Data Mining Techniques Applied to Urban Terrain Command & Control Experimentation

Janet O'May jomay@arl.army.mil (410) 278-4998

Co-Authors:
Barry Bodt and Eric Heilman

Computational and Information Sciences Directorate

Army Research Laboratory (ARL)

The U.S. Army's Corporate Laboratory

Previous Work

- Simulated Southwest Asia scenario using One Semi-Automated Forces (OneSAF) Testbed Baseline (OTB) for 228 plays of the same battle
- Used a Killer/Victim Scoreboard (KVS) to collect metrics [143 metrics per three time slice]
- Used statistical data mining approaches to relate battle outcome to metrics
- Concluded: great potential for identifying key metrics in the battle worth tracking and/or for suggesting course of action changes

Scenario

Time Stamp 1010070890

Vehicle ID 1076

Firer ID 1087

Projectile 1143670848

Firer and Target Identity and Location

- Type of Ammo
- Range
- Outcome

Firer Position: X = 220217.00 Y = 146765.00 Z = 12.37

Target Position: X = 222454.38 Y = 149117.80 Z = 9.99

Vehicle 1076: Hit with 1 "munition_USSR_Spandrel" (0x442b0840)

Comp DFDAM_EXPOSURE_HULL, angle 19.53 deg Disp 0.889701 ft

Kill Thermometer is: Pk:1.00, Pmf:1.00, Pf:0.90, Pm:0.80 Pn:0.80

RANGE 3246.773576

 $r = 0.990835 \text{ kill_type} = MF$

1076 100A41 vehicle_US_M1 1087 100A23 vehicle USSR BMP2

Analysis

1... Company Objective

Correctly Classified

Loss: 71%

Win: 67%

Overall: 70%

Correctly Classified

Loss: 82%

Win: 77%

Overall: 80%

Correctly Classified

Loss: 88%

Win: 82%

Overall: 85%

Slice 1 ~ 2000m Or ~ 5 1/2 minutes

Slice 2 ~ 4000m Or ~ 10 minutes

Slice 3 ~ 5800m Or ~ 20 minutes

Method Comparison

Percent Correct Classification by Stopping Time and Method

Stopping Time (min)	Discriminant Analysis	CART	Logistic Regression
5 1/2	70%	70%	69%
10	80%	75%	74%
20	85%	82%	85%

Current Experiment

- Change terrain to urban
- Involve Dismounted Infantry (DI)
- Use Dismounted Infantry Semi-Automated Forces (DISAF) Simulation Software
- Develop urban scenario

DISAF Challenges

- Compiling need an older version of GNU C and C++ (version 2.91.66)
- KVS Code developed for OneSAF at ARL did not easily insert into DISAF
- Fireteams tend to move better when tasked as individual rather than as a team
- However this breaks down for the "clear room" task which requires a full fireteam
- Vehicles tend to not enter the city sector
- DI entities at times get stuck in buildings and tunnels
- If entities can not determine the proper route they go to the bottom of the terrain

Current Urban Scenario

Location: City sector based on the McKenna MOUT (Military Operations on Urbanized Terrain) site

Scenario: Attack Phase I

- Isolate area, three-pronged encirclement to reduce threat forces from perimeter
- Carried out by 2 M2s from the North and 2 M2s from the Southwest and a headquarters (HQ) attachment of 2 M1A1s and 1 M2 entering from the West
- Initial resistance from 3 BMPs and 2 T-80s around the perimeter, a 3rd T-80 is in the center flanking the objective

Current Urban Scenario

Scenario: Attack Phase 2

- Eight fireteams (FT) enter sector behind armored vehicles
- Carried out by 3 FTs from both the North and from the Southwest
- Northern teams clear separate buildings (1 & 2) and continue on to secure objective
- Southwestern teams clear separate buildings (3 & 4) and continue to objective
- Two Western FT (HQ) proceed directly to the objective

Current Urban Scenario

Scenario: Attack Phase 2

- Interior resistance provided by opposition DI in the five critical buildings and also in a key vantage point building on the Northwest side of the sector
- Three additional opposition DI stationed outside buildings 1,
 2, and the objective

Simulation Data

Predictors

- 444 variables, but only 75 runs so far
- Two time slices (372 seconds and 480 seconds)
- Hits taken by Blue and hits by Blue fire involving all relevant vehicles, fireteams, and buildings
- Status of all entities

Responses

- Taking the objective (1 or 0)
- Establishing a foothold in the city (0, 1, 2, 4)
- MOUTscore (0 to 8 with buildings under control with minimum casualties)

Potential Analytical Methods

- Discriminant Analysis
- Cart
- Logistic Regression
- Multiple Regression
- Neural Networks

•Dr. Barry Bodt babodt@arl.army.mil

A Discriminant Model

∰ Data: Discriminant Function Analysis Summary (FINALMOUTEX1b)*							×
Discriminant Function Analysis Summary (FINALMOUTEX1b)							
	Step 7, No	of vars in m	nodel: 7; Gra	puping: Foo	otHold (4 gr	rps)	
	Wilks' Lam	ıbda: .3202	?4 approx. F	(21,187)=	4.3384 p<	.0000	
	Wilks'	Partial	F-remove	p-level	Toler.	1-Toler.	
N=75	Lambda	Lambda	(3,65)			(R-Sgr.)	
F8TS2	0.488062	0.656143	11.35459	0.000004	0.910182	0.089818	
A23TS2	0.380200	0.842291	4.05682	0.010497	0.921236	0.078764	
RTA11TS2	0.358180	0.894073	2.56701	0.062007	0.685511	0.314489	
BMC12TS2	0.374920	0.854151	3.69965	0.016001	0.877811	0.122189	
F5TS2	0.354554	0.903217	2.32167	0.083316	0.967066	0.032934	
M3T13FS2	0.344559	0.929415	1.64548	0.187509	0.919428	0.080572	
M2A21TS2	0.341595	0.937480	1.44494	0.237843	0.720540	0.279461	$\overline{\mathbf{v}}$
T	•)	

Root Means

	Means of Canonical Variables (FII					
	Root 1	Root 2	Root 3			
Group						
G_1:0	1.645990	0.11182	0.072312			
G_2:1	-0.182453	-2.73915	-0.044188			
G_3:2	-0.273964	0.26408	-0.658511			
G_4:4	-0.539702	0.20524	0.207078 🔽			
▶						

Group Separation

Group Separation

Group Separation

Classification Efficiency

Classification Matrix (FINALMOUTEX1b) Rows: Observed classifications Columns: Predicted classifications							
	Percent G 1:0 G 2:1 G 3:2 G 4:4						
Group	Correct p=.21333 p=.06667 p=.18667 p=.53333						
G_1:0	75.00000 1 12 0 0 4						
G_2:1	G_2:1 60.00000 0 3 1 1						
G_3:2	G_3:2 21.42857 2 0 3 9						
G_4:4	92.50000	2	1	0	37		
Total 73.33334 16 4 4 51							
<u>F</u>							

Classification Matrix (FINALMOUTEX1b)

Metric Description

F8TS2-Status of FT 8 (B4) at TS2

F5TS2-Status of FT 5 (A6) at TS2

M3T13FS2-Hits by M2-3 (B11, B12) at A13-T80 at TS2

A23TS2-Status of A23-DI at TS2

BMC12TS2-Status of M2 C12 at TS2

RTA11TS2-Status of T80 A11 at TS2

M2A21TS2-Hits taken by M2-2 (A16) by A21-DI at TS2

Metric Interpretation

FT8 important because mission took it first to Bldg 3 and positioning kept it away from being targeted by Bldg 5

FT5 important because after passing Bldg 5, would move South away from Red DI in approach to objective

M3T13FS2-Hits on T80 – Southwest approach

A23TS2-Status of A23-DI – outside Building 2

BMC12TS2-Status of M2 - Success of North approach

RTA11TS2-Status of T80 on North

M2A21TS2-Hits taken by M2-2 – West approach

Acknowledgements

- Brian Comer of PEO STRI
- Daryl Siddon of SAIC

Without their help, we would never have compiled DISAF!

Directions/Conclusion

- More involved and sophisticated opposition force
- Changes to KVS
- Overall improved scenario
- Establish data from more time periods to provide information on battle progression
- Collect information from a larger number of battles
- Use a greater variety of statistical tools, to include work in the microarray arena
- Data mining combat simulations holds great promise for understanding battles if one believes the simulations and statistical methods will continue to improve.

Questions???

Richard C. Kaste Team Leader rck@arl.army.mil (410) 278-7781 Janet O'May jomay@arl.army.mil (410) 278-4958

Discriminant Analysis

- Maximizes $|a'(x_1-x_2)| s.t. a'Sa = 1$
- Assumes multivariate normal predictors with common covariance matrix Σ but different mean vectors μ_1 and μ_2

Standardized Coefficients

	Standardized Coefficients (FINALM					
	for Canonical Variables					
	Root 1 Root 2 Roo					
Variable						
F8TS2	-0.916437	0.127259	-0.088794			
A23TS2	0.345706	0.556590	-0.246588			
RTA11TS2	0.533809	0.179519	-0.411562			
BMC12TS2	0.266831	-0.604834	-0.143915			
F5TS2	-0.398093	0.267274	0.203862			
M3T13FS2	-0.088558	-0.259234	-0.699959			
M2A21TS2	-0.059910	0.218665	0.824142			
Eigenval	0.791787	0.568677	0.110980			
Cum.Prop	0.538102	0.924577	1.000000			
▼						
■ Standardized Coefficients (FINALMOUTEX1b)						

Testing Roots

Chi-Square Tests with Successive Roots Removed (FINA 📷						
Roots	Eigen-		Wilks'	Chi-Sqr.	df	p-level 💳
Removed		R	Lambda			
0	0.791787	0.664754	0.320239	78.00018	21	0.000000
1	0.568677	0.602097	0.573799	38.05006	12	0.000151
2	0.110980	0.316060	0.900106	7.20912	5	0.205546
Chi Caupra Tasta with Cusassaina Dasta Damanad (EINIALMOLITEV16)						

Chi-Square Tests with Successive Roots Removed (FINALMOUTEX1b)

FT3 (Y) by FT7 (X) by Foothold Frequency

FT5 (Y) by FT8 (X) by Foothold Frequency

圖 Histogram (FINALMOUTEX1b 457√*76c)