

Massachusetts Headquarters : 781-935-3966 Washington DC Office : 202-842-1548

When Do Organizations Need to Change (Part I)? Coping with Incongruence

Frederick J. Diedrich¹, Elliot E. Entin¹, Susan G. Hutchins², Susan P. Hocevar², Brian Rubineau¹, & Jean MacMillan¹

¹Aptima, Inc. and ²Naval Postgraduate School

The Command & Control Research & Technology Symposium NDU, Washington D.C. June 17- 19, 2003

*Sponsored by the Office Of Naval Research, Contract No. N00014-02-C-0233, COTR Gerald Malecki

A UNIQUE FOCUS ON HUMAN-CENTERED ENGINEERING

Questions & Objectives

Do model-based predictions of (in) congruence produce measurable difference in process and outcome?

Organization

Mission vs. Organization

organization

- Measure the effects of congruence on organizational performance and processes
- Lay the foundation for further work on adaptation
 - Establish the conditions for change
 - Identify leading indicators of incongruence
 - How do we support/induce adaptation?

Organizational Structures

Functional (F)

			1	2	3	4	5	6	
		Platform	STRIKE	BMD	ISR	AWC	SuWC/MINES	SOF/SAR	
a	1	CVN	2F18S	XXX	1UAV	2F18A, E2C	1FAB, 1MH53	1HH60	
Ĩ	2	DDGA	8TLAM	3ABM,4TTOM	1UAV	6SM2	1FAB, 2HARP	1HH60,1SOF	
ivisio	3	DDGB	8TLAM	3ABM,4TTOM	1UAV	6SM2	1FAB, 2HARP	1HH60,1SOF	
	4	CG	8TLAM	3ABM	1UAV	6SM2	1FAB,2HARP,1MH53	1HH60	
	5	FFG*	2F18S	XXX	1UAV	2F18A,E2C,4SM2	1FAB,2HARP,1MH53	1HH60	
	6	DDGC	8TLAM	3ABM,4TTOM	1UAV	6SM2	1FAB, 2HARP	1HH60,1SOF	

- Asset "ownership" and control shape team structure:
 - Multi-function vs. single-function responsibilities
 - Geographic Area of Responsibility: Local vs. Global
- Heterarchical, not Hierarchical, organization

Scenarios

Congruence Manipulation

- Capitalizes on Roles and Geography (task and asset locations)
- Strategies for Manipulation of Congruence
 - Coordination Requirements
 - Task Phasing
 - Boundary Splitting
 - Limited Assets

Functional (f) Scenario

Divisional (d) Scenario

- 48 participants organized into eight 6person teams
- Independent Variables
 - Structure is a between subjects variable
 Divisional (D) vs. Functional (F)
 - Scenario is a within subjects variable
 - Divisional favoring (d) vs. Functional favoring (f)

→ Congruence is the interaction of structure and scenario.

Experimental Design

Procedure

- "Buttonology" (2 hours)
- "Hash" (2 hours)
- First Replication (2 hours)
- Second Replication (2 hours)

Design

Scenario

Results

- Analyses focused on communications, workload, and performance.
 - Emphasis on model-based predictions
 - Emphasis on patterns
 - Emphasis on communications because they directly reflect strategy adaptations, and are thus a strong candidate for leading indicators
- Overall, results showed that in the incongruent cases, communications increased, workload increased, and performance worsened.
- However, the context mattered.
 - Structure/scenario pairings influenced reaction to incongruence.

Overall Performance

As predicted based on the model design process, performance was worse in the incongruent cases.

Communications (Talking More?)

- The manipulation of congruence hinged on coordination requirements.
 - Model-Based Prediction: Since more coordination required in incongruent cases, there should be more communication in incongruent cases.

\rightarrow Bigger change in Functional

- Organizational Structure Mattered
 - In response to incongruence:
 - Divisional teams talked more.
 - However, Functional teams talked a lot more, and there were stronger differences in who talked to who about what.
 - The context of structure and scenario mattered.

Communications: Who is Talking to Who?

Communications: Talking About What?

Incidence Rate Analysis of Communication Patterns

• For Divisional, the "role-relative" incidence rates for communications by player and type did not change drastically between the congruent and incongruent conditions.

Divisional RIR-I/RIR-C Ratio

(Indicates change in role-relative communication probability from congruent to incongruent scenarios)

DM	All	Task	Asset	Req	Xfer
Green					
Blue					
Purple			-		
Red					
Orange				-	
Brown					

 For Functional, there were strong changes in communication types for many players → Talking about different things...

	DM	All	Task	Asset	Req	Xfer	
	Green	+	+	+	+	+	
	Blue		-	-		-	
	Purple	-				-	
	Red	++	++		+++	++	
P	Orange		+		+		11
	Brown	+++					

Functional RIR-I/RIR-C Ratio

Communications: Talking About What?

- Communication & Cooperation Networks illustrate interaction patterns within the team
 - Player-Player networks are created when:
 - A Player sends a communication to another Player
 - Players cooperate to process a task

- For the Divisional structure the association is about the same in congruent and incongruent conditions
- For the Functional structure the association is quite different between congruency conditions and largest in the incongruent condition
- In Divisional there is little evidence for strategy adaptation. However, in Functional there is a radical change in the association of communication and cooperation

- The manipulation of congruence hinged on coordination requirements.
 - Model-Based Prediction: Since more coordination in incongruent cases, there should be a higher perceived workload in incongruent cases.

- The manipulations of congruence were successful in changing communications and perceived workload.
 - These changes were predicted by the model-based manipulation of coordination requirements.
- Given these changes in response to coordination needs, we expected performance to be worse in the incongruent conditions.
 - Will performance be different across the structure and scenario pairings?

Performance

- When coping with incongruence, performance changes were dependent on the structure & scenario pairings.
 - Percent of attacks processed by latency for tasks processed
 - Changes in tasks processed for each structure
 - No changes in latency for either structure

- Percent of tasks processed by accuracy for tasks processed
 - Changes in tasks processed for each structure
 - Changes in accuracy for Divisional only

Performance

- Accuracy by latency for tasks processed
 - No changes in latency
 - Changes in accuracy for Divisional only

- The organizations and scenarios studied here set the stage for further work on structural adaptation.
 - Based on modeling work we successfully created the conditions under which change is needed.
- The strategic adaptations to incongruence depended on the organizational structure & scenario pairings.
 - The leading indicators may be complex and context dependent, especially when larger and more complex command and control organizations are considered.

