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Abstract
An aeroplane that bombs a warship or attacks it with anti-ship missiles usually chooses a
manoeuvring trajectory in order to confuse the tracking radars on board the ship. The classical
threat evaluation model assumes that the air target moves in a straight line and ranks this air
threat according to values calculated for the target’s closest point of approach and its time to
reach the closest point of approach. Unfortunately, this kind of threat evaluation model leads to
rapid inversion of the threat levels within a short time period thus preventing the Above Water
Warfare Officer from making a consistent assessment about the most lethal threat attacking his
ship. This article describes an approach to solving the threat level instability problem by using
the mean line of advance of the manoeuvring threat. Details of the algorithm for calculating the
mean line of advance are given here as well as some examples of aeroplane trajectories for which
the mean line of advance was calculated using a Sun computer.

1.  Introduction

The classical threat evaluation system of a naval command and control system assumes that the
air targets fly in a straight line. The closest point of approach (CPA) and the time to reach the
CPA (TCPA) are then calculated from the instantaneous velocity vectors of the air threats. Since,
for manoeuvring targets the CPA and TCPA are continually oscillating between large and
smaller values, two manoeuvring targets that attack a ship with almost the same range will
produce ranked threat levels that never clearly indicate over a reasonable time interval which
threat of the two is the most highly ranked. In other words, if the manoeuvres of the threats give
threat 1 a high threat level and give threat 2 a low threat level at a given instant of time, then
subsequent manoeuvres performed immediately afterwards will give threat 1 a low threat level
and threat 2 a high threat level, thus inverting the threat rankings. Therefore, the manoeuvres of
the two air threats cause instability in the threat ranking. This kind of threat level stabilisation
problem is described in detail in the references [Paradis et al., 1997] and [Carling, 1999].

It is believed that this problem can be solved by constructing a threat evaluation model based on
values of CPA and TCPA coming from the mean line of advance of the air threat. The mean line
of advance is the straight line giving the most probable direction of advance of the air threat.
Strictly speaking in mathematical terms, if x(t), y(t) are continuously differentiable functions on



[t1,t2] representing the x and y components of displacement of an air threat as a function of time
then the mean line of advance of the air threat is defined to be the line:

such that the integrals

are minimised. In general, the linear functions lx(t), ly(t) obtained by minimising the above
integrals do not tightly adhere to the original curves x(t), y(t). However, the above integral does
define a norm on the normed space of square integrable functions L2[t1,t2]. Instead of using an
integral norm, the author used a uniform norm on the normed space of continuously
differentiable functions C(1)[t1,t2]. The uniform norm of a continuously differentiable function
x(t) is defined by

Electrical engineers have successfully approximated the frequency response of various digital
filters in terms of Chebyshev polynomials by using the uniform norm (see [Parks and Burrus,
1987]).  The form of the frequency response of the filters considered in [Parks and Burrus, 1987]
appeared to be quite general in nature. The author thought, therefore, that it would be possible to
approximate arbitrary aeroplane trajectories by straight lines using the uniform norm to measure
the accuracy of the approximation.

The x(t) and y(t) coordinates of a manoeuvring aeroplane are continuous functions on some time
interval [t1,t2] and their x and y velocities x(1)(t), y(1)(t) are also continuous functions on [t1,t2].
However, the ship’s radar tracker does not provide continuous updates of x(t), y(t), x(1)(t), y(1)(t)
but only discrete updates, depending on the radar antenna scan rate. The author had therefore to
devise an interpolation scheme that generated values of x(t), y(t) on the whole interval [t1,t2]
given a discrete number of n data points (x(ti), y(ti)), i = 1,…,n belonging to the interval [t1,t2].
The author interpolated the discrete values (x(ti),y(ti)), i = 1,…,n using Chebyshev polynomials
and then levelled the Chebyshev error curve using eighth degree polynomials. This produced
continuously differentiable functions p(t), q(t) such that p(ti) = x(ti), i =1,…,n , q(ti) = y(ti), i
=1,…,n and for u satisfying ti≤u≤ti+1, p(u) varied in an almost linear fashion from x(ti) to x(ti+1)
and q(u) varied in an almost linear fashion from y(ti) to y(ti+1). It is believed that in this
preliminary model, an almost linear movement of the aeroplane between each one of the radar
detection points is a reasonable approximation.

The mean line of advance was calculated using an iterative algorithm called the exchange
algorithm. In order to make this algorithm execute successfully for arbitrary continuously
differentiable functions x(t), y(t) on arbitrary time intervals [t1, t2], it is necessary to have an
accurate estimate of the function values between the given radar data points. In fact, a slight
difference in the interpolation scheme causes a variation in the coefficients of the mean line of
advance obtained. In addition, if the interpolation does not estimate the function values
accurately at the intermediate points, the exchange algorithm may fail to calculate the mean line
of advance.
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Although a good approximation p(t) has been found for x(t), p(1)(t) does not necessarily
approximate x(1)(t). The exchange algorithm starts off with a candidate line lx(t)=at+b. This
candidate line is updated by calculating the point at which |p(t)-lx(t)| attains its maximum value.
Since this point cannot be found by solving p(1)(t) = lx(1)(t), a binary search is performed in the
neighbourhood of the global maximum in order to find its precise value. The updated lines then
converge uniformly to the line l(t) for which

is a minimum.
If two threats are flying in aircraft formation at the same speed to attack a ship and one of the
threats is a few kilometres further from the ship than the other, then it is believed that the
variation of the mean line of advance of the further threat cannot give it a time of closest point of
approach (TCPA) that is smaller than the TCPA calculated from the mean line of advance of the
nearer threat. If the two manoeuvring threats are therefore separated by a few kilometres and
have comparable CPA, it is unlikely that the threat ranking will be inversed because the TCPA of
the further threat is smaller than that of the nearer threat. However, if the two threats are closer
together then it is necessary to have an accurate estimate of the deviation of the mean line of
advance in order to know when the increase of the mean line of advance velocity of the further
threat is sufficiently greater than that of the nearer threat to cause an inversion of the threat
rankings. These ideas will be used in the design of a stabilised threat-ranking model.

The algorithm described in this article calculates the mean line of advance of a manoeuvring air
target over an eight second time interval for a radar that updates the air track every second.
Algorithms for calculating the mean line of advance over arbitrary time intervals and for more
realistic radar update rates such as two-second and four-second update rates will require a
generalisation of the algorithms described in this article.

2.  Interpolation using Chebyshev Polynomials

Chebyshev polynomials have been successfully used to approximate the frequency response of
digital filters over a finite discrete frequency set. This motivated the author to try to approximate
the x and y time series of an air radar track over the infinite continuous interval from 0 to m
seconds where m can be either 7 or 8 seconds. In the theory of approximation of continuously
differentiable functions by Chebyshev polynomials on an interval [-1,1] see [Hamming, 1973],
the function f(t) is represented by a linear combination of Chebyshev polynomials as given by
the finite sum below.

Here the ak are defined by the following integrals

and the Tk(t) are defined recursively by the following relations.
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Since the function f(t) must be approximated on the interval [0,m] rather than the interval [-1,1],
the transformation p(t) = (-2t)/m + 1 is used to map the interval [0,m] into the interval [-1,1].
Define therefore a function g on [-1,1] having the values of f multiplied by the constant 2/m.
Thus, g(t) = (2/m)f((-m/2)t+m/2). The coefficients ck for the function g are therefore given by

Inside the interval [-1,1], the function g is only known at the points –3/4, -1/2, -1/4, 0,
1/4,1/2, 3/4. Now generate a partition of [0,π] by defining the points

where α1 = arc cos(3/4); α2 = arc cos(1/2); αm-1 = arc cos(-3/4); and αm = arc cos(-1). In order to
calculate c0, the integral

is replaced by the sum

where on each [αj,αj+1] the function g(cos θ) has been replaced by the linear approximation

or

Finally, therefore, a closed loop expression exists for c0

where dj = g(cos αj).

In order to find a closed loop expression for c1, integration by parts is performed on the integral
expression for c1 giving

where
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Integration by parts is applied to the integral expression for cn,n≥2 to give
where sj is defined above. The useful approximations to the function g have been found by
programming the above expressions for c0, c1 and cn and comparing linear combinations of the

Chebyshev polynomials involving these coefficients with the function values g(t). It was found
that the best approximations were obtained with the following low order polynomials.

Now, the ci are calculated on [0,π] and both Tn(t) and g(t) are defined on [-1,1]. At first,
therefore, the polynomials Pn(t), n = 2,3 exist on [-1,1] only, but under the transformation,  q(t) =
(m/2)t, Pn(t) can be extended to [-m/2,m/2] and the error term E(t) is put equal to g(t)-Pn((m/2)t).
Here the function g(t) is redefined on [-m/2,m/2] by the formula g(t) = (2/m)f(t+m/2) so that E(t)
will be a well defined function on [-m/2,m/2]. Generally speaking, the form of |E(t)| is given by
the graph below.

|E(t)|

-m/2 t2 t3 t4 t5 t6 m/2  t

Figure 1 – Graph of the Chebyshev error curve |E(t)|
In Figure 1 above

t1, t7 are points where |E(t)| attains a maximal endpoint value, t2, t6 are zeros of |E(t)|, t3, t5 are
points where |E(t)| has a local maximum, and t4 is a point where |E(t)| attains a local minimum.
The following theorem can be used to level this error curve.

Theorem 1
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Let a Chebyshev error curve E(t) which is known at n+1 points α0, α1, α2, …,αn be
specified by the real numbers E(α0), E(α1), E(α2),…,E(αn). A polynomial approximation Pn(t)
can then be constructed by defining

where each ai, i = 0,…,n is a function of E(αk), k = 0,…,i and of products

and certain symmetric functions of α0,α1,…,αi.
Proof
In order to calculate the coefficients ai, the linear system of n+1 equations in n+1 unknowns
Pn(αi)=E(αi), i = 0,…,n has to be solved. This is accomplished numerically by using Gaussian
elimination. The author gives here some of the coefficients for the case when n=6 since the
others have a similar representation.

Here the notation

means that

The idea of generating a polynomial function that takes on prescribed values E(αi) at each of the
points αi in the interval [0,m] is similar to the problem of Lagrange interpolation. Now the error
between the original function g(t) and the Lagrange interpolating polynomial can be quite large
at points of  [0,m] not equal to the αi. In order to keep this error small everywhere in the interval
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[0,m], the latter is subdivided into three subintervals and the αi are taken to be the zeros of an
appropriate eighth degree Chebyshev polynomial. These zeros are defined by the formula
where λ is the midpoint of [-m/2,-m/6] or [-m/6,m/6] or [m/6,m/2] and µ=m/6. Hence levelling
of the Chebyshev error curve takes place in an interval of length m/3 that contains eight zeros αi.
On average, therefore, the points αi are separated by approximately m/24 seconds. It was
assumed that the function g(t) changed linearly from each of the points αi to the next point αi+1.
Now E(t) is defined to be g(t)-T2(t) where T2(t) is a Chebyshev polynomial of order 2. Hence g(t)
is locally a quadratic polynomial. The following theorem whose proof may be found on page 35
of [Powell, 1981] can be used to estimate the values of E(t) in the interval [0,m].

Theorem 2
For any set of distinct interpolation points {ti,i =0,1,…,n} in [a,b] and for any f∈ C(n+1)[a,

b], let p be the nth degree polynomial satisfying p(ti)=f(ti),i = 0,…,n. Then, for any t in [a,b], the
error e(t) = f(t)-p(t), a≤t≤b, has the value

where ξ is a point of [a,b] that depends on t.

This theorem may be applied to the function E(t) on a subinterval of length m/3. On this
subinterval E(t) behaves like a quadratic polynomial in t and hence when it is interpolated by a
polynomial of degree eight, the error is uniformly equal to 0 in this subinterval. The above
theorem may be used on each of the intervals [-m/2, -m/6], [-m/6, m/6] and [m/6, m/2] to
generate polynomials P(t), R(t), Q(t) approximating E(t) on each of these intervals. Thus

The function g(t) is now known at each point t in the interval [-m/2,m/2] and can be used to
calculate the mean line of advance of the function f(t). In particular, f(t) can be the x component
of the threat’s displacement x(t) or its y component y(t).

3.  The Mean Line of Advance Algorithm

3.1 General Overview
The mean line of advance of a function f(t) defined on [-m/2,m/2] is calculated by a one-point
iterative exchange algorithm. In general, an attempt is made to approximate a continuously
differentiable function f(t) defined on an interval [a, b] by a straight-line l(t) defined on the same
interval [a, b]. Here a and b are two real numbers satisfying a<b. The set of all continuously
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differentiable functions on [a, b] denoted by C(1)[a, b] is a linear space because the sum of two
continuously differentiable functions is continuously differentiable and the product of a real
scalar with a continuously differentiable function is also continuously differentiable. In addition
it can be made into a normed linear space by introducing the norm

The above norm satisfies the properties

and hence makes C(1) [a, b] into a normed linear space. The set of all lines in C(1)[a, b] denoted by

is a two-dimensional subspace of C(1)[a, b]. It is a subspace of C(1)[a, b] because the sum of two
lines is a line and the product of real scalar λ with a line gives another line. It is a two-
dimensional subspace because {1,t} is a basis of the subspace. It is shown on pages 137-139 of
[Davis, 1963] that if f belongs to a normed linear space E, S is a finite dimensional linear
subspace of E and f does not belong to S, then there always exists an element s0 of S that is
closest to f. In other words, there always exists an element s0 ∈ S such that

It is then shown on pages 142-145 of [Davis, 1963] that this element s0 is unique. In particular, if
E = C(1)[a, b], S=L, then for any continuously differentiable function f∈C(1)[a, b], there always
exists a unique line l0∈L which is the best linear approximation in the uniform norm to f, i.e.,

This line minimises the worst-case difference between itself and the given function f. On page 77
of [Powell, 1981], the following theorem, which characterises the best approximation in the
uniform norm, is stated and proved.

Theorem 3
Let A be a (n+1)-dimensional linear subspace of C[a, b] that satisfies the Haar condition,

and let f be any function in C[a, b]. Then p* is the best minimax approximation from A to f, if
and only if there exists (n+2) points {ξi

∗; i = 0,1,…,n+1}, such that the conditions

and

are obtained.

The functions in A satisfying the Haar condition are continuous functions that satisfy the same
properties concerning zeros as nth degree polynomials, i.e., if an nth degree polynomial has more
than n zeros then it is identically zero. In the case of the two-dimensional subspace L of C(1)[a,
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b], l0 is the best minimax approximation from L to f for any f  belonging to C(1)[a, b] if and only
if there exists 3 points {ξ0,ξ1,ξ2}such that the conditions
and

are obtained. This latter criterion is used to verify the output from computer programs. A
candidate line l0 becomes the best linear approximation in the uniform norm to a given function f
belonging to C(1)[a, b] when three points ξ0, ξ1, ξ2 can be found in the interval [-m/2,m/2] at
which |f-l0| achieves its maximum and at these points f(x)-l(x) changes alternately in sign.

3.2 The exchange algorithm
An iterative exchange algorithm calculates the best linear approximation in the uniform norm
numerically. The recommended way of starting this algorithm, see [Powell, 1981], page 91 is to
define

when iteration takes place in C(1)[a, b]. In the case that a = -m/2, b = m/2, the iterations become

It is then necessary to solve the equations

and

The solution of the first set of equations is

If the value of h in the above equation is negative, this signifies that the first set of equations
does not correspond to the physical reality. In other words, the approximating line initially passes
over the curve f(t) instead of going under it. In this case, the second set of equations is solved
giving the solutions

It is to be noted that if h is negative in the first set of equations then it will be positive in the
second set because the expression for h in the second set is exactly the negative of the expression
for h in the first set. The values of d0 and d1 calculated here determine the coefficients of the
mean line of advance at the current iteration. In order to update the values of d0 and d1, the error
function and its derivative are defined by the following equations.
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A partition P of grid length ∆t is placed in the interval [-m/2,m/2]. It consists of the points p0, p1,
p2,…,pn where

Denote

by B. Then either e(pk) = B or –e(pk) = B for some k∈{0,1,2,…,n}. A search will be made in the
interval [-m/2,m/2] to find λ∈[-m/2,m/2] such that

In order to do this, it is to be noted that if e(pk) = B and t∈[pj-1,pj+1] where j≠k, then
for c∈[pj,t] or c∈[t,pj] by the mean value theorem for differentiable functions. Now denote
by D1. If the centre point of the interval [pj-1,pj+1] satisfies the condition
then for any t∈[pj-1,pj+1], e(t) satisfies
since

It, therefore, follows that if one wishes to find a t∈[-m/2,m/2] such that
then one should only search intervals of the form [pj-1,pj+1] whose centre point pj satisfies
In each of the intervals satisfying the above criterion, a binary search is conducted to find the

largest value of |e(t)| in the subinterval [pj-1, pj+1]. In the case that –e(pi) = B, consider the

function
and calculate
The condition becomes if
then
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for all t∈[pj-1,pj+1]. Now, the following algorithm generates a sequence of points which
converges to a local maximum of |e(t)| in the interval [pj-1,pj+1]
A1: Compare |e(pj-1)| with |e(pj+1)|.

If |e(pj-1)| > |e(pj+1)|, put z0 = pj-1,z1 =  (pj-1+ pj+1)/2
Else if |e(pj+1)|>|e(pj-1)|, put z0=pj+1, z1=(pj-1+pj+1)/2

A2: For n=0,1,2,3,4,5,…
Compare |e(zn)| with |e(zn+1)|.

If |e(zn)| > |e(zn+1)|, put zn+2 = zn, zn+3 = (zn+ zn+1)/2
Else if |e(zn+1)|>|e(zn)|, put zn+2=zn+1, zn+3 = (zn+zn+1)/2
Put tol = |e(zn+3) – e(zn+2)| and tolz = |zn+3-zn+2|. If either
tol<.001 or tolz<.001, stop the iteration at zn+2 and put

zn+2 becomes, therefore, the point in [pj-1,pj+1] at which |e(t)| attains its maximum. The sequence
zn defined above has the property that

This means that the sequence is by the nature of its definition a Cauchy sequence and hence
converges to a real limit. The maximum value of |e(t)| is then calculated in each interval [pj-1,pj+1]
for which

The global maximum of |e(t)| over the whole interval [-m/2,m/2] is now calculated by finding the
largest value of

for all j satisfying

Denote this largest value by |e(z*)|. If the condition

is not satisfied, then a similar Cauchy sequence must be generated in [pj-1,pj+1] with limit tj*.

is then calculated for each pj such that

Denote the largest of these calculated values by

Finally, a comparison is made between the value of B, the values of |e(z*)| and

in order to find the largest one. The largest value and the t*or z* at which it is attained is
therefore the value of
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The value of λ found in the binary search is now used to update the reference set {t0,t1,t2}. If the
first condition is valid
with

and
then λ replaces t0 in the reference set. If the first two conditions hold but
then λ replaces t2 in the reference set. If the first condition holds but instead
then whether

or
λ replaces t1 in the reference set. If the second condition holds instead of the first condition then
similar rules can be deduced for introducing λ into the reference set. It is important to remember
that λ has to be introduced into the reference set so that the alternating sign property on
consecutive elements is preserved. If the second condition holds

and

and

then the reference set becomes {λ,t0,t1}. Since e(λ)>0,e(t0)<0 and e(t1)>0, the error function e(t)
changes sign alternatively on different members of the reference set. If the second condition
holds and

and

then λ replaces t0 in the reference set. Similarly, if the first condition holds and

or

then similar rules hold for introducing λ into the reference set based on the observation that the
error function e(t) must always alternate in sign on consecutive elements of the reference set.

The binary search on the function e(t) produces a λ such that
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This λ is used to update the reference set {t0,t1,t2}. The new values of the reference set are
submitted to the two systems of linear equations to obtain updates of d0 and d1, the coefficients
of the best linear approximation to f(t). The solution of these linear equations also produces an
update to h that is an estimate of the levelled reference error between f(t) and the current line
l(t)= d0+d1t. The function e(t) is now redefined to be

where d0,d1 are the updated values of the coefficients of l(t). The procedure described in the
preceding pages is then applied to this new e(t). In other words, a binary search is implemented
on the current e(t) to find a λ such that

and this λ is used to update the reference set in such a way that the value of e(t) on consecutive
elements is alternatively positive and negative. The new values of the reference set are again
submitted to the two systems of linear equations to obtain updates of d0 and d1, the coefficients
of the best linear approximation to f(t). The coefficients d0 and d1 are then used to redefine e(t).
Each time one goes through the iteration one generates a sequence hn of levelled reference errors,
a sequence of maxima |e(λn)| and a sequence of line coefficients d0

(n),d1
(n). It turns out that hn is

an increasing sequence

and if l(t) is the unique best linear approximation in the uniform norm to f(t) on
[-m/2, m/2], the sequence hn converges to ||f-l||∞ in a finite number of steps. The fact that hn

converges to ||f-l||∞ is shown on pages 85-87 of [Powell, 1981]. In addition, there exists a
subsequence |e(λnj)| such that

and this subsequence converges to ||f-l||∞ in a finite number of steps. The fact that there is always
a subsequence of |e(λn)| that is decreasing and converges to ||f-l||∞ is illustrated on pages 88-90 of
[Powell, 1981] and proved on pages 101-102 of [Powell, 1981]. Finally, the sequence of lines

converges uniformly on [-m/2,m/2] to the unique best linear approximation l(t) of f(t) for any
continuous function f(t) on [-m/2,m/2]. This fact is proved on pages 99-102 of [Powell, 1981]. If
the function f is twice continuously differentiable then the convergence of the iterations

to l(t) is quadratic. In the case of the naval air defence problem, the x and y target accelerations
are continuous everywhere except at those points where a radial acceleration is applied to the
target trajectory to make it turn suddenly. At each one of these points, the second derivative is
piecewise continuous, while the first derivative and the original function x(1)(t), x(t) or y(1)(t),y(t)
are continuous everywhere. Therefore, the functions x(t) or y(t) are twice continuously
differentiable except at a finite number of points and hence one would expect fairly rapid
convergence. In fact, the algorithm converges most of the time within six iterations. The
resulting line obtained is called the best linear approximation in the uniform norm and it is the
author’s way of calculating the mean line of advance of the x and y position time series of a
manoeuvring target.
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4.  Mean Line of Advance Calculations for Naval Attack Scenarios

The algorithms described in sections two and three of this article were programmed in C on a
Sun Sparc 5 workstation in order to calculate the mean line of advance of a manoeuvring
aeroplane. Aeroplane position and velocity data were generated for a scenario where a single
aeroplane flies from east to west at speeds varying from 400 to 600 m/s in order to attack a ship
that is situated in the west. The x component of aeroplane position increased steadily as the
aeroplane moved towards the ship. The y component of aeroplane position varied in the
northerly and southerly directions as the aeroplane performed manoeuvres. The mean lines of
advance of the y time series of aeroplane position over several time intervals beginning at time =
1 second and ending at time = 9 seconds are shown in Figures 2 to 5. The mean line of advance
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Figure 2 – Mean line of advance of the y time series of position

calculation takes place each time after one new data point is added to the x or y position data set
and the data point corresponding to x or y position eight seconds ago is removed. Thus, the mean
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Figure 3 – Mean line of advance of the y time series of position

line of advance is calculated over a moving time window of length 8 seconds. In Figure 2, the y
position does not vary much so that the mean line of advance is close to the original curve. In
Figure 3, the y position varies more than in the previous figure and hence the levelled reference
error between the y position and the mean line of advance increases.
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Figure 4 – Mean line of advance of the y time series of position

In Figure 4, the y position of the aeroplane takes the form of a curve without any straight-line
segments in it at all. In this case, the levelled reference error between the y position and the mean
line of advance is large and the latter is an increasing function of time.
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Figure 5 – Mean line of advance of the y time series of position

In Figure 5, several new position data points have been added to the data set and several old
position data points have been discarded since the time of the situation shown in Figure 4. The
new incoming points in Figure 5 have caused the mean line of advance to become a decreasing
function of time.
5.  Conclusion

In this paper, an algorithm has been described for calculating the mean line of advance of a
continuously differentiable function f(t) defined on an interval such as [1,9]. The algorithm
consists of two parts. Since the trackers of tactical surveillance radars only provide updates to the
target track at discrete times such as every two seconds or every four seconds it was necessary to
devise an interpolation algorithm using Chebyshev polynomials in order to express the target x
and y time series as continuous functions of time. The second part consists of an iterative
exchange algorithm that produces a finite sequence of lines converging uniformly to the mean
line of advance. In the second part, it is necessary to calculate the maximum of the difference of
the function values f(t) and those of the current line l(t) in the sequence. Even though a
continuous approximation p(t) has been found for f(t), it is not true that p(1)(t) is a good
approximation of f(1)(t). Hence, one cannot solve the equation p(1)(t) = l(1)(t) to calculate the
points at which f(t)-l(t) attains its maximum value. Instead, a binary search of the function p(t)-
l(t) is conducted around points that are relatively close to the global maximum in order to
determine which point is the global maximum.

The mean line of advance was tested on manoeuvring aeroplane trajectories for an aeroplane
travelling at speeds between 400 and 600 m/s. For trajectories that are almost straight lines, the
uniform norm mean line of advance tightly adheres to the original trajectory. If the manoeuvres
are slight there is a small levelled reference error between the mean line of advance and the
aeroplane trajectory. If the manoeuvres consist of many curves, the levelled reference error
between the mean line of advance and the original trajectory can be quite large. In fact, the
author noticed that if the mean line of advance is calculated for a trajectory consisting of many
curves then it may have a positive slope as shown in Figure 4. However, after four more points



are added to the data set and the four data points with the oldest timestamps are removed, the
mean line of advance can change direction and can now have a negative slope as shown in
Figure 5. Thus, the mean line of advance of a multiple curve trajectory can itself oscillate,
although it does not oscillate to the same extent as the original curve. These last comments make
it necessary to estimate the upper and lower bounds of the variation of the mean line of advance
so that if two air threats are flying almost wing tip to wing tip the variation of velocity in each of
the mean lines of advance does not cause an inversion of their threat levels.
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