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Abstract
Correctly identifying tracks is a difficult but important capability for US Navy

ships and aircraft.  It is difficult because of the inherent uncertainty, complexity, and
short timelines involved.  It is important because the price of failure is missed or civilian
engagements and fratricide.  Today, Navy ships and aircraft primarily use an If-Then rule
based system evaluating radar and IFF information to perform Combat Identification
(CID).  To cope with the uncertainty and complexity of CID, Bayesian networks have
been suggested to integrate Radar, IFF, and other lower quality sources to perform the
Identification determination.  The goal of this project show that Bayesian Networks can
be used to support CID investment decisions.  Two investments, a new sensor and good
maintenance were compared in a difficult CID scenario in four different environments.

1.0 Introduction
Correctly identifying tracks is a difficult but important capability for US Navy

ships and aircraft.  Combat Identification (CID) is difficult because of the inherent
uncertainty, complexity, and short timelines involved.  There is uncertainty in associating
evidence to an object, uncertainty in association between evidence and identity,
classification and intention. CID is complex because of the number of objects, their
interactions, the variety of observations of these objects, and the concern that an enemy
might try to deliberately to confuse or deceive your sensors.  In many cases the time to
decide on whether to shoot an object and by implication the time to perform a combat
identification is very short.

CID is important because the price of failure is missed or civilian engagements
and fratricide. In 1994, the US shot down two of there US Army helicopters and killed 26
people. [1] In 1988, the USS Vincennes shot down a commercial airliner. [2] In 1987,
two missiles fired from aircraft hit the USS Stark because they did not shoot the aircraft
or incoming missiles. [3].

Today, Navy ships and aircraft primarily use an If-Then rule based system
evaluating radar and IFF information to perform Combat Identification (CID).  To cope
with the uncertainty and complexity of CID, Bayesian networks have been suggested to
integrate Radar, IFF, and other lower quality information sources to perform the CID.

The goal of this project show that the Bayesian Networks can be used to support
CID investment decisions.  Two investments, a new sensor and good maintenance were
compared in a difficult CID scenario in four different environments.  The usefulness of
the two investments was compared examining the:

• Separation in probability that the object is hostile, neutral, or friendly and
• Separation in the utility between the decision to shoot or not to shoot.

Section 2 of this paper provides background information on combat identification,
decision analysis, Bayesian networks, and knowledge engineering.  Section 3 describes
the project while section 4 provides the results.  Section 5 is an evaluation of the results.
Section 6 summarizes the key results of the paper.
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2.0 Background
This project applies the techniques from decision analysis and Bayesian networks to

address the challenges of combat identification. The CID network was developed using
good knowledge engineering practices. An introduction to these topics is provided in this
section.

2.1 Combat Identification
Combat Identification is the process of assigning an identity and classification to each

object detected by the host platform.  As shown in Figure (1), identity has seven possible
states. [4] The three most important for this project are hostile, neutral, and friendly.
Classification is more complex.  It describes where the object is found - air, surface, etc.
It also describes the type of object at different levels of detail from platform type - like
fighter - all the way down to each individual aircraft.  Nationality tells for which country
the aircraft flies.  Finally, mission or intent provides information on what the object is
doing such as combat air patrol (CAP) or strike.  Accurately determining this information
is important, as it is a key input to the various decisions including:

• Whether to collect more information about the object,
• Whether to stop the object from performing it’s mission, and
• How best to stop the object from performing it’s mission.
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Friend Neutral Hostile
Assumed Friend Pending Suspect

Unknown

Category Platform Type Class Unit Nationality Activity
Mission

Classification
Taxonomic Identifier

Air Fighter F-14 F-14D F101           US                    CAP
Surface Combatant       Destroyer Burke DDG61       US          Air Defense
Subsurface      Submarine       Attack Trafalgar N/S             UK          Patrol
Land SAM     SA-2 N/S N/S            Russia    Active
Space TBM Extended rng    No Dong N/S             N Korean          BM/12

COMBAT ID TAXONOMY

ID

CLASSIFICATION

Figure 1 Combat ID Taxonomy

Figure (2) shows why it is important to perform CID correctly [5].  If an object is
hostile and you don’t destroy it ships & crews are lost and eventually wars are lost.  But
if the object is friendly or neutral and you destroy it then lives are lost and wars can be
started.
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Algorithms to automatically assign an ID date back to when the Navy started putting
computers in ships  [6].  The first efforts were coded directly into the software and were
hard to adapt to different situations.  In the 1980’s, rule based expert systems were
introduced.  These systems were more flexible because the rules could be adapted to
changing situations.  These systems tended to use only high quality evidence like
position, velocity, and the results of Identification Friend or Foe (IFF) interrogations.
Operations and exercise noted problems with these systems and the US Navy has
thoroughly explored the causes of these problems and suggested solutions. [4], [5], [7],
[8], [9], [10], [11]
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Figure 2 Importance of Effective CID

 The Combat ID Functional Allocation Working Group suggested an architecture,
shown in figure (3) to integrate all information including high quality data, like radar and
IFF, and lower quality data like Electronic Support (think radar detectors) and
intelligence information.  [8] In July of 2001, the Office of Naval Research released a
broad agency announcement (BAA) for composite combat identification to prototype
systems that could perform this data fusion shown in Figure (4). [4] One of the methods
suggested in the BAA was the use of Bayesian Networks.
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Combat ID Architecture
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Figure 3 Combat ID Architecture
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2.2 Decision Analysis
Clemen’s book “Making Hard Decisions” [13] is an excellent introduction to

decision analysis.  Some of the key ideas from this text and the course notes on decision
theory relevant to this project [12] are that the interaction of decision options and states
of the world are consequences.  For simple decision situations this interaction can be
recorded in a table with options on one axis and possible states of the world as the other.
Each cell in the table can be assigned a utility score with 0 for the least desirable
consequence and 1 for the most desirable consequence.  With these two cells as anchors
all the other cells can be assigned a based on preference for the consequence compared to
these best and worst consequence.  From this table an expected utility can be calculated
for each option.  The best option is the one that has the maximum expected utility.  This
is represented mathematically in Equation (1).
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Equation 1

2.3 Bayesian Networks
Jensen [14], defines a Bayesian Network as consisting of the following:
• A set of variables and a set of directed edges between variables
• Each variable has a finite set of mutually exclusive states.
• The variables together with the directed edges form a directed acyclic graph

(DAG)
• To each variable A with parents, B1, … Bn, there is attached the potential table

P(A| B1, …, Bn)
These graphical models are effective and efficient method of dealing with uncertainty.
An example Bayesian network is shown in figure (6).  The standard problem involving a
Bayesian network is given evidence calculate the probability of various states of
hypothesis acting through various mediating variables.  Bayesian networks are easy to
create/ modify.  These networks can mix historical, modeling and simulation, and expert
judgment.  The structure and parameters can learned from data.  They offer several
advantages over standard statistical techniques because they make use of the conditional
independence to reduce the number of parameters to estimate. They are easy to compute.
Efficient algorithms were developed in the late 1980’s for computing probabilities.  The
can accommodate missing data.  There are fewer parameters to estimate than standard
statistical model.  These graphical models are more understandable than neural nets.
Algorithms also exist to calculate the most probable explanation and consistency of
evidence.
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WHAT IS A BAYESIAN NETWORK?
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Bayesian Network Consists of:
•Variables (Evidence, Mediating, Hypothesis)
•States
•Directed Connections
•Conditional Probabilities

955Hostile

1090Friendly

9010Neutral

FalseTrueID/Comms

Standard Problem: 
Probability of Hypothesis given Evidence P(H|E)

Figure 5 Bayesian Network

2.4 Knowledge Engineering
To create effective Bayesian networks good knowledge engineering is required.

[15] Knowledge engineering is the process of eliciting, modeling and evaluating
knowledge from an expert so that it can be used to support decision-makers.

The first step in the knowledge elicitation process is to define the goal of the
modeling process. The next step is to select possible nodes in the network.  These nodes
will be evidence, hypothesis or mitigating variables. The third step is to list the possible
states for each node.  The fourth step is to establish the connection between nodes. These
connections can be created by experts or learned from the data.  Finally probability and
conditional probabilities need to be elicited or learned.

Once an initial model is developed it needs to be evaluated before it can be used.
First the nodes need to be examined.  Are all the evidence and hypothesis nodes present?
Have you minimized the number of mediating variable to support calculation and
explanation?  Next examine the states of each remaining node.  Are the states mutually
exclusive and collectively exhaustive?  Have you minimized the number of states for
each node looking for opportunity to merge states?  Is it clear how you would select a
state for each node?  Finally, examine the connections between nodes.  Do the
connections correctly model conditional independence?  Have you minimized the number
of multiply connect nodes since these significantly increase computation time?  These
steps are summarized in Figure 6.
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Elicit and Validate BN Components Using Existing Tools  

Figure 6 Developing and Evaluated Bayesian Networks

3.0 Project Description
For this project, we implemented a combat ID Bayesian network to evaluate two

investments. One investment was to perform good sensor and database maintenance
policies and the other investment was to integrate a new sensor but not perform good
maintenance on the sensors.

This project builds on an earlier effort [16], [17] comparing different probabilistic
approaches to performing combat identification.  We reused the deliberately ambiguous
scenario from the previous project.  In this operational scenario a ship is assigned as
battle group screen and has confirmed that it’s radar, communication, IFF, ES equipment
is working.  Friendly aircraft are returning from a strike mission with some aircraft
reporting damage.  A new aircraft detected headed towards battle group but the ship has
no IFF, no communication, and no ES from the aircraft.  The aircraft is in a return to
force corridor flying at 675 knots.  The ships Commanding Officer has to decide whether
to shoot the aircraft.  To help make this decision a decision table is created as figure 7
showing the consequence of each combination of action and possible identity.  A utility
for each consequence is assigned with a utility of 0 for shooting a friendly or commercial
aircraft and a utility of 1 for shooting a hostile aircraft.

In order to increase the robustness of this scenario the scenario is evaluated in
different environments described in figure 9.  Traditionally, different scenarios would be
strung together to form a design reference mission for evaluation.  The drawback is that
these scenarios are all from the same future and the utility may be different futures.  The
echoes the criticism that we are always fighting the last war and are surprised. Scenario
Analysis has been used for many years in business to select make decisions that are
robust in different futures.  Four or five scenarios are drawn from different futures and
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policies are evaluated in each of these futures.  In the CID domain the different futures
are distinguished by the ability to discriminate between hostile and friendly tracks on one
axis and hostile and neutral tracks along a perpendicular axis.
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Figure 7 Utility Evaluation
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4.0 Results
For this project we created and evaluated a Bayesian Network using the computer
program Netica shown in figures 10 and 11.
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GOOD MAINTENANCE INVESTMENT
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Figure 9 Good Maintenance Bayesian Network
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NEW SENSOR INVESTMENT
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Figure 10 New Sensor Bayesian Network
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4.1 Model Evaluation
Model evaluation consists of four steps – Node Evaluation, State Evaluation,

Network Evaluation, and Probability Evaluation.
The first step was node evaluation. The nodes either are either evidence nodes or

hypothesis nodes.  The only mediating node is classification.  It is needed since it
represents the actual track

State Evaluation is next.  Once node appropriateness was evaluated the states of
each node was examined.  The states of each node were deemed to be mutually exclusive
and collectively exhaustive.  Some of the nodes had their states combined like the IFF
node had the garbled and no reply merged and the RSM and EW node would have many
more states in a deployed that are collected in the ‘other’ state.  Each state also passes the
clarity test in that it is possible to unambiguously assign a state to each node.

The third step in the model evaluation was the network evaluation – do the links
between the nodes make sense.  The graph depicts two nodes that D-separate the graph.
If you know the identity then you it doesn’t matter to evaluating classification whether
you also know the state of the intel, IFF or comms nodes.  Similarly if you know the state
of classification it doesn’t matter in evaluating identity whether you also know the states
of the EW, RSM, and Kinematics node.  This network is also singularly connected easing
network evaluation.  This network properly reflects causal relationships since the
classification causes particular identities and the identity causes the IFF reply as
examples

 Finally an assessment was made on how the probabilities would be assigned to
each parent node – in this case classification.  Order of battle information for each region
is suggested as a way to assign the probabilities for this network.  This would augmented
by informed expert judgment for the new sensor added.

4.2 Performance Evaluation
Table 1 provides the contribution of the new sensor and table 2 provides the

contribution good sensor maintenance.  For the new sensor investment the performance
of the IFF, Comms, Intel, and EW nodes were degraded.  The crystal ball environment
was the reference environment.  For “Wolves in the Fold” and “Foggy Day” environment
the ES the degraded making it more likely that commercial and hostile forces would be
confused. For “Dancing in the Dark” and “Foggy Day” environment the IFF and Comms
nodes were degraded.  Table 3 compares the two investments.  In this scenario, the
preferred investment is to integrate the new sensor.
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Table 1 New Sensor Results
Environment P(H|E) P(N|E) P(F|E) U(S) U(DS)

Wolves in the Fold 72 25 2 72 14
Crystal Ball 79 18 2 79 10
Dancing in the Dark 53 28 19 53 24
Foggy Day 53 28 19 53 24

AVERAGE 64 25 11 64 18

Table Legend:
P(H|E) Probability Object Is Hostile Given Evidence
P(N|E) Probability Object Is Neutral Given Evidence
P(F|E) Probability Object Is Friendly Given Evidence
U(S) Utility of Shoot Decision
U(DS) Utility of Don’t Shoot Decision

Table 2 Good Maintenance Results
Environment P(H|E) P(N|E) P(F|E) U(S) U(DS)

Wolves in the Fold 55 42 3 55 20
Crystal Ball 55 42 3 5 20
Dancing in the Dark 42 46 11 42 29
Foggy Day 42 46 11 42 29

AVERAGE 49 44 7 36 25

Table 3 Comparison Of Investments
INVESTMENT U(S) U(DS) DIFF

Good Maintenance 36 25 12

New Sensor 64 18 46

5.0 Summary
In this paper the background necessary to develop a Bayesian Network to perform

CID was provide.  Two CID investments were compared using a Bayesian network.  For
the deliberately ambiguous scenario the contribution measured as the difference in the
utility between shooting and not shooting was compared and integrating a new sensor
was preferred.
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