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Abstract

Level one data fusion is the process of combining data in order to estimate the kinematic state and
the identity of individual entities.  Its quintessential application is the tracking and identifica-tion
of moving targets.  The input data may be in the form of contacts, representing the minimal
amount of processing of raw sensor data in order to achieve detection and parameter estimation,
or in the form of tracks, indicating that some level one data fusion has already taken place.

The fusion of contact data is more straightforward than the fusion of track data, because the latter
are generally cross-correlated.  However, it sometimes happens that track data are received from
multiple sources, while the underlying contact data are unavailable, thus necessitating the fusion
of tracks.  Several approaches to track-level fusion have been suggested, with varying degrees of
theoretical merit and of practical feasibility.  One approach that is sometimes used for track fusion
is to extract the positional components of track data and to feed them into a centralised fusion
algorithm that is designed for contact data.  While this method has the advantage of simplicity, it
fails to take into account the cross-correlations in the track data.  The question remains whether
one can nevertheless adopt this approach with acceptable results.

This paper documents a study to assess the impact of treating tracks as contacts on the kinematic
aspect of data fusion.  The simulation of air targets, detected by a generic radar with an
Automatic Detection and Tracking (ADT) subsystem, is performed by a data fusion algorithm
testbed that is written in Mathematica®.  The performance of the tracks-as-contacts algorithm is
compared with that of other methods for fusing track data (including Covariance Intersection) and
with that of centralised contact-level fusion.  Over the range of parameters and target behaviours
considered here, the tracks-as-contacts method performs acceptably.  The results suggest that this
method, as applied to radar/ADT data, should be valid in practice, despite its theoretical flaws.

1.  Introduction

It is typical for a tracking radar to be equipped with its own dedicated fusion node1, such as is
embodied in an Automatic Detection and Tracking (ADT) subsystem.  The numerical data

                                               
1 A fusion node is a system that creates and maintains its own set of tracks from input data that consist of contacts (as in this
case), or tracks from other fusion nodes, or a combination of contacts and tracks.  See the next footnote for a discussion of
contacts versus tracks.



provided by the radar system are, in such cases, actually track2 data from the ADT, while the
underlying contact data may be unavailable to the operator or to whatever information systems
interface with the radar.  If such a radar system is being used in isolation, the fact that only the
track data are being provided may not be a problem, provided the operator is willing to trust the
output.  But if a tactical picture is being compiled from the output of several sensors, one of
which is the radar/ADT system under consideration, there arises the question of what procedure is
appropriate for fusing these data with those of the other sensors.

One option is to reverse-engineer the radar/ADT system to make the contact data available for
fusion.  This option has the advantage that it allows for the use of many established contact-level
fusion methods.  If the contact data from the other sensors are commensurate with those of this
sensor, in the sense that the same dimensions are being measured, then the techniques that apply
to the fusion of data from a single sensor can be used, with very little modification, in order to
fuse data from several sensors.  However, the reverse-engineering procedure, if it is even possible,
is expensive and may conflict with intellectual-property agreements with the radar’s manufacturer.

A second option is to apply data fusion methods that are specifically designed for handling track
data.  This is in principle nearly as good as the first option, except that it assumes the availability
of covariance data, which may not be provided by the ADT.  Even if the covariances are available,
such track-level methods are computationally intensive and more difficult to implement than
contact-level methods.

A third option is to apply contact-level data fusion methods to the track data, where each track
report from the ADT is treated as if it were a contact and used as input.  This procedure can be
made particularly straightforward by using only the positional components of the track data and
discarding the velocity components.  A difficulty with this approach is that contact-level methods
have an underlying assumption that the errors in the input data are uncorrelated.  This is clearly
not the case for track data, and so the theoretical basis for the standard level one data fusion
methods is undermined.  Nevertheless, this method is sometimes used [Bégin et al., 1994].  The
present study seeks to begin to answer the question of whether we can, in practice, treat track
data as contact data with acceptable results.

The data gathered in this study consist of contacts and tracks from several scenarios, each
involving one or two simulated moving targets that are repeatedly detected by a simulated radar3.
Section 2 describes the simulation environment.  The contact data from the radar are fed into a
fusion node, termed the ADT node, that simulates an ADT subsystem and produces track data as
output.  The study compares the performance of the following algorithms: (1) contact-level fusion
using contacts as input (bypassing the ADT node), (2) track-level fusion using ADT tracks as

                                               
2 Contact data represent the minimal amount of processing of raw sensor data in order to achieve detection of the target and
localisation with respect to some measured parameters.  Track data represent a synthesis of data from several contacts, gathered
over a period of time, that are deemed to have originated from the same target.  For the purpose of this study, a contact will
consist only of a single measurement of an alleged target’s position at a specific time, while a track will consist of estimates of
both position and velocity, periodically updated with reference to an additional contact.
3 Although multi-sensor data fusion provides the context and motivation for the question being addressed here, it is not
necessary to use multiple sensors in order to investigate the effects of the tracks-as-contacts method.  The point is that, with or
without additional data, the tracks from the ADT node are being re-filtered.



input, and (3) contact-level fusion using ADT tracks as input.  Section 3 describes the selected
algorithms in more detail (see especially Figure 3).  Comparisons of performance are made with
respect to tracking accuracy, susceptibility to track seduction, and susceptibility to track loss.
Section 4 describes the specific investigations and presents the results.

2.  The Simulation Environment

A flexible and extensible multi-algorithm level one data fusion testbed, written in Mathematica®,
was used to create all the simulated data in this study.  This testbed allows the user to set several
characteristics of targets, sensors, and fusion nodes.  The running of a simulation within this
framework consists of generating contact and track data over a given time interval.  All the
contact and track data remain available for subsequent analysis.

A target is defined by the time interval during which it exists, and the trajectory it follows during
that time.  A sensor (used in this study to simulate a generic radar) generates contact data,
consisting of position measurements in spherical polar coordinates, at a user-specified time
interval.  The 360 degrees of bearing are divided into a number of sectors, each one being scanned
after the one beside it (in a specified direction), in order to simulate radar rotation.  The user can
also define the probability of detection (assumed constant for all targets within the volume of
coverage, which is defined by a minimum and maximum range and a minimum and maximum
elevation angle) and the false alarm rate (given as an expected number of false alarms per sector
per scan – the actual number is Poisson-distributed around this mean).  The measurement of each
polar dimension can be turned on or off (so in the present study, for example, the elevation angle
measurement is turned off in order to simulate a two-dimensional radar4).  For each contact that is
generated by a successful measurement of a target, a Gaussian-distributed error is generated and
added to each dimension of the measurement (the standard deviation for each dimension having
been specified by the user).

A fusion node has a choice of association, track formation/deletion, and track maintenance
algorithms, each with appropriate parameters.  When a Kalman Filter is used for track
maintenance, as in this study, its parameters include the choice between two- and three-
dimensional tracking (two-dimensional in this study), the interpretation of the dimensions of the
input contacts (x-y in this study5), the amount of error that the node attributes to the measurement
(given as a standard deviation for each measured dimension), and a process model (including a
transition matrix and a noise covariance matrix, both as functions of the time between updates).

The contact and track data are all stored, facilitating analysis.  The true position and velocity of
the target at any given time can be calculated, whenever desired, from the target definition.

3.  Scenarios and Parameter Settings

                                               
4 As with a real radar, the range measurement is the so-called “slant range” (i.e., the real range in three dimensions), but the
trackers will interpret it as the range of the projection of the target into the horizontal plane, following common practice.
5 The contacts originate as range-bearing but are transformed to cartesian coordinates for input to the node.



This section documents the choice of target, sensor, and node definitions, and parameter settings,
that are used in the method comparisons of section 4.

3.1 Scenario Scale; Sensor and Target Definitions

The simulated sensor used in this study is intended to represent a radar, such as might be used on
a modern frigate for the generation of the tactical picture.  The 360 degrees of bearing are divided
into twelve 30-degree sectors, each of which is scanned in turn, 1/12 second after the previous
one, representing a 60 RPM rotation speed.  The standard deviation of the error in bearing
measurement is set to 0.01 radian, and the standard deviation of the error in range measurement is
set to 150.0 metres.  These values were not varied in this study.  A maximum range of 50.0 km
was also set for the sensor.

For most of this study, the probability of detection and the false alarm rate were idealized.
Nevertheless, some of the fusion parameters (e.g., gate size) were sometimes set to values that
take into account the possibility of more realistic measurements.

For the single-target scenarios, the target crossed the sensor’s zone of coverage with a wave-like
trajectory consisting of a series of circular arcs, alternating left and right, while maintaining an
altitude of 1000 metres.  The amplitude of the wave was kept constant at 5 km while the speed
(constant with respect to time, for each target) and the curvature were varied.  See Figure 1 for
some of the trajectories.  Table 1 shows the curvature, the speed, and the amount of time it takes
to cross the zone of detection.  Scenarios involving one such target will be called “class one”
scenarios for the rest of this report.
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Figure 1.  Sample class one scenario target Figure 2.  A class two scenario with a
trajectories (radius of curvature 5 km and 20 km) merge distance of 800 m

Radius of
curvature

Speed



150 m/s 300 m/s 450 m/s 600 m/s
20 km 712 s 356 s 237 s 178 s
10 km 782 s 391 s 261 s 195 s

6.67 km 875 s 437 s 292 s 219 s
5 km 1000 s 500 s 333 s 250 s

Table 1.  Length of time for class one targets to cross the volume of interest

There are also scenarios (to be called “class two”) involving two targets.  In these scenarios,
targets that start a little over 20 km apart and going at a constant speed of 400 m/s are converging
with an angle of 60 degrees between their courses for 50 seconds, then they each make a turn
(radius 5 km) of 30 degrees until they are side by side, then after five seconds of parallel flight
they each make another such 30 degree turn in order to diverge at a relative angle of 60 degrees.
See Figure 2.  The merge distance (i.e., the distance between the parallel segments of the two
targets) is a parameter to be varied.

3.2 Relationships Among Algorithms

Three distinct fusion nodes are used in these simulations.  The ADT node receives the original
contact data and uses them to form its own set of tracks.  (Although some of the parameters of
the ADT node will be varied occasionally, the reader is invited to imagine that these parameters
are fixed and are beyond our control.)  Every time a track in the ADT node is updated due to
association with a contact, the positional components of the updated track are sent to another
fusion node (the contact-level node or CL node), whose parameters we will vary.  In order to
compare the results of this tracks-as-contacts (TAC) method with centralised contact-level (CCL)
fusion, the CL node also receives the original sequence of contact data.  See Figure 3.

Figure 3.  The flow of data in the data fusion methods under consideration

In order to provide other comparisons with the TAC method, the track output from the ADT
node will, in some cases, also be fed into yet another fusion node, called the track-level node or
TL node, which will apply fusion methods that make use of the full state estimate and the
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associated covariance estimate from the ADT tracks.  Here we will refer to these methods as
track-level (TL) fusion, even when the methods in question do not properly account for cross-
covariances among the data.  Figure 3 shows schematically the relationships among the methods
being compared in this study.

3.3 Common Characteristics of the ADT Node and the CL Node

In both the ADT node and the CL node, contact position data that are received in polar
coordinates are converted to two-dimensional cartesian coordinates by a simple transformation
(without de-biasing).  It is assumed that the variance in range and the variance in bearing are
constant and that there is zero covariance between range and bearing; the measurement noise
covariance matrix used for tracking is derived from these assumptions, again by a simple
transformation to cartesian coordinates.  For purposes of this study, it is convenient to define a

measurement error ratio (MER) for each dimension (range and bearing) as 
true

believed

σ
σ

, where

believedσ  is the standard deviation that the fusion process at a given node attributes to the

measurement error, and trueσ  is the actual standard deviation that was used to generate the errors

in the simulated contacts.  While the MER for range and the MER for bearing are independent in
principle, these two MERs are kept equal to each other throughout this study, so the MER is
treated as a single variable parameter for the fusion node.

A contact that is not associated with a prior track forms a tentative track.  A tentative track is
deleted if no contact is associated with it in the following scan.  An assumed maximum target
speed of 6000 m/s is used to judge the feasibility of association for this purpose.  If an association
is made between a contact and a tentative track, a full state estimate (x, y, and the corresponding
components of velocity) and covariance are calculated from its two contacts.  Such a track is
called a preliminary track.  A preliminary track becomes a confirmed track if at least two contacts
are associated with it over the next three scans of the sensor following the upgrade to preliminary
status; otherwise it is deleted.  A confirmed track is deleted if no contacts are associated with it
over five sensor scans in a row.

For a preliminary or confirmed track, the condition for a feasible association is γνν ≤−1TS ,
where ν  is the innovation (i.e., the difference between the measured and predicted position), S  is
the innovation covariance (i.e., the sum of the measurement covariance and the positional part of
the predicted track covariance), and γ  is a variable parameter.  A strict nearest-neighbour rule
(maximizing the number of associations, and minimizing the sum of the costs within that
constraint [Blackman, 1986]) is used for association.  The cost for association between a contact
and a preliminary or confirmed track is ( )SS detln1T +− νν .  The cost for association between a
contact and a tentative track is a large constant (so a contact will always favour a preliminary or
confirmed track over a tentative track, but all feasible associations among tentative tracks are
equivalent and are in effect decided randomly).



A Kalman Filter (KF) is used for tracking.  The process model is of the constant-velocity type,
meaning that the target accelerations are attributed to the noise term.  The process noise
covariance matrix takes the form

( )





















=

T

T
NT

T

T

TT

TT

00

00

00

00

2

2

23

23

2

2

23

23

Q , (1)

where T  is the elapsed time between track updates and N  is a variable parameter.

3.4 The ADT Node

For convenience, the ADT node was given a MER (defined in section 3.3) of unity6.  The process
noise parameter N  (from equation 1) for the ADT node was set based on the premise that a real
ADT system is not strongly susceptible to track loss for flight characteristics that are feasible for a
military aircraft.  The use of this premise will allow us to find a rough lower bound for a realistic
value of N , as described in this section.

Four class one scenarios were run, ten times each.  The contact data for each run were fed into
five copies of the ADT node, each having a different value of N , in order to find (roughly) the
threshold for track loss, given a standard 99% gate for association.  (The gate size parameter γ  is
set to 9.21.  This is a “99% gate” because the probability, assuming the validity of the process
model, for a contact that originates from the correct target to meet the gate criterion is 0.99.
Although the false alarm rate was idealized for these runs, the use of a gate would be necessary in
the realistic case of numerous false alarms.)  Table 2 shows the number of runs, out of ten, in
which there were two or more tracks corresponding to the target over the duration of the run.  In

each case the ratio 
2a

N
 (where N  is the process noise parameter and a  is the acceleration of the

target’s turn), which has units of time, was varied from 1 to 3 seconds, in steps of 0.5 seconds.

Scenario 2/ aN
Curvature

(km-1)
Speed
(m/s)

1.0 s 1.5 s 2.0 s 2.5 s 3.0 s

0.05 150 5 4 1 0 0
0.1 300 5 1 0 0 0
0.15 450 8 6 4 4 2
0.2 600 7 2 0 0 0

Table 2.  Number of times node suffers track loss in ten runs, for various class one scenarios

                                               
6 While this setting in a sense idealizes the ADT node (thus perhaps, weighing the method comparisons artificially in favour of
those methods that use the ADT), this idealization is balanced by the rough approach to setting the process noise parameter.



The table suggests that a value of 2 seconds for the ratio 
2a

N
 is very roughly where the node

becomes vulnerable to track loss, given the gate condition and the measurement errors used here
(although the threshold appears to be somewhat higher in the third scenario listed, for unknown
reasons).  For the four scenarios tested here, these thresholds correspond to noise parameter
values of about 2.5 m2/s3, 160 m2/s3, 1800 m2/s3, and 10000 m2/s3.  Even the last case represents
flight characteristics which are within the capability of modern military aircraft, so arguably a
value of 10000 m2/s3 for the noise parameter is realistic for an ADT system.  Only two values
(150 m2/s3 and 1000 m2/s3) were used in the present study, and as we will see, there appears to be
little point in letting it go higher than the latter value for our purposes.  A higher value of the
noise parameter in effect makes the KF attach greater weight to the measurement; thus the higher
this number, the more the tracks-as-contacts method will approach the centralised fusion method.
The lower value of this parameter was used in order to point out the kind of differences that can
be expected between these two methods, while the quantitative results that arise from using the
higher value of this parameter are more realistic.

While a 99% gate was used in the above preliminary analysis, a much larger gate size was used in
the investigations of sections 3.5, 4.1, and 4.2, in order to avoid complications related to track
loss while investigating other results such as tracking accuracy.

For purposes of providing input to other nodes, the ADT node will send only fully-formed
(preliminary or confirmed) tracks, never tentative tracks.

3.5 The CL Node

The process noise parameter will be fixed at 1000 m2/s3 in the CL node.

The MER (defined in section 3.3) will be kept at unity in the CL node in CCL fusion.  But a fair
comparison between the CCL and TAC methods requires some account to be taken of the
differences in the nature of their inputs7.  In particular, it does not make sense to use the same
MER for the CL node in TAC fusion as is used for the CL node in CCL fusion.  The amount of
measurement error that the node attributes to its inputs should in principle reflect some prior
knowledge (i.e., through experimentation) of the amount of actual random error that is likely to
appear.  Indeed, one might expect the preliminary fusion in the ADT to have filtered out some of
the random error, so the CL node’s MER should be set lower for the TAC method than for the
CCL method.  This section documents the preliminary tests that were used to find an appropriate
value of the MER to use for the CL node in the TAC method for the rest of the study8.

                                               
7 If the track covariance data from the ADT node are made available to the CL node for TAC fusion, then the positional
components of the ADT track covariance can be used directly as the measurement covariance, instead of calculating the
measurement covariance from a MER that is fixed for the duration of a given run.  Here we will assume that the ADT track
covariances are not available.
8 In section 3.3 it was pointed out that the MER for the range and the MER for the bearing are independent in principle.  The
effects of changing one versus changing the other are (presumably) highly scenario-dependent, so there is little value in treating
them as independent.  They are kept equal to each other throughout this study.



Contact data were collected in four separate runs of the class one scenario in which the target has
a speed of 300 m/s and a turn radius of 10 km.  Each set of contact data was fed through the TAC
fusion procedure, with a process noise parameter of 150 m2/s3 in the ADT node and several
different values of the MER in the CL node.  The MER was varied in order to find where the
tracking accuracy would be optimized with respect to position error and velocity error.  Since we
are here concerned with tracking accuracy rather than with track loss, the gates for both the ADT
node and the CL node were enlarged so that track loss would not be an issue.

Figures 4 and 5 present the time-averaged absolute position error and the time-averaged absolute
velocity error, each averaged over the four runs for each of fifteen values of the MER.
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Figure 4.  Position error (metres) in TAC fusion Figure 5.  Velocity error (m/s) in TAC fusion as a
as a function of MER. function of MER.

It appears from these figures that a MER of about 0.10 optimizes the position error and a MER of
about 0.67 optimizes the velocity error, for TAC fusion in this scenario.  A similar procedure, for
a process noise parameter value of 1000 m2/s3 in the ADT node, leads to optimal MERs of 0.25
and 1.0 (optimized respectively for position error and velocity error) in the same scenario.  We
will fix the MER in the CL node for TAC fusion to 0.25, representing a rough compromise among
the four optimized values, for the rest of the study9.

3.6 The TL Node

In order to provide additional comparisons for the TAC method, the output of the ADT node
output is also input to the TL node, which makes use of the entire state estimate and covariance
of each track report.  The TL node maintains its own list of (internal) tracks, which are created,
updated, and deleted based on the track update reports from the ADT node.

The feasible-association condition in the TL node is ( ) ( ) ( ) γ≤−+− −
prin

1
prin

T
prin ˆˆˆˆ xxPPxx , where

inx̂  is the state estimate from the input track report, prx̂  is the predicted state estimate from the

                                               
9 Only a rough value is of use to us, because realistically the MER in the CL node will usually be farther from its overall
optimum value (however one might choose to define such a thing) in TAC fusion than in CCL fusion.  In CCL fusion, all that is
needed in order to determine a near-optimal value for the MER is knowledge of the characteristics of the sensor as it performs
in the current environmental conditions.  In TAC fusion, the optimal MER is also highly scenario-dependent in that different
flight trajectories and speeds will have been handled by the ADT node with different degrees of effectiveness, and this
variation in performance will be reflected in the input to the CL node.



internal track, inP  and prP  are their respective covariances, and γ  is again a gate size

parameter10.  The expression on the left-hand side of the inequality above is also used as the cost
when applying the nearest-neighbour rule for association.  An input track report that is not
associated with an internal track forms a preliminary track.  Confirmation of a preliminary track,
and deletion of preliminary or confirmed tracks, is handled by the same rules as in the other nodes
(section 3.3).

The track updating rule followed by the TL node, in order to calculate the new track state newx̂

and its covariance newP , will either be 1
pr

1
in

1
new

−−− += PPP  and pr
1

prin
1

innew
1

new ˆˆˆ xPxPxP −−− +=  or

( ) 1
pr

1
in

1
new 1 −−− −+= PPP ωω  and ( ) pr

1
prin

1
innew

1
new ˆ1ˆˆ xPxPxP −−− −+= ωω , where ω  is the real number in

the interval [0,1] that minimizes the determinant of newP .  The former rule neglects the effects of

cross-covariance between the internal track and the input track, and is thus close in spirit to the
TAC method.  Here we will call it “Naï ve track-level fusion”11.  The latter rule is one version of
the Covariance Intersection (CI) method [Julier and Uhlmann, 2001].  This more sophisticated
track-level algorithm does not depend on any assumptions about the cross-covariance between the
internal track and the input track.  The need to minimize the determinant of the new state
covariance, however, means that it is relatively computation-intensive.

4.  Method Comparisons: Observations and Discussion

The methods being compared in this section are:
• Centralised contact-level fusion (bypassing the ADT node).
• Tracks-as-contacts (TAC) fusion, using a constant MER (defined in section 3.3) of 0.25.
• Naï ve track-level fusion (used only in the tracking accuracy investigation).
• The Covariance Intersection (CI) algorithm for track-level fusion.

See sections 3.2 to 3.6 for an explanation of the methods used.  The methods are compared with
respect to tracking accuracy, susceptibility to track seduction, and susceptibility to track loss.

4.1 Tracking Accuracy

For the tracking accuracy comparison, the sixteen class one scenarios of Table 1 were each run
through the four different tracking methods.  Each of the two process noise parameter values
from section 3.4 were used in the ADT node.  The position error and velocity error, averaged
over all track updates, are respectively shown in Tables 3 and 4 for all four methods, for all
sixteen scenarios.  (“Low N” and “High N” refer respectively to process noise parameter values of
                                               
10 This gate condition does not take into account cross-covariances between the internal track and the input track, but this
limitation is not an issue in the present study.  The effect of neglecting the cross-covariances in association is to underestimate
the statistical difference between the two tracks [Bar-Shalom and Li, 1995], in effect widening the gate.  This accords with the
fact that we have deliberately kept the gates very large (except in section 4.3).  This underestimation of the statistical
difference is particularly large when previous reports from the same input track have been used to update the internal track in
question.  For purposes of distinguishing between multiple targets (as in section 4.2), the consequence is presumably that the
association decision will be unfairly biased toward making the correct decision, which is hardly a problem!  On the other hand,
the cross-covariances are important where track updating is concerned.
11 The term “track-level” is used here because the full track state and covariance are explicitly used in the update formulae.
The fact that the cross-covariance is neglected, however, implies that the term is (arguably) being abused.



150 m2/s3 and 1000 m2/s3 in the ADT node.)  The overall state estimate error, normalized by the

track covariance (i.e., the quantity ( ) ( )xxPxx −− − ˆˆ 1T , where x̂  is the estimate, x  is the true state
vector, and P  is the covariance) and similarly averaged, is presented in Table 5.
These results are derived only from a single run for each scenario.  In order to obtain a rough
measure of the statistical variation, the fourth scenario listed was subsequently run twenty times
through CCL fusion.  Each of the resulting standard deviations appears in the appropriate cell of
its respective table.

Scenario Fusion Method (and process noise parameter setting)
Curvature

(km-1)
Speed
(m/s)

CCL
fusion

TAC
(low N)

TAC
(high N)

Naïve TLF
(low N)

Naïve TLF
(high N)

CI TLF
(low N)

CI TLF
(high

N)
0.05 150 170 150 180 150 170 150 170
0.05 300 150 140 150 180 150 140 150
0.05 450 150 180 150 310 170 180 150
0.05 600 200 ± 10 350 210 570 280 330 200
0.1 150 160 140 170 140 150 140 160
0.1 300 180 210 180 330 190 200 180
0.1 450 200 340 210 600 280 320 200
0.1 600 240 530 280 840 440 490 240
0.15 150 170 150 170 170 160 150 170
0.15 300 170 240 170 420 210 230 170
0.15 450 210 450 230 780 350 420 210
0.15 600 320 730 370 1030 600 670 320
0.2 150 170 150 170 180 160 150 170
0.2 300 170 280 180 510 230 262 170
0.2 450 230 540 260 890 420 500 230
0.2 600 370 730 430 950 720 660 360

Table 3.  Position error (metres) for each fusion method in class one scenarios

Scenario Fusion Method (and process noise parameter setting)
Curvature

(km-1)
Speed
(m/s)

CCL
fusion

TAC
(low N)

TAC
(high N)

Naïve TLF
(low N)

Naïve TLF
(high N)

CI TLF
(low N)

CI TLF
(high

N)
0.05 150 41 45 62 20 32 24 41
0.05 300 40 42 57 41 35 33 40
0.05 450 51 45 58 79 54 60 51
0.05 600 73 ± 5 61 66 131 85 102 72
0.1 150 41 46 63 23 31 24 41
0.1 300 49 47 62 70 48 54 49
0.1 450 76 65 69 144 92 111 76
0.1 600 127 110 96 230 159 190 127
0.15 150 41 45 62 28 31 26 41
0.15 300 55 48 58 97 62 73 55
0.15 450 105 89 79 202 131 160 106
0.15 600 170 158 113 293 216 263 170
0.2 150 41 44 61 35 32 29 41
0.2 300 65 57 65 122 77 93 65
0.2 450 128 115 91 239 162 200 129



0.2 600 223 213 161 338 279 314 223

Table 4.  Velocity error (m/s) for each fusion method in class one scenarios

For the lower ADT node process noise parameter, the TAC method estimates the positions better
than the centralised fusion method in the case of the slower targets, but worse in the case of the
faster targets.  The higher ADT node process noise nearly eliminates the difference between these
two methods.  There is very little difference between TAC and CI at either setting.  The Naï ve
track-level fusion is much less accurate than the other methods in several cases.

The TAC method, as compared with centralised fusion, shows the opposite trend with respect to
velocity error than with respect to position error.  That is, the TAC is more accurate than
centralised fusion for the faster targets and less accurate for the slower targets.  The CI method,
on the other hand, shows the same trend for velocity error as it does for position error.  Naï ve
track-level fusion is again noticeably less accurate than the other methods for the faster targets.

Scenario Fusion Method (and process noise parameter setting)
Curvature

(km-1)
Speed
(m/s)

CCL
fusion

TAC
(low N)

TAC
(high N)

Naïve TLF
(low N)

Naïve TLF
(high N)

CI TLF
(low N)

CI TLF
(high

N)
0.05 150 1.5 4.3 4.9 2.5 2.2 1.6 1.5
0.05 300 1.3 3.8 4.2 2.8 2.0 1.6 1.3
0.05 450 1.5 4.9 4.5 4.7 2.3 2.4 1.5
0.05 600 1.8 ± 0.1 8.4 5.3 8.4 3.3 3.8 1.8
0.1 150 1.4 4.0 4.7 2.4 2.1 1.5 1.4
0.1 300 1.5 5.3 4.7 4.6 2.3 2.2 1.5
0.1 450 1.8 8.6 5.5 9.0 3.4 4.1 1.8
0.1 600 2.5 13.4 6.8 13.1 5.1 6.9 2.5
0.15 150 1.4 4.2 4.8 2.7 2.1 1.5 1.4
0.15 300 1.6 6.2 4.7 6.1 2.6 2.9 1.6
0.15 450 2.3 11.5 5.9 12.3 4.4 6.0 2.3
0.15 600 3.2 19.0 9.0 15.7 7.0 9.8 3.2
0.2 150 1.5 4.2 4.7 2.9 2.1 1.7 1.5
0.2 300 1.6 7.4 4.8 7.7 2.9 3.6 1.6
0.2 450 2.7 14.6 7.0 13.9 5.5 7.7 2.7
0.2 600 4.5 18.6 11.0 15.9 9.4 11.1 4.5

Table 5.  Normalized state error for each fusion method in class one scenarios

The normalized state errors show that the TAC method produces overly optimistic covariances.
This result suggests that when such a method is used, any Area of Uncertainty information from
the fusion node should be reinterpreted accordingly.

With the higher value (1000 m2/s3) of the ADT node process noise parameter, there is hardly any
noteworthy differences among the centralised fusion, TAC fusion, and CI results – except that the
TAC method achieves better velocity estimation for the faster targets.  Note that these results (for
the TAC method) depend on the believed positional errors in the “contact” input – represented in
this study by the MER defined in section 3.3.  The results of that section indicated that a higher



value for the MER (approaching and perhaps eventually surpassing unity) becomes appropriate as
the ADT node process noise parameter is increased.  But to increase these parameters can only
further obscure the differences between centralised fusion and TAC fusion.  Thus the claim (made
in section 3.4) that there is no point, within the scope of the present study, in going beyond 1000
m2/s3 for the ADT node process noise parameter is justified – despite the fact that even this value
is (arguably) unrealistically low.

4.2 Track Seduction

The next investigation uses the two-target class two scenarios described in section 3.1.  For four
different values of the merge distance, the centralised fusion method, the TAC method, and the CI
method were each tested in twenty different runs, to see which methods were more or less likely
to confuse the two targets.  Both of the values of the ADT node process noise parameter that
were used in earlier sections are used here for the latter two methods.

Table 6 shows the number of runs, out of twenty, in which each of these configurations ended up
with the correct match between the converging and diverging parts of the tracks.  The
parenthesised number shows the number of runs in which every association was correct.  When
this number is not shown, it is equal to the previous number.

Fusion method (and pre-fusion process noise)Merge
distance CCL TAC (low N) TAC (high N) CI TLF (low N) CI TLF (high N)
200 m 1 (0) 0 1 (0) 0 1 (0)
400 m 2 2 (1) 5 (3) 0 2
600 m 12 3 12 0 12
800 m 19 14 19 14 19

Table 6.  Number of times track seduction is avoided for various class two scenarios

These three methods appear to perform equally when the higher value of the ADT node process
noise parameter is used – except that the TAC method appears to have outperformed the others at
a merge distance of 400m.

4.3 Track Loss

The problem of track loss was touched on in section 3.4 when the ADT node process noise
parameter was set.  The question now arises of how to make a meaningful comparison between
the TAC method and the centralised fusion method where susceptibility to track loss is concerned.
Just as a meaningful comparison of tracking accuracy between the two methods requires them to
have different MERs (see section 3.5), so a meaningful comparison of susceptibility to track loss
between the two methods requires them to have different gate sizes.

In the investigations thus far, the probability of detection and the false alarm rate have both been
idealized.  In such conditions, the use of an association gate has value only insofar as it reduces
the computational load of the system by quickly rejecting some potential associations (between an
internal track and an input contact or track) as unfeasible.  But in the real world, the fact that the



real target may occasionally be missed by the sensor means that if a gate condition is not used, or
a gate is set too large, there is the danger of a track being seduced by false alarms.  This important
role of an association gate belongs primarily to whichever fusion node receives the real contact
data.  In the case of any method that uses the ADT node output, that node will already have
filtered out most of the false alarms, so the CL (or TL) node is free to use a much larger gate size,
rendering this node less susceptible to track loss.  However, the fact that only fully-formed tracks
from the ADT node are passed on implies that, if the ADT node itself has suffered track loss,
several contacts will in effect be missed by the CL (or TL) fusion node.

Here, we set the sensor’s probability of detecting the target at 0.95 and set the average number of
false alarms per sector per scan at 0.125 (thus producing an average of 1.5 false alarms per full
rotation of the sensor).  The ADT node will use a 99% gate (that is, a gate condition of

21.91T ≤− νν S ) as will the CL node in the case of centralised fusion, while the CL node will use a
99.9% gate (that is, a gate condition of 82.131T ≤− νν S ) for TAC fusion.  A run is made for each
of the sixteen class one scenarios used earlier.  The relevant measure of performance here is the
Track Continuity, which is to say the number of tracks (ideally one) that are associated at least
once with the target.  Both ADT node process noise parameter values are used.

Scenario Fusion method (and pre-fusion process noise parameter setting)
Curvature

(km-1)
Speed
(m/s)

Centralised TAC
(low N)

TAC
(high N)

CI TLF
(low N)

CI TLF
(high N)

0.05 150 1 1 1 1 1
0.05 300 1 1 1 1 1
0.05 450 1 1 1 1 1
0.05 600 1 1 1 2 1
0.1 150 1 1 1 1 1
0.1 300 1 1 1 1 1
0.1 450 1 1 1 6 1
0.1 600 3 3 2 7 2

0.15 150 1 1 1 1 1
0.15 300 1 1 1 3 1
0.15 450 1 3 1 13 1
0.15 600 5 9 3 11 5
0.2 150 1 1 1 1 1
0.2 300 1 1 1 7 1
0.2 450 4 8 3 17 4
0.2 600 13 12 15 13 13

Table 10.  Number of tracks produced to follow target in various class one scenarios

These results indicate that the TAC method is no more susceptible to track loss than is centralised
fusion, given a realistic value for the ADT node process noise parameter, at least for the range of
target behaviours considered here.  Arguably, the association gate for the CL node as used in
TAC fusion could be made even larger, and such a change could only strengthen this result.

5.  Conclusions



The relative performance of the tracks-as-contacts method and the centralised fusion method were
compared, in several simulated runs of one-target and two-target scenarios, with respect to
tracking accuracy, susceptibility to track loss, and susceptibility to track seduction.  The results
that were obtained with the lower value (150 m2/s3) of the ADT node process noise parameter
show that the tracks-as-contacts method might be expected, in general, to have greater errors in
position estimation (at least in the case of faster targets) and to be more susceptible to track
seduction than the centralised fusion method.  However, the higher value (1000 m2/s3) of the
ADT node process noise parameter is apparently high enough to erase any significant difference in
performance between these two methods, even though a realistic value for this parameter would
arguably be higher still.  An exception to this comparison is that the velocity estimation of the
tracks-as-contacts method is apparently better for faster targets and worse for slower targets than
that of centralised fusion.

Two track-level fusion methods were also considered in order to provide further comparisons.
There was nothing in the present set of results to indicate any significant inferiority in the tracks-
as-contacts method as compared to Covariance Intersection (again, except in the velocity
estimation of slower targets).  The “Naï ve” track-level fusion method (considered only in the
tracking accuracy investigation) was much worse than the tracks-as-contacts method, despite a
similar underlying philosophy.

The practice of treating the errors in the output of an ADT as mutually uncorrelated would appear
to be validated, at least for the range of simulated scenarios and parameters considered here.
However, it should be noted that the tracks-as-contacts method produces overconfident
covariances, as shown by the normalized state errors in Table 5.

A more thorough exploration (by simulation) of the practical implications of treating tracks as
contacts would require detailed knowledge of the design and performance of the original sensor
as well as of the fusion node producing the tracks.  A study involving real data would of course be
ideal.
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