource to the launch of the last resource must be less than the Window of Attack.
 - $t_{assistF}$ $t_{attackL}$ < Δt_{attack}
- Window of Attack can represent a surrogate measure for Shared Situation Awareness for the decision makers participating in the task
 - As the number of decision makers who participate in an attack increase, this metric becomes more meaningful.

Shared Situation Awareness Results

Conclusions

- Limitations of the current Task Process model suggested a coupling with a Decision Maker model:
 - Inability to allow a decision maker to disengage from a task midprocess,
 - Inability to represent a synchronized attack of multiple decision makers.
- The relationship between the models was made explicit by associating the Detect – Identify and Select – Attack stages of the Task Process model with the Situation Assessment – Response Selection stages of the Decision Maker model.
- This Enhanced Task Process model allows the definition of surrogate measures for
 - Speed of Command accumulated delay time,
 - Shared Situation Awareness task window limit.
- This model can now be used to evaluate alternative architectures on performance measures of current interest.