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Abstract

Maneuver tracking is complicated because radar cannot directly measure target acceleration.
Radar measures a target’s range and bearing, and its radial velocity with respect to radar
position.  Tracking algorithms use radial velocity to associate radar reports to tracks, but not to
update track state estimates.  In this paper, a new statistic of centripetal acceleration based on the
radial velocity measurement is developed.  A tracker using this statistic is developed and tested
via simulation against three other tracking algorithms.  Simulation results show that the new
tracker outperforms trackers with switched noise levels and a two mode interacting multiple
model.

1. Introduction

The radar target tracking process involves measurement, association, and filtering.  Radar
measures target range and bearing.  Some radars, using the Doppler shift of the returned signal,
also measure target velocity or range rate along the line extending from the radar to the target.
The radial velocity measurement kr&  is frequently used to associate contacts to existing tracks

[Kameda et al., 2002].  It is not used to update track state estimates.  Trackers that ignore kr&

during the filtering phase are not using all the available information about the track state.  The
reason is simple: radial velocity is non-monotonic with respect to the state space, and so highly
nonlinear that the usual techniques for handling nonlinear measurements, like the Extended
Kalman Filter (EKF), fail to provide satisfactory results.

Multisensor, multitarget data fusion systems (MMDFs) use filtered and unfiltered sensor data
from radar and other sensors to produce situational information.  Some sensors provide unfiltered
reports that are associated with other reports and tracks.  Some sensors generate tracks using only
their own data.  MMDFs associate these tracks to other tracks in the system.  Good tracking
algorithms, especially those that track maneuvers well, increase the chance of correct association
and overall situation awareness.

Maneuver tracking is an important and particularly difficult task.  The maneuver must be
detected, then the track filter must respond appropriately.  Interacting Multiple Model (IMM)
filters, input estimation, and switched noise level filters [Schutz, et al., 1999] are used to track
maneuvering targets.  IMMs have two or more filters, each modeling a different maneuver.  The



filters run independently, and their outputs are combined as a weighted sum, where the weights
are proportional to the relative likelihoods that each mode best represents the true target
behavior.  For example, the two mode IMM in [Bar-Shalom and Li, 1995] has a uniform motion,
low noise model and a turning, high noise model.  Input estimation techniques [Lee and Tahk,
1999] monitor the position measurement error sequence and estimate the accelerations causing a
maneuver.  The estimates are then used to project the target forward in time.  Switched noise
level trackers [Schutz, et al., 1999] monitor the position measurement error sequence and, based
on statistical trend and threshold tests, choose between high and low noise levels.  Thus, the
position measurements are used twice: once to detect or estimate a maneuver, then again to
update the state estimate.

None of the usual algorithms for tracking in two or three dimensions use kr&  to filter the state

estimate.  A range only tracker [Ramachandra, 1993], with track state vector [ ]'xx & , can use kr&

because it is a direct, linear measurement of the second state variable.  It is significant that none
of the higher dimensional trackers in [McIntyre and Hintz, 1998] or [Ramachandra, 2000] use r&.
[Kosuge, et al., 1998]  propose a track filter that rotates the coordinate frame so that one of the
axes is in the direction of the radial to the target.  Then, kr&  is a linear measurement of one state

variable and is used in a Kalman Filter (KF) tracker.  After updating, the state estimate is rotated
back to the original frame.

This paper develops a new statistic of centripetal acceleration based on the radial velocity
measurement kr& .  It detects maneuvers and estimates their magnitude.  A tracker using the

centripetal acceleration statistic is developed and tested via simulation against a uniform motion
KF tracker, a switched noise tracker, and a two mode IMM.  The new tracker outperforms the
others on all significant measures, including position speed errors during a maneuver and
convergence back to the true value when the maneuver ends.  It is less computationally intensive
than the IMM.

2. Problem Formulation

The problem is formulated as a linear system in a rectangular, x-y, coordinate frame as shown in
figure 1.  The positive x axis is east, and the positive y axis is north.  A rotating radar measuring
range kr r, bearing kθ  and radial velocity kr&  is fixed at the origin.  Range and bearing are

converted to pseudo-measurement kz  by
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If the measurement noise is Gaussian, kz is approximately Gaussian and linear.  A vector of

positions and velocities [ ]Tkkkkk yxyx &&=x  describes the track state.  This coordinate

system is natural and effective for the converted position measurements and target dynamics.
Unfortunately, kr&  is non-monotonic and highly nonlinear in this frame.



Pseudo-measurements kz  update track state in a uniform motion KF tracker with state and

measurement equations

kkk GF wxx +=+1

kkk H vxz +=

(1)
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zero-mean Gaussian with covariance Rk that depends on the measurements and their noises.  T is
the time between measurements.  When (1) accurately represents the true system dynamics then
the tracker produces good estimates.  Uniform target motion along a straight line is modeled by
making Qk small.  When Qk is small the gain is low and the measurement does not change the
state estimate very much.  Maneuvers are modeled by making Qk large.  When Qk is large the
gain is high and the measurement is heavily weighted.  The most common difficulty is the
specification of the covariance matrices Qk.
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Figure 1.  Coordinate system and target state vector



2.1 The Trouble With Radial Velocity

Notice that kr&  plays no part in the preceding formulation.  There are two problems with kr&  in the

x-y coordinate system.  First, it is highly nonlinear.  Second, it has no unique inverse.  In figure
1, γ is the angular difference between target heading and bearing.  Radial velocity is the negative
product of speed and cos(γ).  Rewriting the cosine in terms of the state variables yields the
following expression for radial velocity.
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Clearly, radial velocity is both nonlinear and non-monotonic with respect to the state variables.
In fact, it is so highly nonlinear that the usual technique of approximating it by a linear function
in an EKF does not work.  The approximate linear equation is a function of the first order partial
derivatives.  The denominator of (2) is the range.  So, when the target is moving nearly
tangentially to the radar, the range rate of change is nearly zero and the partial derivatives can be
very large.  An EKF tracker using kr&  was reported in [Schutz, et al., 1997] to diverge for most

target trajectories.

It is also easy to see that there is no unique, closed form inverse between radial velocity and the
elements of x .  The state vector has four elements, kr&  just one.  For every kr& , (2) has an infinite

number of solutions.  Fix any one or two elements of x , and (2) still has an infinite number of
solutions.  Therefore, even a perfect, noiseless radial velocity measurement is not much use in
updating the state estimate.

3. Developing A Centripetal Acceleration Statistic Using Radial Velocity

Maneuvers are modeled as turns with a constant but unknown rate that last for the entire interval
between measurements.  By conditioning on the previous state estimate and most recent kr&  the

set of allowable turns is restricted.  Each turn corresponds to a centripetal acceleration with
constant magnitude.  The minimum acceleration is a statistic that turns out to be a reliable
indicator that the target is maneuvering.

3.1 Maneuver Model

Conditional on the previous state estimate, assume that the target either does not maneuver or
travels at constant speed along a circular arc for the entire interval between measurements, as
shown in figure 2.  Its heading at every instant is tangential to the arc.  The time between
measurements is known, so the distance traveled is known.  For an arc of given radius, the
target’s position, speed, and heading are known at all times in the interval.  In particular, they are
known at the time of the most recent measurement.  Knowing these quantities and the radar
location is sufficient to determine the radial velocity.



Not every turn is allowed.  Only those such that the target’s final radial velocity equals kr&  are

allowed.  Recall from figure 1 that radial velocity equals the product of speed and cos(γ), the
angular difference between heading and bearing.  Cosine is a symmetric function so there are
two possible final headings: one to the left of the bearing line and one to the right.  These are
denoted h0 and h1 in figure 3.  Headings h0 and h1 can be realized by turning to the right or left,
so there are four possible turns.
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Figure 2.  Maneuver model for some left turn
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Figure 3.  Four possible turns



3.2 Calculating the Statistic

Let kθ denote the bearing to the target, and kη  the target heading.  If the range to the target is

large and the time between measurements is small, then the bearing will not change much and

1−≈ kk θθ .  These quantities are calculated in (3).
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Headings h0 and h1 are calculated in (4).
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Let ô denote the magnitudes of the four possible heading changes.

( ) ( ){ } πηη 2mod, 1101 hh kk −±−±= −−ô (5)

The length of the arc defining the path equals distance traveled, d.  Angular arc width equals
heading change.  The radii of the possible paths equal the ratio of their angular widths to their
lengths, d/ô .  Centripetal accelerations causing circular motion equal the ratio of the square of
speed to radius.  The accelerations corresponding to each turn can be calculated.  The minimum
acceleration is a statistic of centripetal accelerations that turns out to be a reliable indicator of a
target maneuver.
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3.2 Evaluating the Statistic via Simulation

cmin was evaluated via simulation using a uniform motion KF tracker having state noise
covariance matrix q2I, where q equals 0.03g.  The radar rotated at 6 rpm, was fixed at the origin
and had range, bearing and r& measurement standard deviations of 100’, 0.1 radian, and 2 knots,
respectively.  The intent was to simulate a rotating, air traffic control radar.  The target moved at
constant speed and made turns of specified centripetal acceleration.  Target speed was varied
from 300 to 600 knots, and the turns from 1 g to 6 g’s, where 1 g equals 9.8 m/sec2.  The results
were used to map cmin into likelihood functions of a maneuver, conditional on the acceleration.
A more complete analysis is required to form the likelihoods over the whole range of target
speeds and accelerations of interest.  The simulation results showed that centripetal acceleration
statistic cmin is a reliable indicator of a maneuver.



Figures 4 shows the target trajectory from one scenario used to evaluate cmin.  A 350 knot target
started about 120 miles away and made two 2 g turns.  The first turn lasts about 40 seconds, the
second about 30.  This scenario was run 20 times.  Figure 5 shows the value of cmin at each
update for each run.  Clearly, cmin is a good indicator of a maneuver: it is high during and just
after a maneuver, and low otherwise.  Were a maneuver declared whenever cmin exceeded 0.5 g,
the first maneuver would always be detected immediately and the second maneuver would
always be detected within two scans.  The false alarm rate is low.  In this scenario, there are 9
false alarms in 20 runs, with 73 track updates in each run.  The false alarm rate is only 0.006 per
track state update.

4. Tracking with cmin

Simulation results show that cmin reliably indicates a maneuver.  A tracker that exploits this
property is developed and tested.  The tracker is a uniform motion KF with state and
measurement equations (1).  The state noise variance Q equals (0.03g)2I whenever cmin is less
than 1 g, and equals (cmin)

2I otherwise.

4.1 Simulation Results

A simulation is used to compare the performance of the new tracker described in section 3.3 to
three other tracking algorithms.   The first is a uniform motion KF tracker with constant state
noise variance Q equal to (0.03g)2I.  This is the baseline tracker.  The second [Schutz, et al.,
1999] is a Combined KF (CKF) that switches between two noise levels based on a threshold test
of the fading memory average (FMA) of the radar position errors.  The FMA decay rate is .1.  If
the FMA is less than 5 miles then Q is set to a low (0.03g)2I, otherwise Q is set to (2g)2I.  The
final tracker is a two mode Interacting Multiple Model (IMM).  One mode has low state noise of
(0.03g)2I representing uniform motion.  The other has a high noise of (2g)2I representing a
maneuver.  IMM output equals a weighted sum of the outputs of the individual models.  The
weights are proportional to the product of the likelihoods and the a priori probabilities.  In this
test, the a priori probability of a maneuver is always 0.1.

Figure 4.  Sample Target Trajectory Figure 5.  cmin v Time, for 20 runs



Figure 6.  Target Trajectory

Table 1.  Four tracking algorithms tested via simulation
Tracker Description Based on
Kalman Filter (KF)
using cmin

Four state KF radar tracker as in equation (1),
using cmin to set the gain Q.

If cmin < 1g, then Q  = (0.03g)2I,
Otherwise, Q  = (cmin)

2I.

This paper.

Uniform Motion KF Four state KF radar tracker as in equation (1)

Q = (0.03g)2I.

[Bar-Shalom and Li, 1995]

Combined KF
(CKF)

KF radar tracker as in equation (1), using FMA to
switch noise levels.  FMA decay rate = 0.1.

If FMA < 5 miles, then Q  = (0.03g)2I,
Otherwise, Q = (2g)2I.

[Schutz, et al., 1997]

Interacting Multiple
Model (IMM)

Two mode IMM.  One low noise and one high
noise mode, each as in equation (1).

Qlow = (0.03g)2I,  Qhigh = (2g)2I

[Bar-Shalom and Li, 1995]

All tracks start the same way.  They initialize using a two hit rule.  Then, for the next 12
detections, they are updated using a low noise KF.  This gives them a chance to stabilize and
allows a fair comparison apart from the effects of different startup policies.  After that, the
trackers work as described above.  The radar is the same as in section 3.2.  The target moves at a
constant speed of 350 knots and makes 2 g turns. The whole scenario lasts for about 930
seconds, or 93 scans.

The simulation was run 100 times for the target trajectory shown in figure 6.  Detection and
association rates are perfect.  The track is updated once per scan, or approximately once every
ten seconds.  The target’s speed is constant at 350 knots, and it makes two, 2 g turns.  The first
turn occurs at about 290 seconds into the scenario, the second at about 610.  Figures 7 and 8
show the position and speed error means and 95% confidence bounds for the four trackers.



In figure 7, the mean position error of the tracker using cmin is about the same as the baseline
tracker during the straight segments and is significantly better during the maneuver.  This is the
expected behavior.  During straight line segments, cmin is low and the two trackers are identical.
During maneuvers, cmin is large and the state noise is adjusted so that it is roughly proportional to
the maneuver magnitude.  Not only is position error lower during the maneuver, but it converges
back to steady state faster when the maneuver ends.  The switching CKF tracker exhibits the
worst performance.  The FMA test is slow to detect maneuvers, and causes more false alarms
during the straight segments that cmin.  The CKF has only two noise levels, so when it declares a
maneuver it cannot make the state noise variance proportional to the maneuver.  Thus, false
alarms degrade the track quality more than false alarms using that cmin.  The IMM’s mean
performance is better than the CKF, but not quite as good as the new tracker.  Interestingly, its
error variance is about 50% larger.  This is because, like the CKF tracker, its models have only
two noise levels.  The model outputs are combined as a weighted sum, but if the wrong model is
heavily weighted, then the track quality is significantly degraded.
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Similar results are seen for speed error in figure 8. The new tracker using cmin performs about the
same as the baseline tracker during straight segments and better during maneuvers.  It converges
back to the true value in about one half the time after the first maneuver, but takes slightly longer
to converge after the second maneuver.  Its speed error mean and variance are considerably
lower than the CKF or IMM.  The CKF and IMM are clearly overcompensating for the
maneuver.  Once again, the CKF with switching noise variance is the worst performer.  The
IMM exhibits consistent mean error performance, but its variance is about 100% larger than the
new tracker.

5. Conclusion

A new statistic of acceleration, cmin, based on the radial velocity measurement r& is proposed in
this paper.  Most trackers ignore r& during track filtering because it is non-monotonic, highly
nonlinear, and non-invertible in rectangular coordinate frames.  Simulation results show that cmin

is a reliable indicator of a target maneuver.  A uniform motion KF tracker that uses cmin to set its
state noise variance outperforms switched noise level and two mode IMM trackers in terms of
position and speed error mean and variance, and convergence back to the true value when the
maneuver ends.  This tracker offers improved performance with a small change to the tracking
algorithm and no change to the sensor.

–––– Mean Error     – – – 95% Confidence Interval

Figure 8.  Speed error versus time
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