
Generic Organisation Data Integration Solution: the fast and
convenient way to integrate data.

Richard d’Anjou & François Martel
CGI Group Inc.

5400, Boul des Galeries
Bureau 400

Québec (Québec)
G2K 2B4

(418) 623-0101
richard.danjou@cgi.ca, francois.martel@cgi.ca

Abstract

The best solution to making tactical and strategic decisions at a coalition level would be
to completely integrate information systems in a seamless manner without considering
the various participating countries. Various technological solutions offer the required
functionality to accomplish this.

Unfortunately, even though considerable efforts are currently being deployed to make
this possible, presently it is impossible to rapidly integrate information systems that
would allow the existence of C2 applications to manage coalitions formed by any NATO
member country.

Given the requirements of countries to rapidly intervene in theatres of operation, often
jointly with many countries, many army corps, it would be important to have a transitory
solution that would allow the rapid integration of the various C2 applications that are
used by the various involved countries, until all countries can standardise their respective
applications. The Operational Data Store (ODS), is the data structure that integrates
heterogeneous data coming from various sources into a coherent set of data and serve as a
data source for C2 applications.

In this paper, we will present a solution that uses an ODS to rapidly integrate C2
applications from various countries in order to provide C2 functions to a coalition.

1. Background

The ideas developed within the Generic Organisation Data Integration Solution (GODIS)
were inspired from the ideas of the Army Integrated Management Environment (AIME).
The AIME project is a multi-phase initiative aimed at implementing a generic
technological platform that will favour the integration of data emanating from
administrative and operational systems of all backgrounds into a common ODS from
where they can be analysed with specialised tools.



Following the development of an organisation data integration solution for the
Department of National Defence, an initiative was undertaken to make the solution more
generic. The project aimed to modify the existing components in order to make them
independent of the military context and of the underlying technology. Performance
improvements were also considered with the intent of making the product more reusable.

The major goal of that development was to provide a generic framework of the solution
to allow organisations to implemented an ODS without having to code everything from
scratch. The resulting product (GEDIS), is a reference implementation to prove the
concept that can directly be extended to organisations that choose this way of managing
data.

2. Data Integration VS Application Integration

The market offers a wide range of products that allow enterprise application integration.
CORBA, SOAP, .Net and XIS are but a few examples of this type of infrastructure.
However, this integration approach requires considerable standardization efforts, but do
provide good results at the application collaboration level. Furthermore, this approach
introduces new problems relating to data ownership, validity and refreshing.

For these reasons, it is often difficult to use existing systems in order to integrate
applications. In fact, legacy systems are often designed to work in stand-alone mode, as
stovepipes. The passage to collaborative/network mode is often complicated, sometimes
impossible.

Data integration is a much more simplistic approach with respect to bring about inter-
organisation collaboration. The approach is based on the principle of building a data
structure that duplicates the structures of the operational systems of the various
organisations and thus linking them together in a coherent manner. This new structure has
no ownership on the data and has a relative control of their validity. However, data
integration is a much more rapid process than application integration since it does not
require legacy system standardization. Hence, this structure offers the ability to provide
information with a global vision emanating from multiple source applications, all within
a relatively short timeframe.

In the context of military operations involving many countries, it is currently difficult to
have such a global vision through application integration given that the standardization
process has not yet been completed. For this reason, countries wishing to collaborate
rapidly had to set-up an infrastructure allowing them to rapidly integrate data.

The solution we will present to you is the result of strenuous work aimed at defining and
designing a very rapid means of integrating data from multiple, disparate sources.

3. ODS Concept



The ODS concept emanates from Bill Inmon. This concept is based on an even larger
infrastructure known as the Corporate Information Factory (CIF) that is a management
framework for enterprise data [Inmon, 1998]. The ODS is a data structure that groups
together data from an organisation’s operational systems and that is defined as:

• Subject Oriented: an ODS is designed and organised around the major subjects of the
corporation. The major subjects of a corporation are typically such things as
CUSTOMER, PRODUCT, ACTIVITY, POLICY, CLAIM and SHIPMENT. The
ODS is not organised around any specific application or function.

• Integrated: The data found in the ODS is an aggregation of detailed data found in the
legacy systems that feed it. As the data is pulled into the ODS from the legacy
systems, the data are fundamentally transformed into a consistent, unified whole. The
transformation and integration of detailed legacy data results in a truly integrated,
corporate-wide understanding of data as it resides in the ODS.

• Volatile: data in the ODS is updated on a regular basis. Every time the data in the
foundation source system – the legacy system – changes, the ODS needs to be
updated.

• Current Valued: data in the ODS is quite up-to-date; there is very little, if any,
archival data found in it. If, for whatever application need, archival data is found in
the ODS, it is never more than a few days old.

• Detailed: data in the ODS serves the operational community and as such is kept at a
detailed level. The detailed level is for a given user community. The ODS must not
summarise data for the user community of the ODS.

4. Store and Forward Concept

Store and forward is a means of transforming information coming from source systems
and transferring it to a target system [Inmon, 1995]. At first, data are taken from source
systems (enterprise legacy operational information) and put into a staging database. Once
staged, data are then integrated and stored within the ODS database.

Staging ODS

Store

Forward

Figure 1 Store and Forward

During the store operation, all of the information is extracted from the source systems
and copied to a first database called Staging. This database stores the source system
information in their entirety. In this intermediate database, all of the data can be accessed
independently from their original sources. This allows a standardized manipulation of
data during the transformation operation.



In the second operation, data are integrated, unified and then sent to another database, the
ODS.

The result of the two successive operations will give an ODS where data validity
corresponds to the same validity of data at the time of its extraction.

5. Store and Forward with Delta

The conventional store and forward technique provides for feeding an ODS, but its
subsequent maintenance is very difficult. In fact, this way of proceeding takes an image
of the source systems in order to create an ODS and another image must be taken in order
to have an up-to-date ODS.

In order to facilitate the ODS update process, a delta section is added to the model. The
delta is used to establish the difference between the actual source system data and the
latest version of data stored in the ODS. In this manner, information that has been loaded
and that is still valid will not go through the integration and transformation process.

Staging ODS

Store

Forward
Delta

Figure 2 Store and Forward with Delta

The data delta considerably reduces the data load going through the system. Hence, it is
possible to quickly, almost real-time, refresh the data. These data, once refreshed in the
staging database, are sent alone to the ODS during the forward operation.

In this context, the Store and Forward operations need not be executed sequentially. In
fact, we could imagine that the store operation takes place many times while the forward
operation occurs only once. For example, the store process could operate all day to
provide a continually up-to-date staging database and the forward operation could be
executed at night.

6. Data flow of Data Integration in a Coalition C2 Context

In the context of coalition C2 applications, data will flow in a single direction, that is,
from source systems toward the target system. It is then impossible that the data change
in the ODS have an impact on the source data. In the context of an ODS, operational
system data cannot be modified by other operation systems since it is only the original
system that can ensure its data’s integrity. Furthermore, C2 systems linked to the ODS
are conceived for tactical and strategic decision support and should not be adapted for



updating information. The results of this first flow of information is the creation of the
ODS, this will then provide a global view within a coalition C2 tool.

The main advantage of this way of doing things is that countries can go about using their
C2 applications normally. The solution does not yet, however, support the backward flow
of information or the direct flow of information between countries

C2 Application C2
BD

C2 Application C2
BD

C2 Application C2
BD

Staging
DB

ODS

Coalition C2
Application

(Global
OverView)

Raw data copy

Raw data copy

Raw
data
copy Integration and

transformation

Figure 3 Data Flow from Source to ODS

Figure 4 shows an example of using data from many systems in order to obtain a
common view of the situation. In this case, locations.



C2
BD

C2
BD

C2
BD

Staging
DB

ODS

Figure 4 Exemple : Location

In order to support the return of information, it is possible to add a C2 mart to the
solution. That is, a C2 data repository that can be used by all. In this context, the
integrated data becomes an entity that is distinct from the raw data: the source systems do
not retain ownership of the data and cannot modify it, they can only consult it. The C2
mart can be a separate database, or in fact be the ODS or yet again a service of the global
C2 application. Furthermore, the global C2 application could be enhanced with new data
or analysis results from the C2 mart. In this way of doing, it is not necessary that the
source C2 applications integrate the data mart data. It would be possible to use the data as
is without displaying it within a source system.



C2 Application C2
BD

C2 Application C2
BD

C2 Application C2
BD

Staging
DB

ODS

C2
Mart

Figure 5 C2 Mart

In the event that a country would have responsibility for Command and Control, the ODS
allows using integrated data as if it were operational data. Hence, the C2 application of
one country could be reused in order to have a global view.

7. GODIS

To produce an ODS that would correspond to that which was defined previously, we
created a number of components within an architecture pattern. This architecture pattern
supports the implementation of a ‘store and forward with delta’ concept for the
construction of an ODS. Obviously, this pattern is not exclusive to C2 applications, it
may also be used by any organisation wishing to rapidly create an ODS.

Structure :

Datapump
pumpSource()

Delta
stagingRow()

Integration and
transformation

layer
processTable()

Staging DB
ODS

Figure 6 GODIS Structure

Participants :

Each of the following components is run as a Thread;



• Data pump: Retrieves the content of a source system (DB)
• Delta: Stages each of the rows of the source system DB and determines the delta for

existing data
• Staging DB: Contains all the information in a single format, accomplishes

synchronization between the Store and the Forward
• Integration and Transformation Layer (ITL): Transforms the data from the Staging

database format to the target database format

Collaboration:
• Triggered by human control, timer or other applications, the data pumps take a copy

of the source systems and send them to the Delta
• The Delta identifies changed data from the last load of data and marks the Stating DB

with data to be changed at the target location

Trigged by human control, timer or other applications, the Integration and
Transformation Layer parses the marked data following some rules and sends the results
to the ODS

8. Proof of Concept : GEDIS

An implementation of GODIS has been made in collaboration of CGI and CRCD-RDDR
Valcartier. Generic Enterprise Data Integration Solution (GEDIS) is the resulting
framework of that project that can be apply directly into enterprise in order to build ODS
or resolve some data integration problems.

GEDIS is essentially a framework composed of component tools. Some of the
components are ready to be used, some need to be configured; others need to be adapted
to the context of the enterprise. In every case, GEDIS is not an out of the box product.
GEDIS is an adaptive solution that must be extended for each enterprise that wants to use
it. The next diagram is the hi-level view of GEDIS.

Also, GEDIS doesn’t provide the capability to do application integration, even though the
data collected in the ODS can be used by some operational systems to avoid to have to
link with other operational systems for data. GEDIS helps enterprise to aggregate the
information, not the functionality.

To do this, GEDIS uses seven components, divided into two major layers. The first layer
is the Staging, the second one is the Integration and Transformation. Between each layer,
the data stops in the middle database; the Staging database. The processing of each layer
is independent and the components are designed to work concurrently.



Source-
SystemsSource-

SystemsSource-
Systems

Datapump

Update
Manager

Staging
database

Staging Layer Integration and
Transformation

Layer

ITL

ODS

Change
Manager

ITL
Engine

Corporate
Model

Translator

Result
manager

Figure 7 General architecture

8.1 GEDIS Components framework

This grid gives short explanation of the component.
Component Sub-

Components
Imple-
mented

Roles and responsibilities

Datapump - Yes The datapump is responsible for
extracting source-system information in
various sources and transforming it into

XML documents.
Update

manager
- Yes The update manager is responsible for

keeping a local copy of source system
data in the staging database. It is also

responsible for determining which one
has change since the last verification. It

changes the data status in the staging
database.

Staging
database

- Yes,
schemas

The staging database contains the last
image of the legacy system that is

waiting to be processed. Also, the staging
database contains information for

integration, transformation and
configuration of the system.



Change
manager

Yes Change manager is responsible for taking
the marked data to be send to the ODS.
Also, it is responsible for insuring the

synchronisation between update manager
and ITL Engine.

ITL Engine Yes, may
need

extensions
for specific
processing
contexts

Responsible for transforming and
integrating data

Corporate
model

translator
(CMT)

Yes, need
to be

extended to
specific

ODS
database
techno-
logies

Responsible for pushing the data into the
ODS. The general frame of CMT is

developed; it needs to be extended to
specific ODS technologies. (SQL,

CORBA, XML, SOAP, DCOM …)

ITL

Result
manager

Yes Responsible for logging the execution
status of the ITL process. That

component is located at the end of the
ITL layer process and perform the

synchronization of the data after they
have been touched by the CTM. It take

data in Entities object adjust the
corresponding row in the staging

database.
ODS - No Operational Data Store database, used to

keep integrated and transformed data on
Corporate Model for analytic

applications.

8.2 Communication between components

As the two layers of GEDIS are independent, communication within GEDIS can be
divided in two parts corresponding to the layers. And as the GEDIS framework is
modular, there is a lot of way in which modules share information. Those are the
technologies used for communication within GEDIS:

• XML: Some of the communication uses streamed XML to ensure a portable ways to
exchange data from a components to another one when component are not in the
same running environment.



• SQL-92: The query standard is used to communicate between staging database and
components. This standard ensures that every SQL-92 database can be used for
staging.

• Entity buffer: When GEDIS component are in the same running environment, the best
way to exchange information is memory pointer exchange. The entity buffer is used
to do the pointer exchange. This is a FIFO buffer that works only with a specific
object type to have a maximum of performance.

The following figure describes communications within Staging Layer:

Source-
SystemsSource-

SystemsSource-
Systems

Datapump

Update
Manager

Staging
database

SQL-92

XML

Various

Figure 8 Staging Layer Data Exchange

This grid explains communication between the staging layer components.
From To Bi-direc-

tional
Type Content

Source-system Datapump No Various The datapump performs
some queries on various

types of source data
(Oracle, MainFrame,
Acces, flat file, Excel,

XML, etc)
DataPump Update

Manager
No XML XML that respects a

specific frame is sent
over network or written
in XML files on disk.

Update
Manager

Staging
Database

Yes SQL-92 Use SQL-92 queries to
save data and their

statuses.
The following figure describes communications within the integration and transformation
Layer:



Staging
database

ITL

ODS

Change
Manager

ITL
Engine

Corporate
Model

Translator

Result
manager

SQL-92

Entity Buffer

Various

Figure 9 - ITL Data Exchange

This grid explains communication into the integration and transformation layer.
From To Bi-

direction
al

Type Content

Stating
database

Change
Manager

Yes SQL-92 Data in the staging
database are marked as
“in process” and then
are put in memory.

Change
Manager

ITL Engine No Entity Buffer The Change Manager
puts newly retrieved

entities form the
database into the Entity

Buffer for waiting to
transformation by the

ITL engine.
ITL Engine Corporate

Model
Translator

No Entity Buffer The ITL Engine puts the
transformed entities into

the Entity Buffer to
waiting for the

processing by the
corporate model

translator.
Corporate

Model
Result Manager No Entity Buffer The CMT puts sent

entities in the Entity



Translator Buffer to be
synchronised within the
staging database by the

result manager
Corporate

Model
Translator

ODS No Various The way that the CMT
transfer information to
the ODS depends in the
specific implementation
of the Corporate Model

Translator.
Staging
database

ITL Engine No SQL-92 The ITL Engine takes
information about

integration and
transformation from the

staging database.
Result Manager Staging

database
No SQL-92 The Result Manager

puts the entities in
staging in their right
final status and puts

error information in the
database if necessary.

8.3 Multi-threading

The loading of data from the source system to the ODS is designed to process via multi-
treading. The first layer can work independently from the second layer. The staging
database and the verification of the status of components ensures the synchronisation.
You can start multiple instances of the staging layer or the integration and transformation
layer simultaneously.

Staging Layer

Staging Layer

Staging Layer

Source-
system

Source-system

Staging
database

ITL

ITL

ODS

Figure 10 Multi-Threading within Layers

8.4 Control console and distant listener
To remotely control the various components of both the Staging Layer and Integration
and Transformation Layer, GEDIS is provided with a set of components. The three
components of GEDIS, datapump, updateManager and ITL, are already implemented to
be used in that remote control context.



The remote control consists in a client side that receives orders over the TCP/IP
framework and it is called the “Executable Listener”. The server side is a component that
you will link to the user interface called the Executable. In the Model-View-Controller
design pattern point of view, both client and server parts provide the Model part to link
with the user interface of the system. As shown in the next figure, GEDIS is designed for
being integrated into a Model-View-Controller design pattern [Gamma and al. 1994].

Model

GEDIS
Component

Executable
Listener

Executable

View Controler

Figure 11 Model View Controller within GEDIS

GEDIS comes with a simple user interface that provides an implementation reference and
an example of the use of the exesvc package. If you need to provide in your
implementation of GEDIS a very simple user interface, the provided interface will allow
you to control the GEDIS flow easily. That reference implementation is called the
console. If your implementation of GEDIS needs complex operations like scheduling and
automatic error recovery, the software builds over the existing remote control framework
could eventually embed these features.

Even though all the components are designed to work in the remote control environment,
it’s possible to start all the components of GEDIS in a stand-alone mode.

9. Conclusion

Even this solution could not respond to all the needs of coalition interoperability but it’s a
good step forward in order to enable different countries to have a unified view of a
situation. The GEDIS experience shows that this solution could be implemented, perform
an efficient merge of information in a short timeframe and enable armies to use normally
their current C2 software while having a coalition level C2 interoperability.

The recent war experiences show that the coalitions are assembling themselves faster
than ever and that they often include many unexpected players. While waiting for a
complete standardisation process of the of the NATO forces, this solution can help forces
to work together.

10. Bibliography



[Inmon, 1995] Inmon W H. Building the operational data store. John Wiley, NY, NY
1995

[Inmon, 1998] Inmon W H. Corporate Information Factory. John Wiley, NY, NY 1998

[Gamma and al. 1994] Gamma and al. Design Patterns Elements of Reusable Object-
Oriented Software. Addison-Wesley Publishing Company. Reading, MA 1994


