
Cover Page

Topics:
C2 Experimentation
Network-Centric Applications

Title:
An Experimental 3-D Framework to Support C2

Authors:
Dr. Hubert D. Callihan, POC
NetSpace Corporation
512 Ruby Street
Windber, PA 15963
United States of America
(814) 467-4537 Voice
(814) 467-4537 Fax
(814) 242-7282 Cell
callihan@netspacecorp.com

Mr. John A. Balash
NetSpace Corporation
11001 Belaire Drive
North Huntingdon, PA 15642
United States of America
(724) 446-7377 Voice
(724) 446-5559 Fax
 (412) 841-2980 Cell
balash@netspacecorp.com

7th International Command and Control Research Technology
Symposium

Enabling Synchronized Operations

An Experimental 3-D Framework to Support C2

Hubert D. Callihan
John A. Balash

NetSpace Corporation
11001 Belaire Drive

North Huntingdon, Pennsylvania 15642
United States of America

(724) 446-7377 Voice
(724) 446-5559 Fax

callihan@netspacecorp.com

Abstract

Applications that are hosted in a web framework realize many advantages: familiarity to the user,
captive environments, rapid development, mature toolsets, and reduced development time and
cost. More recently, applications based on web 3-D technologies are showing considerable
promise in C2. Because C2 applications tend to be very complex, casting them in a 3-D
framework simplifies them considerably due to unlimited rapid drill down, visual realism, and
the capacity to support C2 decision-making. We present an experimental scenario using a 3-D
web-based framework to show the broad capabilities of interactive 3-D to support C2. This
scenario addresses communication network infrastructure categories such as dynamic discovery
and configuration, device connectivity, network performance, and device performance in a live
demonstration. Although the domain of interest in this experiment targets network management
in particular, we will demonstrate the ease with which this framework can be extended to many
other domains of interest relevant to C2. The overall benefits realized will be shown as (1)
improved understandability through a variety of visual contexts, (2) improved decision-making
through manageable interfaces, (3) rapid application development using COTS tools integrated
into the framework, and (4) potential for multiple collaborators to cooperate in a shared 3-D
workspace.

1. Introduction

Previous papers have been presented in CCRP publications demonstrating the viability of a
three-dimensional interface to C2 scenarios [Gardner, et al. 1999, Callihan and Balash, 2001].
These interfaces were based on recent advances in web-based technologies, which have been
shown to hold considerable promise for domains of interest where a rapid, reliable, and timely
push of information is needed. Our immediate interest has been in extending the work previously
reported using 3-D web environments, integrated with the full suite of complementary web
technologies, to create a compelling visual environment to support the C2 process. We present a
new demonstration scenario as an experiment to show the efficacy of current work in connection
with prior results.

Command and Control has been widely studied and shares many of the same general character-
istics as commercial systems supporting varied decision-making capabilities. These commercial
systems include: (1) identification of the current state of the business climate, (2) using what we
know to compare it to some desirable profit direction, (3) decide what to do, and (4) take action
to realize the decision. Militarily, these features were reported earlier [Boyd, 1984, Orr, 1983,
Lawson, 1979, and others]. Lawson's Model was the basis for 3-D visualization and subsequent
drill-down [Callihan and Balash, 2001] through the phases of his C2 process including (1) sense,
(2) process, (3) compare, (4) decide, and (5) act. This same model is used in this paper to
demonstrate the features of an extended 3-D experimental framework to support C2.

2. Approach

Several items are important for web-centric C2 application development as previously reported
[Gardner, et al.].

• "Examine the use of web-centric technologies to rapidly prototype significant C2
applications. Many web components of varying degrees of complexity are available in
the public domain or, in the case of 3-D models, from the user’s own CAD, CAM or
similar archives.

• Determine the utility of web technology in solving remote collaboration problems; real
time data acquisition can be straightforwardly embedded.

• Produce an iterated prototype that can be extended quite easily rather than undergo
complete redesign; Complex hyperlink systems can be developed in man-weeks or man-
months.

• Make the software product easy for domain personnel to use; the “look-and-feel”
approximates that of popular business or office system software. Where possible, test
components in the field with military users.

• Produce a body of re-usable object components for new extensions and modifications;
tools for development, modification and maintenance are widely available."

Our use of web technologies enables rapid creation of HTML pages with 3-D content and server-
side components. As previously reported, the end user realizes four distinct benefits: (1) cross-
platform interoperability, (2) common browser-based user interfaces, (3) operational scalability
from a single user to the worldwide enterprise, and (4) platform scalability from laptop PCs to
high performance workstations [Gardner, et al.].

3. A Web-Based 3-D Framework for C2

A web-based application consists largely of digital content that includes linked HTML pages
with embedded 3-D content, images, audio, video, and 3-D objects. These elements can be
readily combined to depict portions of the C2 environment. Pages can contain behavioral scripts
that enable event handling, error capture, and animations. The addition of 3-D content provides
a window into a 3-D world of interest with no restrictions on size and detail. Objects can appear
disappear, and re-appear dynamically. Individual properties can be controlled by an external
source such as sensor input, GPS location, database updates, collaborative user interactions, etc.

In particular, multi-site 3-D collaboration can advantage the C2 decision process by portraying
the same scene but from different perspectives. In addition, applications using this type of 3-D
framework tend toward simplified maintenance, co-existence with legacy applications, and even
enhancement of these legacy applications. For example, nearly any database that contains
geometric or other visually related information can benefit greatly from this 3-D approach.

We define an experimental 3-D framework as a development environment that supports:

1. Rapid 3-D prototyping;
2. Unlimited extensibility;
3. Reusability of prototyped objects;
4. A rich set of event-based behaviors readily attachable to objects; and
5. Simplified integration with existing data sources.

3.1 Rapid Prototyping in 3-D

Rapid prototypes of 3-D applications are often not given much thought because of the time
required to develop realistic models of objects, code to bestow the objects with behaviors, and a
user interface that permits direct interaction within the 3-D environment. These capabilities have
typically been present in 3-D code libraries such as OpenGL, but the time required to develop
content is excessive when only a rapid prototype is needed. Characteristically, one can think of a
Rapid Prototype as a demonstration system, outfitted with many of the features of the ultimate
system, but able to be developed in a matter of weeks or even days. Most importantly, the rapid
prototype shows the target users elements of the graphical user interface (GUI) with limited
functionality. The GUI reveals how to navigate the system. It can be a requirement-gathering
tool useful for subdividing the problem space, and it can show possible user mechanisms to
support interaction.

Our experimental framework incorporates existing libraries of objects and behaviors. The
framework supports the assignment of attributes to common user interface widgets including 3-D
controls. Any multimedia controls such as audio, video, and animations can also be included.

Figure 1 Multi-Function Button Control. Shown is a typical button group that facilitates
introduction of new 3-D objects into the scene, toggling them, animating them, endowing them
with sound, providing context sensitive help, and allowing for a submenu. The panel can be
moved about the scene to minimize obscuring of other objects.

For example, a common multi-function button control, Figure 1, can be situated in the
environment to provide several capabilities. The control dynamically loads/unloads a
collection of thematic 3-D elements, such as a collection of maps or globes, that are referenced
as an http hyperlink, another 3-D world view, an HTML page, or any other mime-type
association. A second button group might load a set of nodes in a network and place them on the
map. A third button group might load the network connections between the nodes. Naturally,

"Label" in is a bitmap containing some text or icon associated with the corresponding
button group, such as maps, networks, or links. The other buttons enable help , toggling the

visibility of these items on and off , toggling any pre-defined audio, or sound effects,

associated with the objects , toggling pre-defined animations , and loading a submenu for

this button group. The button permits the button group to be dragged elsewhere on the screen
within the 3-D frame. All of these button groups are part of the 3-D GUI and do not move with
the 3-D items they control. Each group is an instantiation of the pre-defined button-group
template object with parameters to be set by the user. Therefore, the definition of these user
interface elements is fast and simple.

In short, these button groups control the handling of a collection of 3-D entities. They are
defined by associating URL references in simple text form. Pre-defined audio, video, and
animations are constructed at design time for each object to emphasize its features or attract the
user's attention to its current state. They are activated by the buttons, but can also be activated
by any event occurring within the scene, or from outside sensors, database changes, etc.

The objects that populate the scene can be virtually anything from simple geometry, text, to
complex representations of lifelike objects. They can be constructed using common CAD or
Visual Modeling software and exported to VRML 97 web format, which is standard. Mapping
textures to surfaces of objects is an uncomplicated way to gain perceptible realism without
extraordinary modeling detail. For example, in a control room example, computers might be
simple boxes or more detailed geometry with panels showing photographs of the real thing. The
3-D environment benefits from level-of-detail in the same way humans can perceive shapes and
colors from a distance. A human is able to distinguish considerable levels of detail (LOD) as the
distance to the object is reduced. The greatest benefit this computer representation of the LOD
phenomenon is improved performance when scenes are fairly complex, perhaps consisting of ½
million or more rendered polygons.

3.2 Event-Based Behaviors

For the majority of 3-D applications that may already be familiar to web enthusiasts, objects
have striking appearances with textures, animations, and perhaps some degree of user interaction
(rotate, pan, zoom). However, very few applications probe the capabilities that an event-driven
framework containing these objects can offer. Revisiting our network example once more, if a
link between two routers suddenly goes down, the virtual router in the scene flashes or in some
way draws attention to its state. Similarly, any link object associated with this router, which may
be as simple as a line or arc between two routers, may turn red, or it may flash. In contrast, if
this link is animating to portray movement of data from one router to the other, then the
animation would stop and perhaps flash red. It is fair to say that nearly any event, whether
emanating from a source within the scene, from user interaction, or from some outside sensor,
can be represented and portrayed realistically in this environment. In fact, the event mechanisms
are one of the key ingredients of the 3-D framework we discuss.

Although CAD systems and most visual modelers do an exceptionally good job of defining detail
on the objects themselves, they often do very little to aid the designer in establishing event

mechanisms that give the objects realistic functional and visual behaviors. Using a modeling
tool for creating behaviors on models or creating the appropriate event mechanisms using a
simple text editor accomplishes this goal.

3.3 Unlimited Extensibility

Early in our experience building such 3-D web applications, we found that the source files can
grow considerably large if they are to be realistic. Thousands of items in the scene are common.
Therefore, individual static scene construction often reaches its limits long before the details are
all included. Based on this experience, we adopt a dynamic loading/unloading scenario for our
3-D scenes that require objects and their behaviors to be self-contained and have their own well-
defined interfaces to send and receive events. This approach results in a considerably smaller
memory footprint for typical application frameworks, decreased loading times, and faster overall
performance on even mediocre PC platforms. Our framework exploits this dynamic capability
and results in a very manageable scenario for even large applications, since most do not require
all objects and data to be visible at one time. If a large amount of data is shown in one view, the
user is often confused when trying to navigate and interpret it.

We claim the framework has infinite extensibility, since there are virtually no limits to the
number of URL links and pages that can be loaded/unloaded separately. The user understands
that he must manage this activity to achieve higher performance and views that are interpretable
and useful.

3.4 Reusability of Objects

One of the real benefits of object templates, such as the button groups we described earlier, is
that they can be created once and instanced forever. Changes to the object template immediately
filters down to the applications using it. Moreover, they can be the basis for building other
objects with the same or additional behaviors (inheritance). Although the software regimen for
developing these objects is analogous to object-oriented development, it has neither been
formalized in this 3-D context nor enforced by any of the current web development tools,
including this 3-D framework. Developers of 3-D frameworks like this would benefit enor-
mously from formalization of this 3-D content development process and creation of tools that
enforce it.

Our notion of reusability is aimed primarily at significant reduction in time that results from
instancing prototype template objects repeatedly. They are simply 3-D black box components
with a well-defined control interface. Instantiation of an object consists of declaring an instance
of the prototype, defining the interface parameters and using ROUTEs to wire events between
objects thereby permitting the object to send and receive events across its interface.

For the button group presented earlier, this interface is defined as shown in Figure 2. The field
parameters are treated as local hidden parameters in the interface that are defined once when the
instance is declared. The eventIn parameter declares events receivable by the interface from a
similarly typed eventOut parameter of another object. The eventOut declares an event that is

generated by the instanced object and sent to objects with a compatible eventIn interface
parameter. This same eventOut can be fanned out to other eventIn events on receiving objects.

PROTO loaderButton [
field SFVec3f buttonSizeWHD 2 0.8 0.8 # width, height, and depth of the button group
field SFVec3f translation 0 0 0 # location of button group on the screen
field MFString texture [] # bitmap image for Label button, here:
field MFString url [] # URL for group of objects to be loaded
field SFInt32 myIndex -1 # index number to serve as identifier for this group
field SFString statusLine "" # text message displayed when hovering over

field MFString helpUrl [] # URL for Help file when clicked
field MFString audioUrl [] # URL for loading audio (wav, au, mpeg, etc),
eventIn SFBool isVisible # event input to tell group the status of group visibility
eventOut MFString url_changed # event output reflecting current URL for the group

eventOut SFBool setVisibility # event output that toggles visibility using

eventOut SFBool playAudio # event output to toggle audio using

eventOut SFBool setBlink # event output to toggle animation using
eventOut SFInt32 showMyIndex # event output to show index identifier

eventOut SFBool showSubMenu # event output to toggle submenu using
eventOut SFInt32 removeUrlIndex # event output to unload this index item from memory

]

Figure 2 Button Prototype Interface. Implementation details of the prototype are not shown since instantiating this
prototype does not require knowledge beyond the interface parameters. A parameter can be a field, an exposedField,
an eventIn, or an eventOut. The SF or MF prefix on a type determines whether it is single-valued or multiple-
valued, respectively. The # precedes optional comments on the line that describe the purpose of the parameter. For
further information on VRML, please see one of the VRML references listed in the bibliography [Marrin and
Campbell, 1997, Hartman and Wernecke, 1997, Ames et al., 1997].

The SFVec3f indicates a field type consisting of a single ordered triple (3-D vector). SFString is
another data type that indicates a single-valued string of arbitrary length. The SF prefix indicates
a single-valued field, whereas MF indicates a multiple-valued field. MFString indicates multiple
strings of arbitrary length such as field MFString Book [“Title”, “Author”, “Date”]. SFInt32
indicates a single 32-bit integer. SFBool indicates a single-valued Boolean (true or false value).
Values to the right of field names are set as default values, which are used if the field is not
declared when instantiated. Parameters declared using the MF prefix are treated as variable-
length dynamic arrays using indexing similar to most programming languages, e.g. Book[0],
Book[1], and Book[2] referring to “Title”, “Author”, and “Date”, respectively.

These parameters operate similarly to those in a standard windowing system, but have the
advantage of being associated with 3-D objects in the framework space.

Instantiating such an object can be accomplished using a statement of the form shown in Figure
3. Here a button group named Button1 is DEFined as an instance of the loaderButton prototype
object. Vectors are triples of numbers with or without decimals, and strings are UTF-8 char-
acters in double quotes in the case of SFString. For MFString, either double quotes or brackets
[] with multiple double quoted items inside if there is more than one string contained in the

MFString. In a URL declaration, these multiple strings specify the order the items should be
searched if the left-most URL cannot be found.

DEF Button1 loaderButton {
statusLine "Click to Load/Unload Items"
myIndex 1
buttonSizeWHD 2 0.8 0.8
translation 0 -15.0 0.8
url "g-maps.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-maps.jpg", "/demo/images/icons/g-maps.jpg"]

}

Figure 3 Instantiation of a Button. The details of the button implementation are hidden when a prototype is
instantiated. We define essential parameters determining the button’s appearance and behavior when clicked or
hovered. Once instanced, it is a simple matter to change the location parameters to see the effect on the screen. See
Figure 2 for an explanation of their meanings. Note also that the default field values in Figure 2 are used if they are
not specified in this instance.

Although this may seem a bit technical at the outset, its value becomes evident when instant-
iating several of these button groups as shown in the screen shot in Figure 4. The buttons appear
in light blue above the 3-D controls in light blue that are part of the 3-D viewer plugin for
Internet Explorer. This 3-D viewer shown is the newly released Pivoron Player plug-in from
Nexternet, Inc. [See Section 5 for software details], which is an updated and enhanced revision
of the very popular CosmoPlayer plug-in from Cosmo Software, Inc. The decoration at the top
of the screen is part of Microsoft Internet Explorer (MSIE). The NetSpace logo in the upper
right corner is an instantiation of yet another prototype.

Clicking on the maps button loads a variety of maps and a submenu to toggle between
them. These maps may be unloaded from memory by clicking the maps button again. The

visibility button turns the maps on and off, while still retaining them in memory.

The button groups in the row in Figure 4 were instantiated using the declarations shown in

Figure 5 below. No audio or animations are defined for the buttons in this example. The
translation parameter locates the button group on the screen in a “heads up” context (HUD). For
our example, 0 -15 0 locates the group at x = 0 (on screen left), y = -15 (15 down on y), and z =
0 (at 0 depth into the screen). Each group is placed along increments of 5 along x, at the same y
of -15, and the same depth of z = 0. Placing these groups at the top of the screen would mean
changing the y value to +15 for each group. Here, y = 0 centers the icons horizontally at mid-
screen. Keep in mind that changing z will move the icon further into the screen or closer to you.
If too close, it may disappear since it is clipped from the viewing frustum of the screen. The
buttonSizeWHD parameter determines the total width, height, and depth of the button group
along x and y, where z represents the button depth along z.

Figure 4 Framework Showing Buttons for C2 Processes. The panel of icons showing , , , ,
, and specify the choice for Lawson’s C2 processes [Lawson, 1979]. Below this row of icons is the

panel of icons for controlling the scene in 3-D: Go , Slide , Tilt , Rotate , Pan ,

Zoom , Undo Move , and Seek .

3.5 An Example… Simplified Legacy Integration

In one of our development efforts, we were asked to synthesize collections of disparate legacy
network data contained in a plethora of files and databases. We decided to portray the merged
results by showing a 3-D representation. The justification lay in the fact that we had no idea how
complex the graphic rendering would become, and portraying it as a set of 2-D windows would
soon fall short of our objective… to show as much rendered data objects “through a portal
window into the 3-D space” as possible. Equally important, we needed to present the results to a
non-technical audience.

DEF Button1 loaderButton { statusLine "Click to Load/Unload Map Items"
myIndex 1
buttonSizeWHD 2 0.8 0.8
translation 0 -15 0
url "g-maps.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-maps.jpg", "/demo/images/icons/g-maps.jpg"] }

DEF Button2 loaderButton { statusLine "Click to Load/Unload Sensing Items"
buttonSizeWHD 2 0.8 0.8
myIndex 2
translation 5 -15 0
url "g-demonodes2d.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-sense.jpg", "/demo/images/icons/g-sense.jpg"] }

DEF Button3 loaderButton { statusLine "Click to Load/Unload Processing Items"
buttonSizeWHD 2 0.8 0.8
myIndex 3
translation 10 -15 0
url "g-demolinks2d.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-process.jpg", "/demo/images/icons/g-process.jpg"] }

DEF Button4 loaderButton { statusLine "Click to Load/Unload Comparison Items"
buttonSizeWHD 2 0.8 0.8
myIndex 4
translation 15 -15 0
url "g-compare2d.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-compare.jpg", "/demo/images/icons/g-compare.jpg"] }

DEF Button5 loaderButton { statusLine "Click to Load/Unload Decision Items"
buttonSizeWHD 2 0.8 0.8
myIndex 5
translation 20 -15 0
url "g-decide2d.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-decide.jpg", "/demo/images/icons/g-decide.jpg"] }

DEF Button6 loaderButton { statusLine "Click to Load/Unload Action Items"
buttonSizeWHD 2 0.8 0.8
myIndex 6
translation 25 -15 0
url "g-act2d.wrl"
helpUrl "g-help-icons.html#controlicon"
texture ["images/icons/g-act.jpg", "/demo/images/icons/g-act.jpg"] }

Figure 5 Instantiations of Multiple Buttons. Here six separate button groups are instanced horizontally at the
bottom of the screen (y = -15) in the translation parameter. The x-values for each are chosen by trial and error to
center the icon group along the bottom. The translation z-value for each button group is set to the default value 0
(recommended).

Figure 6. A 3-D representation of a network. Here we show a discovered network at a NetSpace office. The
starting node (DirecWay satellite node) was used to seed the process. Other node connectivity was determined by
instancing a nodeWithLink prototype showing the node’s characteristics along with its connectivity to a parent node.
Hubs show connectivity to a parent node (another hub in most cases) and all children nodes since they are data
communication equipment (DCE). A node with no children is data terminal equipment (DTE). Hovering over any
node or link shows its general characteristics. Clicking on a node or link shows another window with greater detail
about that node or link. The location of objects in the descending tree used a simple algorithm that fanned out the
children along a circle, one unit lower on y than itself.

The data were contained in text files and SQL databases. During the past several years, these
vast tables of data were consolidated into extensive technical reports that required considerable
time to read, parse, and assimilate on a weekly basis. We defined an ambitious goal to extract
significant network performance and network availability information from these report sources
and present it in very simplified form using a 3-D approach. The result was a comprehensible
global view with drill-down capabilities to exploit more and more detail in the data required by

various levels from top-level management to technical personnel. Recently we have added
capability to permit users to select arbitrary data sets and to dynamically discover network
resources using pings and SNMP queries to build a 3-D representation of nodes and links on the
fly. Although it can be time-consuming to discover nodes and links for large networks, it is
impressive to see several hundred or even thousands of nodes and links rendered dynamically. A
simplified version of this capability is shown in Figure 6 applied to a NetSpace office network.

Together, the collection of resources required to build a dynamic 3-D interface using current web
technologies constitutes a viable 3-D framework for development in a number of application
domains where data complexity is an issue and rendering of the data lends itself to 3-D.

4. Lawson’s C2 Process Model

The work we present here reflects a transfer of the 3-D framework notions to the C2 world. The
remainder of this paper addresses the use of our prototype 3-D framework to support Lawson's
Model cited earlier as taken from Allard's Command and Control and the Common Defense as
shown in Figure 7, Lawson's Command and Control Model [Allard, 1966]. We have extended
the work presented earlier that suggested the use of Lawson’s Model [Lawson, 1979].

Environment

Own
Forces

Sense

Process

Compare

Decide

Act

Desired
State

Status

Source: AFCEA Press

Figure 7 Lawson's Command and Control Model [Lawson, 1979].

The 3-D framework is used to show how the five major C2 activities could be incorporated and
made to respond to drill-down requests using objects that are common in C2. Figure 4 shows
how a high-level view of these activities could be presented. Naturally, the drill-down process
expects to link to information that is presentable in a web browser context.

We have added a capability to the displays where a variety of maps may be toggled. Data
registered on a map is often meaningful to the user. Although not shown here, we have the
option of displaying all data on a 3-D globe complete with registration at GPS coordinates. This
is quite valuable for representing space, ground, and undersea assets. Using the event-handling
capability of this 3-D framework, nearly any data can be used to drive the actions of the 3-D

objects to portray a realistic scene in near real time. These features provide a compelling way to
use this framework to represent Lawson's five C2 processes. In Figure 4, the objects have
multiple attributes and are used as hyperlinks to drill down to further detail. Hovering the cursor
over a node or link will display general information about the object. These virtual objects could
easily represent military assets shown with a realistic 3-D icon. In any event, these visual icons
are cues to the user to probe for further details.

Experience has shown that the more detail and sizeable the information, the greater the utility
this 3-D framework has to account for the objects and portray their characteristics and state.
Because zoom, pan, and rotate within an infinite digital space are supported along with
additional dynamic icons, one can include many additional objects representing a C2 process
space. Unlike the desktop metaphor common in 2-D applications of the past, the 3-D window
into the domain space gives rise to an information space appropriate as a C2 space metaphor.

5. Software Requirements for the 3-D Framework

Web browsers are freely downloadable and upgradeable from these sources.

Microsoft's Internet Explorer for PCs and MACs at http://www.microsoft.com
Netscape's Navigator/Communicator at http://home.netscape.com

3-D browser plug-ins and add-ons are freely available for Windows PCs from these sites.

Nexternet’s Pivoron Player VRML plug-in for IE Explorer 4.0+ at
http://www.nexternet.com/download/

Nexternet’s Pivoron Player VRML plug-in for Netscape Navigator at
http://www.nexternet.com/download/

CAI's CosmoPlayer 2.1.1 VRML add-on for IE Explorer 4.0+ at
http://www.cosmosoftware.com

CAI's CosmoPlayer 2.1.1 VRML plug-in for Netscape Navigator at
http://www.cosmosoftware.com

VRML Tutorial (Excellent). http://www.virtualrealms.com.au/vrml/tute01/tutorial.htm
VRMLPad 1.3 Context-Sensitive Editor, Parallelgraphics, Inc.

http://www.parallelgraphics.com/products/vrmlpad/

Additional flexibility with dynamic content can be provided through the use of the Extensible
Markup Language (XML) that significantly enhances HTML-like tagging for broad use. Our
current work centers on providing a capability to directly import XML data into the 3-D
framework. Coupled with the next generation of web 3-D known as X3D, XML promises to
ease the development of data-driven 3-D frameworks even more. More information on XML
and X3D is available from these sites: http://www.xml.com, and http://www.web3d.org.

6. Conclusion

The use of 3-D frameworks in a C2 environment is still in its infancy. In this paper, we have
discussed a candidate 3-D framework in the context of C2. We have also given examples

extending previous work. We have built bodies of digital objects and event scenarios that
facilitate rapid population and extension of these frameworks. This technology has the potential
to deliver a unifying and simplifying effect on decision making within C2. We anticipate further
work will continue to build out this C2 content toward a comprehensive and useable decision-
support application.

7. References

[Allard, 1966] Allard, Kenneth. "Command, Control, and the Common Defense, 2nd Ed."
National Defense University, Institute for National Strategic Studies, October 1966, pp154-163.

[Boyd, 1984] Boyd, John R. "Organic Design for Command and Control," briefing paper,
March 1984, pp5, 32-35.

[Gardner et al., 1999] Gardner, S., Callihan, H., Balash, J. and Saverino, M. "Exploitation of
Web Technologies for C2," 5th ICCRTS, 1999.

[Lawson, 1979] Lawson, Joel S. "Naval Tactical C3 Architecture, 1985-1995." Signal 33:10
(Aug 1979), pp71-72.

[Orr, 1983] Orr, Maj. George E. Combat Operations C3I: Fundamentals and Interactions
(Maxwell Air Force Base, AL: Air Univ. Press, 1983), pp 23-27.

[Callihan and Balash, 2001] Callihan, H. D. and Balash, J. A. “A 3-D Framework for C2 Based
on Web Technologies,” 2001 6th ICCRTS, Annapolis MD, June 2001.

[Marrin and Campbell, 1997] Marrin, C. and Campbell, B. Teach Yourself VRML in 21 Days.
Sams.net, Indianapolis, IN, 1997.

[Hartman and Wernecke, 1997] Hartman, J. and Wernecke, J. The VRML 2.0 Handbook.
Addison-Wesley Developers Press, Reading, MA, July, 1997.

[Ames et al., 1977] Ames, A., Nadeau, D. and Moreland, J. The VRML 2.0 Sourcebook. Wiley,
New York, 1997.

