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Abstract

This paper applies Shannon theory, which was established to describe a discrete general
communications system, to a general identification system that is affected by noise (and
jamming), the probability of a discrete event occurring (such as an object in a certain region of
space), and most importantly, the entropy and dissonance of the information source. This paper
analyzes the cause of the many identification problems currently in the military from a
fundamental information perspective. This includes analysis on how sharing information derived
from Identification Friend-or-Foe (IFF), Electronic Support Measures (ESM), and Non-
Cooperative Target Recognition (NCTR) sensors, with measures of information completeness
and conflict, between varied military participants is essential for achieving a network-centric
integrated identification picture.

1. Introduction

Over 50 years ago the seminal paper “A Mathematical Theory of Communication” laid the
foundation of communications theory [Shannon, 1948]. Claude Shannon, while at Bell Labs in
1948, developed his theories of communication based on the work of Nyquist and Hartley who
preceded him by twenty years by including the effects of noise in a channel and the statistical
nature of transmitted signals. This paper extends his analysis of communications system
properties to identification techniques and methodologies.

Shannon defines the fundamental problem of communications as “that of reproducing at one
point either exactly or approximately a message selected at another point.” Further he states that
the messages “refer to or are correlated according to some system with certain physical or
conceptual entities.” For a subsurface, surface, airborne, or space-based object (which will
henceforth just be described by the word “object”), the following correspondence definition can
be made:

Correspondence 1

Identification of an object using some form of sensor information
is the process of reproducing either exactly or approximately that
object at another point.
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Shannon’s message in an identification context is the information received from a sensor (or
sensors) that describes an object with certain physical traits. Examples include whether the object
has the intrinsic characteristics of rotors or fixed wings, a classifiable type of radar or
communications system, a categorical thermal image, etc. For identification purposes, the
information in a message contains features that allow attributes to be assigned to an unknown
object that can be used to form an abstraction of the object at some level of approximation. Thus
the use of the term “identification” refers to a taxonomic identification that describes what an
object is (F/A-18, etc.) as opposed to its relationship to the identifying platform (Friend, Hostile,
etc.). For most types of objects, the complete set of possible attributes that can be derived is
dependent on the number, quality, and type of sensor information providers assigned to the
identification task. In essence, whether a detected object can be classified as an aircraft or ship,
bomber or airliner, B1 or 747, etc., is dependent on these sensor characteristics and their ability
to form the abstraction. This relates identification to a communications link that will vary in
effectiveness depending on its fidelity and number of paths. This leads to a second
correspondence definition:

Correspondence 2

Each identification message that is received from a sensor is one
that is selected from a set of possible identification messages,
which can describe one or more possible objects or set of objects
depending on the information content of the message.

The number of possible messages is finite because the number of possible objects that can be
reproduced by a sensor is also finite. So the selection of one message can be regarded as a
measure of the amount of information produced about an object when all choices are otherwise
equiprobable. This is significant because it allows an assessment of whether enough information
exists to adequately describe an object, based on the number and types of identification
messages. The measure of information content is what enables an automated process or human
operator to determine if enough information exists to make a decision. A derivative of the
Shannon information entropy measurement, which is described later in this paper, is used to
measure the information content of a message or series of messages.

2. The Identification System

The one-way Shannon communication system is schematically represented in figure 1, with
modifications to incorporate elements of the sensor domain for identification'.

" All information associated with Shannon is reproduced or derived from reference [Shannon, 1948].
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Figure 1. One-Way Diagram of a General Identification System Process

Referencing figure 1, the five parts can be described as follows:

1.

An information source corresponds to something that either produces or reflects energy
that is captured by a receiver and consists of a series of deterministic entities such as
reflected spectra or electromagnetic emissions. For identification, the information source
can provide multiple channels of information (often orthogonal) that can be correlated.
The three information domains consist of Identification Friend-or-Foe (IFF), Electronic
Support Measures (ESM), and Non-Cooperative Target Recognition (NCTR). IFF is
considered cooperative communication because the information source willingly
discloses information about itself to a requestor. ESM is considered to be unintentional
cooperation because the information source, in the course of its normal operations,
unknowingly discloses information about its identity based on the characteristics of its
emissions. NCTR requires no cooperation from an information source other than its
existence in order to derive features associated with its identity. Each of these sources can
be considered as a unique discrete function fy[t], gu[t], and h,[t] where the subscript, n,
indicates multiple sensor types from each information domain of IFF, ESM, and NCTR
respectively. Each of these functions forms an identification vector that contributes to the
generation of the abstraction of the original information source. This is illustrated with
the series of features (similar to information domains) of a famous celebrity shown in
figure 2 (derived from [Haak, 2002] and [Hall, 2001]).
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Figure 2. Abstracted Information Features



Each set of features in figure 2 represents different information types at similar levels of
abstraction (in this case). Each of these features can be considered as part of an
identification vector for the image (caricature) shown in figure 3.

Figure 3. Correlated Information Features (Identification Vector)

Figure 3, in turn, is almost universally recognized as an abstraction of the photo of Bob
Hope (the object) in figure 4.

Figure 4. Bob Hope (object)

In this example, the human brain fuses these feature vectors in order to determine the
identity of the object. Notice that not all of the information about the object (Bob Hope)
is present in figure 2 (there is no information abstraction of the ear). The assembled
feature identification vectors in figure 3, even though they are an exaggerated abstraction
of the object Bob Hope, can just as clearly represent him as the more representative photo
in figure 4.

A transmitter is equivalent to an apparatus that emits some sort of radiation, or it could be
a structure reflecting radiation back to a receiver. For IFF this is the transmitter of the
transponder emitting a reply. For ESM this is the radiation of either radar or
communications system emissions. For NCTR this could be radar, infra-red (IR) or a



similar emissions being radiated or reflected. All of these domains could be transmitted
simultaneously or asynchronously.

3. The channel is the medium used to carry the information from the transmitter to the
receiver. This is the atmosphere for airborne, space, and surface objects and water for
undersea (and surface) objects. Noise sources also exist that change the channel
characteristics and include target noise, atmospheric noise, space noise, random charge
noise, etc. In a tactical environment there also exists the possibility of intentional channel
modification or destruction in the form of spoofing or jamming.

4. The receiver is the device used for converting the transmitted or reflected energy from the
information source and passing it on to a destination. Each set of ID sensor information,
IFF, ESM, and NCTR has a unique receiver type optimized to extract signal energy in its
respective domain.

5. The destination is the process that gathers the information from the information source
via the receiver and processes it in order to extract the feature vector. This is generally
the processing performed within the sensor that results in a “message” about the
information source. In the example using the caricature of Bob Hope, one sensor type
might extract the “hairline”, while another type might extract the “chin”, and still another
his distinctive “nose”.

3. Forming the Identification Vector

For each sensor information domain, the communications system is slightly different. In the case
of Mk XII ATCRBS IFF there are two versions of figure 1, one each for the uplink and downlink
at 1030 and 1090 MHz respectively. For ESM there is a single channel where an object emits a
signal from radar, sonar, or a communications system, which is the information source that
provides the sensor with its input. For NCTR, the paths are generally the same (with the
exception of infra-red which is a single path like ESM) with the return path of the most interest
because it contains the feature information of interest to the destination processing. Each of these
supports the formation of the object abstraction through some sort of fusion process.

Regardless of the source of information, just like the principles from Shannon’s discrete
noiseless channel system, there exists a sequence of choices from a finite set of possibilities that
can make up a possible object. For Mk XII IFF it is the set of possible reply codes (such as 4096
Mode 3/A octal codes). For ESM it is the set of all possible emitters that can be correlated to a
physical object. For NCTR a similar set of features can be correlated to physical objects. Each of
these choices is defined by a series of unique parameters (Shannon “symbols”), S; that are
defined by their domain. As an example for ESM, §; could describe one of a couple of dozen
possible parameters related to frequency, pulse width, PRF, etc. If the set of all possible
sequences of parameters S;, {S,...,S,} is known and its elements have duration ¢,,...,¢, then the
total number of sequences N(1) is,

N(t)=N(t—t,)+N(t—t,)+...+ N(t—¢,) (1)



which defines the channel capacity, C,

_lim Jog N(T) )
T>w T

where T = the duration of the signals.

Following Shannon’s pattern, we can consider an information source, how it can be described
mathematically, and how much information is produced. In effect, statistical knowledge about an
information source is required to determine its capacity to produce information. A modern
identification sensor will produce a series of declarations based on a set of probabilities that
describe the performance of that sensor. This is considered to be a stochastic process, which is
critical in the construction of the identification vector.

IFF, ESM, and NCTR all contribute to the identification vector (represented by figure 1). The
mathematical form of each type is defined by a modulation equation that is bounded by Shannon
information limits. Therefore, a finite amount of information content is available from each
sensor type. For a MK XII IFF interrogator this equates to the pulse position modulation (PPM)
equation [Schuck et al., 2000]:

X, (t)= i|A cos(to + ntnw)| 3)

n=0
where: N = number of cosines necessary for pulse shaping
A = pulse amplitude (constant)
t, = pulse pair spacing depending on mode (1, 2, 3/A, C)

From this it is possible to get various octal codes that correlate to specific aircraft object types.
The set of all possible transponder reply pulses is shown in figure 5 (from two closely spaced
transponders).
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Figure 5. IFF Transponder Replies from Two Objects



For ESM, a typical signal can be of the type (among others):
Xgsye (£) = A.[1+ K m(t)cos(2nf. )] @)

where: 4, = carrier amplitude
k, = modulation index
m(t) = message signal
fo = carrier frequency

These signal characteristics can describe an emitter frequency, mode, PRF, polarization, pulse
width, coding, etc. From this information, platform associations can be made.

For NCTR, one possible method to identify helicopters exploits the radar return modulation
caused by the periodic motion of the rotor blades. The equation for radar cross section (RCS) as

a function of angle (0) is shown in equation(5) [Bullard and Dowdy, 1991][Misiurewicz et al.,
1998]:

RCS(O):exp(iwt)m(l—exp(ziwl sin0 )D )

(4

This is illustrated in figure 6.

Advancing Tip

Direction of
Forward Flight

Velocity
Distribution

Retreating Tip

Figure 6. Feature Detection from Rotating Helicopter Blades



From the spectra described by the Fourier transform of equation (5), it is possible to determine
main rotor configuration (single, twin, etc.), blade count, rotor parity, tail rotor blade count and
configuration (cross, star, etc.), and hub configurations.

The purpose of these illustrations using equations (3), (4), and (5) is to show that all sensors
function like a communications system and it is important to look at the amount of information
that can be produced by these processes.

4. Choice, Uncertainty, and Entropy for Identification

So far, this paper has discussed the identification system and feature identification vectors
(parameters) that can be created for an object, specifically an airborne object. There is a need still
to measure the (a) amount of information present in an identification vector and the (b) amount
of dissonance between the components of it prior to and after applying it to a fusion process.

Shannon helps in this area when he states that if the number of messages (or “features”) in the
set is finite then this number or any monotonic function of this number can be regarded as a
measure of the information produced when one message is chosen from the set, all choices being
equally likely. So, still following Shannon, let H(p;, p»,...,p») be a measure of how much
“choice” there is in a selection of an event or “feature”. This should have the following
properties:
e His continuous in the probabilities (p;)
o If p; = I/n, then H is a monotonic increasing function of n. Thus with equally likely
events there is more choice (uncertainty) when there are more possible events.
e If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H. This is illustrated in figure 7.
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Figure 7. Decomposition of Choice

Referring to figure 7 (2), if one choice is F/A-18, successive choices of F/A-18A, F/A-18C, F/A-
18D, and F/A-18E can be made, which is described in section 5. The three probabilities in (1) are
(1/2, 1/3, 1/6). The same probabilities exist in (2) except that first a choice is made between two
probabilities (1/2, 1/2), and the second between (2/3, 1/3). Since these are equal, the equality
relationship is shown as equation 6.
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Shannon concludes with H the measure of information entropy of the form:



H:—KZpl. In p, (7)

i=1
where K = positive constant.

The Shannon limit (average) is the ratio of C/H, from equations (2) and (7) respectively, which is
the entropy of the channel input (per unit time) equal to that of the source. However, a problem
still lies in determining how to apply entropy to disparate information sets. Sudano [Sudano,
2001] derived a solution described as the Probability Information Content (PIC) metric that
provides a mechanism to measure the amount of total information or knowledge available to
make a decision. A PIC value of zero (0) indicates that all choices have an equal probability of
occurring and only a chance decision can be made with the available information set(s)
(maximum entropy). Conversely, a PIC value of one (1) indicates complete information and no
ambiguity present in the decision making process (minimum entropy). If there are N possible
hypotheses (choices) {4;, h,,..., hny} with respective probabilities {p;, p,,..., pn}, then the PIC is
defined as:

N
Zpi Inp,

PIC= 1+ —— (8)
InN

The output of the PIC is intuitively similar to Shannon entropy in (7), but is now normalized to
run from 0 to 1. The following example demonstrates the utility of the PIC for identification and
incorporates the supporting use of a conflict measure for quantifying information dissonance.

5. Example of Identification Information Measurement
This example employs the modified Dempster-Shafer (D-S) methodology first described by

Fixsen and Mahler [Fixsen and Mahler, 1997 (prepublication 1992)] and then implemented by
Fister and Mitchell [Fister and Mitchell, 1994]. A set of attribute sensor data is given in table 1.

Sensor 1 Sensor 2

Reported F/A-18 {0.3) F/A-18 (0.2)
Mass F/A-18C (0.4) F/A-18C (0.4)
Distribution F/A-18D {0.2) F-16 {0.2)

Unknown (0.1) Unknown {0.2)
Belief, FIA-18 [0.9,0.9] F/A-18 [0.6, 0.6]
Plausibility F/IA-18C [0.4,0.7] F/A-18C [0.4, 0.6]
Evidential F/A-18D [0.2,0.5] F-16 [0.2,0.2]
Intervals FIA-18C or Unknown [0.2,0.2]

F/A-18D [0.6,0.9]

Unknown [0.1, 0.1]

Table 1. Attribute Sensor Data from Two Sources with Computed Belief/Plausibility Intervals



The following formulas are used to derive the combined distributions and agreements. First, the
combined mass function m;; is defined as:

my, =m (al )mz (al) )

where m;(a;) and m; (a;) are the singleton mass functions from two separate sensors describing
object a;.

The combined agreement function o(P;, P;) is:

N(P~P)

OL(Pan):mlz N(PI)N(PZ)

(10)

The following explain equation (10):

e P;is proposition 1 and contains the list of sensor 1 declarations and masses:
Pi(a))) = {(F/A-18, 0.3), (F/A-18C, 0.4), (F/A-18D, 0.2), (unknown, 0.1)}

e P, is proposition 2 and contains the list of sensor 2 declarations and masses:
Px(ay) = {(F/A-18, 0.2), (F/A-18C, 0.4), (F-16, 0.2), (unknown, 0.2)}

e N(P;) and N(P;) are equal to the number of elements in the “truth” set which satisfies the
description given by P; and P, respectively.

e N(P/"P>) is equal to the number of elements in the “truth” set that satisfies the description
given by the combination (denoted by ) of P; and P,.

The normalized combined agreement function ry s,

. OL(P1 (ai )’PZ (a./' ))
C

T w(B,0) (1)

and the normalizing factor o(B, C) (the summation of all of the combined mass functions) is:

@(8.C)= Yo (R P)= Ya(A(a)Rla,) (12)

i,j=1

The combined distributions are contained in table 2.
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Table 2. Dempster-Shafer Combined Distributions

(0,0,0,0,17

Unknown

0,0,0,0,1
0201

171 %1

02428=0.071

The ordered elements for each entry (F/A-18, F/A-18C, F/A-18D, F-16, Unknown) show the

membership each element has with the other elements, as described in section 4 (figure 7). For
example, the F/A-18 is also composed of F/A-18C and the F/A- 18D, so its truth setis (1, 1, 1, 0,
0). The total mass and belief/plausibility for each platform type/class is calculated from table 2

and shown in table 3.

Ohject

Fia-18
Fla-18C
Fia-180

Unknown

Converting the mass assignments in table 3 using a Smets pignistic probability [Sudano, 2001]

Total Mass

0.07

00465

0.0y

EvidentialiCredibility Interval

0,142+ 0,096 + 0,571 = 809

Table 3. Total Object Mass and Belief/Plausibility Intervals

[0.93, 0.93]
[0.81, 0.88]
[0.05, 0.12]

[0.07, 0.07]

and assuming that multiple independent sensor reports of information identical to table 3 are

available, then the following taxonomic identifications, PICs, and conflict measures are produced

for the F/A-18C with truth set (0, 1, 0, 0, 0).



[teration Probability of PIC Fister Self Fister
(0,1,0,0,0) Conlflict PD Inconsistency-B

0 0.5000 0.6161 0.3400 0.4757

1 0.8333 0.6161 0.2098 0.5767

2 0.9496 0.8512 0.0820 0.4497

3 0.9822 0.9396 0.0327 0.3062

4 0.9930 0.9730 0.0136 0.2111

Table 4. Probabilities, PICs, and Conflict Measures for Object F/A-18C

This information is represented in figure 8.
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Figure 8. Chart of Probabilities, PICs, and Conflict Measures for Object F/A-18C

The solid line in the graph represents the probability that the object being reported by sensors 1
and 2 is an F/A-18C. After iteration 4, the cumulative probabilities level out at a high probability
of occurrence. At the same time the PIC also grows towards 1 as more evidence is accumulated.
Conversely, both the FI-B and SCI indices are being reduced. The SCI is a measurement of the
amount of conflict in the information sets that support F/A-18C from each iteration without
regard to evidence for other objects. In other words this is a self-similarity measurement. The FI-
B index measures the amount of information conflict across the set of taxonomic identification
probabilities of the F/A-18C to the F/A-18D, F/A-18, F-16, and Unknown in this example. The
conflict measurement algorithms used in this example are proprietary and will be discussed in
depth in the future after additional work is completed. 4 priori or dynamic thresholds can be
applied to these information sets in order to determine when enough information is held and
conflict reduced in order to declare the taxonomic identification of an object.

6. Applications for Network-Centric Identification
The information approach presented in section 5 lends itself well to the construction of a true

nodal network-centric architecture. Figure 9 depicts a notional 7 - node architecture that allows
for communication to occur in any direction between nodes that are linked.



Figure 9. Notional 7 - Node Network Architecture

The various shapes that exist represent various kinds of objects that can be detected, tracked, and
identified within the sphere of influence of the network. Referring back to the example in section
5, imagine that the multi-diamond object between nodes 1, 2, and 7 is the same object that is
being identified from section 5 (i.e. F/A-18, F/A-18C, etc.). Since each of the seven nodes has its
own unique set of organic sensors, it is assumed that the information leading to a declaration of
taxonomic identity discussed in section 5 is taking place in node 1. However, both nodes 7 and 2
also have identification information on the same object because it is within their identification
sensor performance envelope. If each node has the same set of identification algorithms, a
hypothetical set of shared information being reported could be observed as shown in figure 10.
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Figure 10. Identification Information Content Across Nodes 1, 2, and 7

Clearly, in this example, node 1 has the highest information content on the object, with the least
amount of self-conflict or inconsistency between information sets. In this case the F/A-18C
taxonomic identification would be accepted as the network identification as reported by node 1.
This would happen without utilizing additional bandwidth by sending identification sensor
information over the network. In cases where the there is more conflict between nodes, specific



sensor information could be pulled across the network as necessary to feed the algorithms in
nodes that are missing specific types of information. As an example, node 2 may have good
NCTR derived information but little else due to poor geometry to the track, sensor casualties,
jamming, etc. In this case its ability to declare a correct ID (PCID) is poor and much conflict
could be measured via the PIC, SCI, and FI-B indices. The NCTR information obtained from the
node 2 sensors could be provided via an information pull request for nodes 1 and 7 and fused
accordingly. The resultant identification vector could then be broadcast with new PIC, SCI, and
FI-B indices as appropriate.

7. Conclusions

This paper presented the correspondences of identification principles to Shannon communication
theory that demonstrate the utility of Shannon theory to address the problem of subsurface,
surface, airborne, and space-based object identification. Shannon principles applied to an
identification system enable the calculation the value and dissonance of inputted information.
For the generation of the identification vector, it is critical that disparate sources of information
from the IFF, ESM, and NCTR domains be available. The design of an identification system
according to these principles will help to eliminate many of the problems that have plagued the
realization of a complete and accurate identification picture, for both individual platforms and
across a networked battleforce.

The author wishes to specifically thank John Sudano, Mark Friesel and J. Bockett Hunter, all of
Lockheed Martin NE&SS-SS, for their inputs to this manuscript.
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