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Abstract

We can model different Courses of Action (COAs) evaluated during the operational military
planning as many different activity networks. The corresponding project scheduling model is
sufficiently general to be able to represent the most part of military missions. Recently, a project
scheduling mathematical model has been proposed where each activity called an action in the
military context has different execution modes depending on the resource combination selected.

One way to take into account the uncertainty aspect of the COA duration within the evaluation
process is to consider the fuzzy nature of planned activity durations. This fuzzy problem has not
been considered within project scheduling when activities have multiple execution modes. But,
criterion evaluation of COAs such as risk and cost depends on the estimated COA duration. And,
in a world where resources are limited and the risk is an important factor, we must develop a
mission schedule offering the best compromise between the fuzzy duration of the COAs, their
cost and their risk.

This paper presents a fuzzy multiple mode resource-constrained project scheduling model for
evaluating COAs duration. It describes the mathematical foundation developed to perform the
project network analysis and it proposes a scheduling procedure to determine the fuzzy COA
duration.

 1. Introduction
Mission planning

The planning process is critical to the success of any mission. The planning process has six steps.
Each step of this process begins with an input from the previous one and builds upon.
Nevertheless, this process is iterative and recursive. The initiation step commences with the
reception of the mission statements or in an anticipation of a new mission. During this step, the
task is assigned or assumed, major combat and logistic resources and strategic transportation
assets are identified for planning purposes, the intelligence process initiated, and the groundwork
is laid for planning to begin. A soon as the new mission is received, the staff prepare for the
mission analysis by gathering a set of tools (e.g. maps of area of operations, both own and higher
headquarters’ standing operating procedures (SOPs), appropriate documents, estimates).
Moreover, during this step, the staff issues a warning order to other supporting and subordinate
units. The orientation step is crucial to the CF OPP. It allows the Commander to begin the
analysis and definition of the mission, the preparation of the planning guidance and the description



of the end states of the operation. The orientation step includes the analysis of the government
orders, initial intelligence, assessment of specified, implied and essential tasks, review of the
available assets, estimation of the constraints, identification of the critical facts and assumptions,
risk assessment, Commander’s critical information requirements, initial reconnaissance, mission
analysis briefing, development of initial Commander’s intent, and issue of Commander’s guidance.

The Course of Action (COA) development step involves the entire staff. The Commander’s
guidance and intent helps the staff to focus on the development of comprehensive and flexible
plans within the time available. These COAs "should answer fundamental questions of when, who,
what, where, why and how". Each COA should be suitable, feasible, acceptable, exclusive and
complete. During the COA development step, staff should analyze the relative combat power
(friendly possible actions, enemy’s perspective, enemy’s vulnerabilities and powers, additional
resources, resources allocation, etc.), generate comprehensive COAs (defeat all feasible enemy’s
COAs, brainstorming, decisive point, cross-fertilization of COAs), and determine initial forces
necessary to accomplish the mission.

The decision step is based on the analysis and comparison of the proposed COAs. The analysis of
the COAs provides the Commander with precious information to evaluate the quality of these
COAs. The main approaches used to analyze the COAs are war-gaming, advantages /
disadvantages and comparison criteria. The COA comparison highlights each COA advantages
and disadvantages with respects to each other. The COS decides which one he will recommend to
the Commander during the Commander’s Decision Brief. The COS will decide what detail is
necessary to ensure that the Commander is provided with adequate information to make a
decision.

COA approval consists of a choice of the best COA according to the Commander’s beliefs and
estimates. If the Commander rejects all the proposed COAs, then the staff should start the process
over again. While the Commander chooses a COA, he may refine his intent, guidance and
priorities for execution planning. By deciding on a COA, the Commander assesses what residual
risk is acceptable. Based on the Commander’s decision and final guidance, the staff refines the
COA, complete the planning process and issue orders.  The aim of the plan development step is to
provide a detailed plan or orders to subordinate headquarters based on the Commander’s
decision. The plan should go through review and analysis processes. Orders and plans provide all
necessary information to subordinates, allies and supporting units to initiate planning or execution
of different operations. Finally, the Commander reviews and approves orders before any
dissemination.

Project modeling of a COA

The execution of a mission requires the realization of certain activities executed by actors and
using specific resources, according to some order and in a given place. The mission can be broken
down to its elementary tasks. Assigning resources to each activity and deciding the order in which
those activities are to executed (when) and where constitutes a COA. Following the project
modeling concepts, any COA can be seen as a set of interrelated activities known as a project, cf.
[Guitouni et al., 2000]. Project modeling consists in breaking down generic activities into sub
activities up to the point where one obtains a set of primitive activities interrelated to accomplish
the mission objectives. To devise one COA as any project, one proceeds with the project
decomposition technique known as work breakdown structure. This technique is illustrated in



Figure 1 with the COA i. It decomposes and organizes a military mission into primitive actions,
called thereafter activities. The followed process results into the object of each activity, the
precedence relations with others activities and the resources required for its complete execution.
Each combination of resources allocated to the execution of an activity defines its execution
mode. The planning process also implies the identification and the obtainment of the pool of
available resources.

Activity 1.1.1

Activity 1.1.2.1 Activity 1.1.2.2

Activity 1.1.2 Activity 1.1.3

Activity 1.1 Activity 1.2

Activity 1

Activity 2.1 Activity 2.2
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Activity j

Project Model of COA i

Figure 1 - Work Break-down Structure

Preparation and evaluation of different COAs during mission planning is one of the main
Commander’s roles. As the Commander may design different COAs to fulfill his mission, one gets
as many project instances by modifying the nature of activities, each COA being obtained by
creating new activities, by removing others or by changing their technological orders. This set of
COAs represents as many as project alternatives Ai, as illustrated in Figure 2.

COA 1 COA 2 COA n

Mission Planning

Figure 2 - Set of COA alternatives to fulfill a mission

The Commander has to select the most promising alternative with respect to available resources
and to mission objectives. It is a complex and demanding task, which implies the analysis and the
processing of multiple information regarding the operational zone, the capabilities of the task
force and the available resources. Without appropriate tools, the analysis of different alternatives
and the selection of the best COA considering mission objectives become a painful and hazardous
process.

This decision problem can be symbolically represented by a decision matrix shown in Figure 3. In
this type of problem, the Commander is considering a collection of predetermined alternatives A =
{A1, A2, …, An}, designated as COA, from which he must select the “best” one. Associated to
these alternatives is a set of criteria C = {C1, C2, …, Cυ}. Then the values cij represent the payoff
obtained by applying COA Ai evaluated according to criterion Cj. As in many problems meet in
our daily lives, all decision problems have multiple and generally conflicting criteria.
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Figure 3 - Decision matrix

Familiar success criteria of the project are defined to appreciate objective accomplishment, such
as the project duration and the project cost. Other criteria intervene when selecting a specific
project, the most notable in a combat situation being the risk and the impact. From a practical
point of view, one can consider the problem as a multi-attribute decision making when all the
alternatives are known and predetermined. One can consider the problem as a multiobjective
problem when alternatives have not been predetermined a priori.

Multiple Mode Resource-Constrained Project Scheduling Problem of a COA

The Multiple Mode Resource-Constrained Project Scheduling Problem (MRCPSP) modeling a
COA was introduced by [Guitouni et al., 2000], see also [Guitouni et al., 2002]. During the
activity engineering, the Commander may specify for each activity different execution modes
where a mode corresponds to a specific combination of resources and a given activity duration.
Again, these activities grouped according to a temporal and logical sequence define an activity
network with multiple modes. Project instances are obtained by changing the resource
combinations of activities and the corresponding activity durations. These project instances
constitute variants of the same COA i that must be evaluated. The evaluation process of the set of
alternatives of one COA with multiple modes is the object of the MRCPSP.

Project scheduling with fuzzy activity durations

Project scheduling refers to the process of defining the best sequence and the starting times of
activities according to the objectives pursued. It results in a project plan defining the time t at
which each activity should be accomplished with the selected resource combination. Resource-
constrained project scheduling problems are NP-hard problems and they can’t be solved to
optimality in polynomial time. Considering a fuzzy activity duration with each execution mode
constitutes a new problem that is more complex to solve than the one where activities have
deterministic durations.

This paper introduces a fuzzy Multiple Mode Resource-Constrained Project Scheduling model to
evaluate a COA having activities with multiple execution modes and/or fuzzy activity durations. It
describes the mathematical foundation developed to perform the project network analysis and it
proposes a scheduling procedure to determine the fuzzy project duration.

Section two introduces the uncertainty modeling considered and the required mathematical
operations to apply the CPM with fuzzy time parameters. Section three describes the
mathematical model of the scheduling problem. Section four presents the fuzzy priority rule
heuristics proposed to evaluate the project duration corresponding to the completion duration of
the considered mission. These fuzzy priority rule heuristics are deduced from the scheduling
theory in project scheduling. The final section gives conclusions about the advantages of modeling
a military mission with uncertainty and future research works.



 2. Uncertainty modeling

Commander has to devise plans and to evaluate the duration of each activity. In many military
operations, activities are often executed for the first time. Moreover, activity duration is uncertain
due to variations in the outside environment, such as weather, equipment failure, site preparation,
team productivity level, etc. Commander may have a vague idea about activity durations that must
then be estimated subjectively, cf. [Nasution 1994]. It seems natural to represent these activity
durations as fuzzy intervals.

Previous attempts to consider the situation when the data are imperfectly known considered
activity durations as random variables. Uncertainty is not properly modeled by probability theory.
It is known that stochastic problems like PERT are complex problems and face independence
problems between random variables, cf. [Lootsma, 1989]. The use of probability distributions
implicitly assumes that the past performance of activities has been observed and their distribution
has been modeled from these observations. Fuzzy numbers are good at describing the uncertainty
about activity durations and the time these activities are planned. They are used to represent
imprecise numerical such as “approximately three weeks”, “about ten days”.

2.1 Definitions

Though fuzzy numbers can take various shapes, triangular and trapezoidal fuzzy numbers are the
most common in fuzzy scheduling literature. Triangular fuzzy numbers are represented by a triplet
(a, m, b) and trapezoidal fuzzy numbers are represented by a quadruple (a, mm, , b) where a
and  b are the lower and the upper bounds of the left-hand and right-hand spreads, while the
parameters mm, are the lower and upper modal values, respectively. And, as a generalization, a
fuzzy triangular number (FTN) can be viewed as a special case of the fuzzy trapezoidal number
(FTrN) for which the lower and the upper modal values are equal (e.g. mm = ). Thereafter, we
use the L-R type representation of fuzzy numbers of [Dubois and Prade, 1988], denoted by
(a, mm, , b)LR. A fuzzy number M is a normalized convex fuzzy subset of the real line ℜ : M =

{x, µM (x) | x ∈ ℜ}where µM (x) is the membership function taking values within [0,1] indicating
the degree of appurtenance of x to M can be expressed by means of two functions L and R, with
four parameters ( mm, )∈ ℜ2 and a, b in the form:

µM (x)  = mx
xm

L ≤∀





 −

α

    = 1 ∀ x ∈ [ mm, ]

= mx
b

mx
R ≥∀






 −

Note that, as a fuzzy interval, an ordinary real number t is written (0, t, t, 0). We can also
characterize a FTrN by the interval of confidence at a level α. This is a useful concept to describe
different groups of possible values by applying a level cut to fuzzy subset. Let α ∈[0, 1]. The
α−level of set M is the set defined by :

I(M,α) = {x ∈ M | µM (x) ≥ α }.



As a practical way of getting suitable membership functions of fuzzy activity durations, it is
proposed that the Commander, acting as an expert, specifies the prominent membership levels, see
[Rommelfanger, 1990], e.g.:

• µM (x) = 1 means that the Commander believes that the value x certainly belongs to the
subset of admitted values [ mm, ],

• µM (x) > λ means that the Commander believes that the value x has a good possibility
to belong to the subset of possible values,

• µM (x) > ε means that the Commander believes that the value x has a little possibility to
belong to the subset of possible values.

A general graphical representation is shown in Figure 4.

µM(x)

x

1

m

a b

m

λ

ε

Figure 4 – Linear pieces fuzzy number

2.2 Computation with fuzzy quantities

In order to apply scheduling procedures processing fuzzy numbers representing time, one must
first determine how to establish and how to compare the sequences of activities to be considered
according to their fuzzy durations. Required operations are the addition, the subtraction, the
division, the multiplication, the extended minimum, the extended maximum and the comparison. A
major advantage of trapezoidal fuzzy numbers is that many operations based on the max-min
convolution can be replaced by direct arithmetic operations, cf. [Dubois and Prade, 1988].

Addition of fuzzy numbers

Addition operation on two FTrN gives a FTrN.

M1 (+) M2 = (a1, 11,mm , b1) (+) (a2, 22 , mm , b2) = (a1+ a2, 2121 , mmmm ++ , b1+ b2)

Subtraction of fuzzy numbers

M1 (-) M2 = (a1, 11 ,mm , b1) (-) (a2, 22 ,mm , b2) = (a1+ b2, 21 mm − , 21 mm − , a2+ b1)



Symmetric

Symmetric of a FTrN is defined as:

(-) M1= (- a1, - 1m ,- 1m ,- b1)

Maximum and minimum operators

These operators are defined as follows:

max (M1, M2) =  (max (a1, a2), max ( 21, mm ), max ( 21, mm ), max (b1, b2))

min (M1, M2) =  (min (a1, a2), min ( 21, mm ), min ( 21, mm ), min (b1, b2))

Comparison of fuzzy numbers

We consider the comparison of fuzzy numbers proposed by [Roubens, 1990] in the particular case
of L-R fuzzy numbers. It is based on the compensation of areas and it is reduced to the
comparison of upper and lower bounds of α-cuts defined by the following proposition.

Proposition. Let M1 and M2 be L-R fuzzy numbers with parameters (a1, 11,mm , b1), (a2,

22 , mm , b2), and reference functions (L1, R1), (L2, R2), then M1 ≥ M2 iff

Rxε
sup I(M1, α M1,R) +

Rxε
inf I(M1, α M1,L) ≥ 

Rxε
sup I(M2, α M2,R) +

Rxε
inf I(M2, α M2,L)

where, if n = 1, 2,

α Mn,R =Rn(∫
1

0
daaRn )(1− ) and α Mn,L = Ln(∫

1

0
daaLn )(1− ).

Then, in the case of trapezoidal fuzzy numbers, one obtains:

M1 ≥ M2 iff 11 mm + + ½ (b1- a1) ≥ 22 mm + + ½ (b2- a2)

2.3 Critical path analysis with fuzzy activity duration

Previous work on network scheduling based on fuzzy set theory, provides methods for
determining the expected fuzzy early times of each event [Chanas and Kamburowski, 1981],
[McCahon, 1987], [Dubois and Prade, 1988]. Most of the priority rule heuristics rely on
PERT/CPM (Critical Path Method) computation. One of the first attempts to apply the
calculation of the PERT analysis with fuzzy duration estimates is by [Dubois and Prade, 1988].
These methods, however, do not support backward pass calculations in a direct manner similar to
the one used in the forward pass. This is mainly due to the fact that fuzzy subtraction is not the
inverse of fuzzy addition, cf. [Gazdik, 1983], [McCahon, 1993], [Nasution, 1994].

According to the scheduling literature, a project is represented by a directed acyclic activity
network G (N, P) where N is the set of activities j, j = 1, …, J, and P is the set of precedence
relations between activities. A primitive activity j is designated by a name. For each activity j, one
denotes by djm the activity duration corresponding to the resource combination of activity j
executed under mode m, m = 1, …, mj. Without loss of generality, execution mode numbers are
ordered according to the increasing activity duration.



PERT calculation proposed by [Dubois and Prade, 1988] is adapted below to an activity-on-node
representation and the network analysis method has to handle activity having multiple execution
modes with uncertain duration. Denote by 0

~t  the time origin of the planning process of the

activity network and denote by T lf the latest finish time of the project. Denote by Pj the set of
predecessors of activity j and denote by Sj the set of successors of activity j. The numbering of
activity nodes according to the topological order is required to guarantee that ∀ i ∈ Pj, i < j. To
calculate the earliest and latest starting times of the activities, we proceed as follows:

The earliest starting time of an activity j, noted es
jt~ , is given by the forward algorithm:

{ }






∅=
∅≠∈+

=
j

jjj
es

ies
j

P

PPidt
t

 if  0

 if |
~~max~ 1 ∀ j ∈ N (1)

Then, one obtains the earliest finish time of the project T ef = { }Njt ef
j ∈|~max , where

1
~~~

j
es
j

ef
j dtt += . It corresponds to the critical path length of the project when any resource

constraint applies. Denoting by T lf the latest finish time of the project, the latest finish time of
activity j is obtained by the following backward algorithm:

{ }






∅=

∅≠=+
= ∈

i
lf

i
lf
jj

ls
j

ls
j

Sjlf
i

ST

Stdtt
t i

 if  

 if ~~~|~min~ 1
∀ i ∈ N (2)

The interval [ lf
j

ef
j tt ~,~ ] represents the slack time of activity j, noted ,~

js  and it is obtained by

setting ef
j

lf
jj tts ~~~ −= . But the criticality of activity j becomes more or less uncertain according

to how the fuzzy intervals [ lf
j

ef
j tt ~,~ ] overlap. Within the CPM, an activity is considered critical

when the interval between the earliest finish time ef
jt and the latest finish time lf

jt of an activity j is

null. This is meaningless with imprecise durations. For this reason, [Dubois and Prade, 1988]
propose to define the latest finish time of the project Tlf independently in an imprecise
environment. But, following their approach, earlier activities would end-up being more uncertain
than their successors, cf. [Lorterapong, 1995]. When the activities have imprecise durations,
represented by fuzzy intervals, the traditional CPM algorithm is still good, if the operations of
addition, subtraction, maximization and minimization are replaced by their extensions to fuzzy
arguments.

So, representing the trapezoidal number lf
jt~  by ( lf

j
lf
j

lf
j

lf
j bmma ,,, ), the trapezoidal number of

the fuzzy duration 1
~

jd of activity j executed under mode 1 (the shortest mode must be selected for



CPM calculation) by ( d
j

d
j

d
j

d
j bmma 1111 ,,, ) and applying the fuzzy subtraction operation, one

obtains:

ls
jt  = ( d

j
lf
j

d
j

lf
j

d
j

lf
j

d
j

lf
j bbmmmmaa 1111 ,,, −−−− ) (3)

This time is valid if an only if the differences in (3) are non-negative, and

d
j

lf
j

d
j

lf
j mmmm 11 −≥− (4)

Usually, these conditions are more often satisfied for those activities at the end of the project
network but not for those activities at the beginning of the project network. In general, the

equation lf
jj

ls
j tdt ~~~

1 =+ in (2) must be approximate by the fuzzy equation lf
jj

ls
j tdt ~~~

1 ≅+ with

the additional restriction that 1
~~

j
ls
j dt + does not exceed lf

jt~ , cf. [Lorterapong, 1995], [Ramik and

Rommelfanger, 1995]. Then equation of the form (3) must be used when (4) is fulfilled where the
spreads are given by:

ls
jt  = ( ),0max(,,),,0max( 1111

d
j

lf
j

d
j

lf
j

d
j

lf
j

d
j

lf
j abmmmmba −−−− ) (5)

In the case

d
i

lf
i mm 1− < d

i
lf
i mm 1− (6)

we adopt the approximation proposed by [Ramik and Rommelfanger, 1995]. Equation (3) is then
evaluated by the following formula:

ls
jt  = )),()(,0(max( 111

d
j
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j

lf
j
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j

lf
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),0max(,, 111
d
j

lf
j

d
j

lf
j

d
j

lf
j bbmmmm −−− ) (7)

When condition (6) prevails and additionally lf
jb - d

jb 1< 0, then the extended sum

1
~~

j
ls
j dt + exceeds lf

jt~ on all membership levels α smaller than 1, if ls
jt is calculated according to

(7). If we want to avoid this optimism, [Ramik and Rommelfanger, 1995] propose the following
formula to calculate the latest starting times:

ls
jt~ = ( ls

j
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j
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j
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),0max( 11
lf
j

d
j
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j

lf
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j bbmmm −−−= (11)

),0max( 1
d
j

lf
j
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j bbb −= (12)

Note that the processing of availability time and due-date of each activity j can be introduced
within the previous algorithms (1) and (2).

 3. Fuzzy Multimode Resource-Constrained Project Scheduling Problem

Suppose the project (e.g. a COA) may require a set R of K renewable resources where each
resource type k ∈ R has a variable resource availability over the time horizon, denoted by ktQ .

Defining the zero-one decision variables xjmt equal to one if the activity j executed according to
the mode m is completed at the end of period t and zero otherwise, then Figure 5 formulates by
zero-one programming the Fuzzy Multimode Resource-Constrained Project Scheduling Problem
(FMRCPSP) with fuzzy activity durations. The corresponding notation is given in Table 1.

N Project activity set, N = {1, …, j, …, J}
Pj Predecessor set of activity j within the project graph G (N, P)
xjmt Decision variable equal to 1 if activity j executed in mode m is completed at period t

and o otherwise
djm Duration of mode m for activity j

ktQ Constraint given the amount of resources of type k available at period t

qjmk Amount of resources of type k  required by activity j executed under mode m

Table 1 - Notation of the FMRCPSP model
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Figure 5 - FMRCPSP model

The objective function (13) minimizes the project duration. This is obtains by scheduling the last
activity J as soon as possible. Constraint set (14) verifies that each activity j ∈ N is executed
according to only one execution mode m. Constraint set (15) specifies the precedence relation
between activities. Availability of renewable resources is verified by constraint set (16). The sum
of resources of each type k required by activities executed at period t must not exceed the amount
available ktQ . Constraint set (17) specifies the binary values of decision variables xjmt.

The solution of the FMRCPSP is a schedule determining the finish time, noted jF
~

, and the

selected mode m of each project activity j. The problem can be solved by one of the fuzzy zero-
one programming methods. However, because of the computational complexity of the problem in
real-world mission, these exact methods are restricted to small scheduling problems. So one
adopts approximate methods for solving these problems. Approximate methods subdivide mainly
between truncated exact methods, construction methods and improvement methods like Tabu
Search and Simulated Annealing. Up to now, most of the researches have been dedicated to
construction methods based on priority rule heuristics because of their low computational
complexity, cf. [Boctor, 1990], [Alvarez-Valdés, 1989], [Kolisch, 1995].

 4. Fuzzy project scheduling procedures

4.1 Scheduling schemes

Construction methods are characterized according to a scheduling scheme often referred as the
serial and the parallel approaches. The serial approach ranks all the project activities according to

their priority rule and it schedules each eligible activity j at a starting time, noted jS
~

, where

required resources are available. The finish time jF
~

of each activity j is then determined by the

relation:

jdSF s
jjmjj ∀+= ,

~~~

Here, an activity is considered eligible as soon as all its predecessors have been scheduled. The

starting time jS
~

of j is such than jjj PjFS ∈∀≥ ',
~~

' . Within the parallel method, eligible activities

considered at time t~  according to their respective priorities, but if an activity having a higher
priority can’t be scheduled due to resources unavailability, the next prioritized activity is
considered. If no more activity can be scheduled, the time t is advanced to the next period where
an activity in progress will terminate and release resources or where there is enough available
resources to schedule an eligible activity. Within the serial approach, the activity priorities remain
the same during the whole scheduling process while, within the parallel approach, eligible activity
priorities are reevaluated at the beginning of each stage.

4.2 Formulation of fuzzy priority rules

A lot of studies have been conducted to determine the relative efficiency of the priority rules used
within construction methods mainly for the single mode RCPS, see [Alvarez-Valdés, 1989],
[Boctor, 1990], [Davis and Patterson, 1975], [Kolisch, 1995]. For the multiple mode case, fewer



results are available. These researches try to identify the best priority rule according to the
privileged objective function. Priority rule definitions depend on the scheduling scheme retained.
And, depending on the priority rule calculation method, activity priorities may remain the same
even if the priority rule is applied within the parallel approach. But then, the resulting quality with
the application of parallel approach may be less. [Boctor, 1993] studied different priority rule
combinations for the MRCPSP. Selection of activities according to priority rules where
experimented with three mode selection rules: the shortest feasible mode (SFM), the least
criticality ratio or least critical resource (LCR) and the least resource proportion (LRP). Now, we
define activity selection priority rules on the basis of traditional ones and we applied them within
the construction methods considering fuzzy times. They are presented in Table 2.

In these definitions, an immediate candidate is an activity j which is schedulable if activity j’ is
scheduled to start at the considered period while the remaining work is defined as the sum of the
shortest possible durations of the activity j considered and all its successors

Priority name Priority symbol Priority Value

Minimum SLacK (SLK) time MIN SLK MIN SLK- t~

Latest Finish Time (LFT) MIN LFT MIN LFT- t~

Maximum number of immediate successors MAX NIS MAX |Sj|

Maximum remaining work MAX RWK MAX RWK j

Maximum processing time MAX PTM MAX jmd
~

Minimum processing time MIN PTM MIN 1
~

jd

Maximum number of immediate candidates MAX CAN MAX CAN

Table 2 - Activity selection priority rules

4.3 Parallel procedure with SFM heuristic

We propose to schedule activities according to the parallel scheme. Figure 6 gives the detailed
fuzzy parallel procedure proposed to schedule activities with fuzzy durations and multiple
execution modes. Table 3 gives the corresponding notation and definition.



N Project activity set, N = {1, …, j, …, J}
Pj Predecessor set of activity j within the project graph G (N, P)
t Actual calendar time, t ∈ [0, …, T] where T is the planning project horizon
C Set of completed activities at the actual calendar time
E Set of eligible activities. An activity j is eligible if at time t, all its predecessors are

completed and all the required resources are available to its execution for at least one

of its execution mode m for the duration jmd
~

X Set of active activities, e.g. those scheduled but not competed at the actual time

jF
~

Fuzzy finish time of activity j corresponding to the end of the period where its is

completed
Mj Mode set of activity j
ϕ Function giving the activity priority (ϕ j  =  ϕ ( j ) , ∀ j ∈ E)
Qkτ Renewable resources of type k available at period τ

Table 3 - Notation and definition of the fuzzy parallel procedure

1.  t~ := 0, C := ∅, X := ∅
2.  do

3. E := {j | j ∈ N, j ∉ C ∪ X, Pj ⊆ C, ∃ m ∈ Mj | qjmk ≤ Qkτ, ∀ k, τ = t~  + 1, …, t~ + jmd
~

}

4. Compute the priority ϕ (j), ∀ j ∈ E
5. Order E according to priorities ϕ j, j ∈ E
6. for each activity j ∈ E in sequence, do

7. if ∃ m ∈ Mj | (qjmk ≤ Qkτ, ∀ k, τ = t~  + 1, …, t~ + jmd
~

) then

8. find m ∈ Mj | jF
~

= min { t~ + jmd
~

| θ ≤ t, qjmk ≤ Qkτ, τ = t~ + 1, …, t + jmd
~

, ∀ k}

9. Qkτ := Qkτ - qjmk, τ = t~ + 1, …, jF
~

, ∀ k

10. X := X ∪ {j}
11. E := E \ {j}
12. end if
13. end do

14. θ
~

 := }{ jjmkjmk
 Ej 

MmkdttQq   ,  ,
~

  ~ ..., 1,  ~   ,  | min ∈∀∀++=≤
∈

ττ τ

15. t~  := min{min{ jF
~

 | j ∈ X }, θ
~

}

16. C := C ∪ {j | j ∈ X, jF
~

 = t~ }

17. X := X \ {j | j ∈ X, jF
~

= t~ }

18. while | C | < | N |

Figure 6 - Fuzzy parallel procedure with multiple modes

The procedure begins with the empty sets C and X at line 1. It iterates from lines 3 to 18 until all
activities are in the completed activity set C. The eligible activity set E is builds at each stage at



line 3. The priorities of eligible activities are computed at line 4 and these activities are sorted
according to their priorities at line 5. Then, the set E is processed at lines 6 to 13. Here, the rule
SFM (Shortest Feasible Mode) is applied at line 8 if there still exists at least one feasible mode. If
there is still a feasible mode at line 7 then line 8 determines the shortest mode and line 9 updates
the resource availability according to the selected mode m. The scheduled activity is added to the
set of active activities X at line 10 and it is removed from the set of eligible activities E at line 11.

At line 14, one determines the nearest period θ
~

 as the beginning period where there are enough
available resources to execute at least one of the remaining eligible activities. At line 15, the next

scheduling period is set to the minimum fuzzy time t~  between θ
~

 and the nearest finish time of
active activities. Completed activities at time t~  are added to the set C at line 16 and they are
removed from the set of active activities X at line 17.  Line 18 applies the ending criterion, e.g.
when all activities have been scheduled.

 5. Summary and conclusions

In this paper, we recall the approach used to model a COA according to the project
decomposition method. A COA having multiple execution modes and fuzzy activity durations is
then modeled as a Fuzzy Multiple Mode Resource-Constrained Project Scheduling Problem. To
take into account the uncertainty of activity durations encountered during mission execution,
these activity durations are represented by trapezoidal numbers of L-R-type. The Commander can
define different multiple mode COAs and the preferred COA can then be selected according to a
multi-criteria method. To evaluate the duration of a given multiple mode COA, a fuzzy parallel
construction method based on the parallel scheme and the SFM heuristic rule as activity selection
priority rule is proposed. The aim of the fuzzy parallel scheduling procedure proposed is to
evaluate the efficiency of different resource combinations to execute a specific COA. A statistical
experiment must be designed to assess the performance of the suggested fuzzy parallel method
and the priority rules described.

The overall evaluation methodology can be integrated into an interactive decision support system
where the Commander can select one COA on the basis of selected performance criteria and his
preferences.

The proposed fuzzy multiple mode resource-constrained project scheduling model may be
extended to consider fuzzy multiple objective functions simultaneously.
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