
A Memetic Algorithm for the Vehicle Routing Problem with Time Windows

Jean Berger and Mohamed Barkaoui
Defence Research and Development Canada - Valcartier, Decision Support System Section

2459 Pie-XI Blvd. North, Val-Bélair, PQ, Canada, G3J 1X5
email: jean.berger@drdc-rddc.gc.ca, barkaoui@oricom.ca

Abstract

Serial and parallel versions of a new memetic algorithm to address the Vehicle Routing Problem
with Time Windows are presented. The underlying approach involves parallel co-evolution of
two populations. The first population evolves individuals to minimize total traveled distance
while the second focuses on minimizing temporal constraint violation to generate a feasible
solution. New genetic operators have been designed to incorporate key concepts emerging from
recent promising techniques such as insertion heuristics, large neighborhood search and ant
colony systems to further diversify and intensify the search. The parallel version of the method is
based on a master-slave message-passing paradigm. The master controls the execution of the
algorithm, synchronizes atomic genetic operations and handles parent selection while the slaves
concurrently execute genetic operations. Results from a computational experiment show that the
serial version of the proposed technique matches or outperforms the best-known heuristic routing
procedures, providing six new best-known solutions. In comparison, the method proved to be
fast, cost-effective and highly competitive. Alternatively, simulation results obtained for the
parallel version show a significant improvement over the serial algorithm, matching or even
improving solution quality. The parallel algorithm shows a speed-up of five in computing
solution having near similar quality.

1. Introduction

Vehicle routing problems are well known combinatorial optimization problems with
considerable economic significance. The Vehicle Routing Problem with Time Windows
(VRPTW) has received a lot of attention in the literature recently. This is mostly due to the wide
applicability of time window constraints in real-world cases. In VRPTW, customers with known
demands are serviced by a homogeneous fleet of vehicles of limited capacity. Routes are
assumed to start and end at the central depot. Each customer provides a time interval during
which a particular task must be completed such as loading/unloading the vehicle. It is worth
noting that the time window requirement does not prevent any vehicle from arriving before the
allowed start of service at a customer location. The objective is to minimize the number of tours
or routes, and then for the same number of tours, to minimize the total traveled distance, such
that each customer is serviced within its time window and the total load on any vehicle
associated with a given route does not exceed the vehicle capacity.

A variety of algorithms including exact methods and efficient heuristics have already been
proposed for VRPTW. For excellent surveys on exact, heuristic and metaheuristic methods, see
[Desrosiers et al., 1995], [Cordeau et al., 2001] and [Bräysy and Gendreau, 2001a and 2001b]

respectively. In particular, evolutionary and genetic algorithms have been among the most
suitable approaches to tackle the VRPTW, and are of particular interest to us.

Genetic algorithms [Holland, 1975]; [De Jong, 1975] and [Goldberg, 1989] are adaptive heuristic
search methods that mimic evolution through natural selection. They work by combining
selection, recombination and mutation operations. The selection pressure drives the population
toward better solutions while recombination uses genes of selected parents to produce offspring
that will form the next generation. Mutation is used to escape from local minima.

Routing techniques based on genetic algorithms to solve VRPTW emerge from the work of
[Blanton and Wainwright,1993], [Thangiah, 1995a and 1995b], [Thangiah et al., 1995], [Potvin
and Bengio, 1996], [Berger et al., 1998, 1999, 2000] and [Tan et al., 2001]. Alternate methods
using evolutionary metaheuristics have been proposed by [Homberger and Gehring, 1999],
[Gehring and Homberger, 1999 and 2001], and [Bräysy et al., 2000]. Other recent studies on
various metaheuristics for VRPTW can be found in [Rochat and Taillard, 1995], [Taillard et al.,
1997], [Chiang and Russell, 1997], [Cordeau et al., 2001] (tabu searches), [Gambardella et al.,
1999] (ant colony optimization), and [Liu and Shen, 1999].

Proposed metaheuristics so far show significant variability in performance. They often require
considerable computational effort and therefore fail to convincingly provide a single robust and
successful technique. Recently, a new memetic or parallel hybrid genetic algorithm (PHGA) for
the VRPTW has been successfully developed [Berger, Barkaoui and Bräysy, 2002]. Memetic
Algorithms is a population-based approach for heuristic search in optimization problems
[Moscato, 1989]. They have shown that they are orders of magnitude faster than traditional
genetic algorithms for some problem domains. Basically, they combine local search heuristics
with mutation and crossover operators. For this reason, some researchers have viewed them as
hybrid genetic algorithms or genetic local search. Our approach is based on a new concept that
combines constrained parallel co-evolution of two populations and partial temporal constraint
relaxation to improve solution quality. The first population evolves individuals to minimize the
total traveled distance while the second focuses on minimizing temporal constraint violation in
trying to generate a feasible solution. Imposing a constant number of tours for each solution of a
given population, temporal constraint relaxation allows escaping local minima while
progressively moving toward a better solution. Populations interact with one another whenever a
new feasible solution emerges, reducing by one the number of tours imposed on future solutions.
New genetic operators have been designed to maximize the number of customers served within
their time intervals first, and then temporal constraint relaxation is used to insert remaining
unvisited customers. Key principles and variants emerging from recent promising techniques are
also captured to further diversify and intensify the search. As a result, even though the algorithm
is more robust, efficient, stable and highly competitive, prohibitive computational cost of key
genetic operators and overall run-time still remain a sensitive issue to be satisfactorily addressed.

The main contribution of this paper is to further improve the PHGA technique by developing an
efficient parallel implementation based upon a master-slave message-passing paradigm
(networked parallel computing) in order to significantly reduce run-time. The master processing
element controls the execution of the algorithm, synchronizes atomic genetic operations and
handles the parent selection process while the slave processing elements concurrently execute

reproduction and mutation operators. Current and new genetic operators have been designed and
revisited to reduce processor starvation over each generation.

The paper is outlined as follows. Section 2 introduces the basic concepts of the proposed parallel
hybrid genetic algorithm. The basic principles and features of the algorithm are first described.
Details on the parallel implementation of the algorithm are then given. Section 3 presents the
results of a computational experiment to assess the value of the proposed approach and reports a
comparative performance analysis to alternate methods. Finally, a summary is presented in
Section 4.

2. Parallel Hybrid Genetic Algorithm

2.1 General Description

The proposed algorithm relies upon constrained parallel co-evolution and partial constraint
relaxation. Two populations Pop1 and Pop2, primarily formed of non-feasible solution
individuals, are evolving concurrently, each with their own objective functions. Pop1 contains at
least one feasible solution and is used to minimize total traveled distance while Pop2 focuses on
minimizing constraint violation. Constrained to a fixed number of tours over the same
population, solution individuals differ by exactly one route across both populations. Parallel
evolution is interrupted whenever a new best feasible solution is obtained. Populations are then
reinitialized and co-evolution resumed, while decreasing the number of routes associated with
solution individuals by one. The number of tours imposed on solution individuals in Pop1 and
Pop2 are Rmin and Rmin – 1, respectively. Rmin refers to the number of routes found in the best
feasible solution obtained so far. As a new feasible solution emerges from Pop2, population Pop1

is replaced by Pop2, Rmin is updated and, Pop2 is reinitialized with the revised number of tours
(Rmin -1), using the RSS_M mutation operator. In addition, a post-processing procedure (RC_M)
aimed at reordering customers, is applied to further improve the new best solution. The
evolutionary process is repeated until a predefined stopping condition is met.

The proposed approach uses a steady-state genetic algorithm that involves overlapping
populations. At first, new individuals are generated and added to the current population Popp.
The process continues until the overlapping population outnumbers the initial population by np.
Then, the np worst individuals are eliminated to maintain population size using the following
individual evaluation:

 ,iii CVEEval += (1)

where

},max{ im

i
mii dd

d
rrE +−= , (2)

 i

n

j
j

i
jji ViollbCV βα +−= ∑

=1

},0max{ (3)

ri = number of routes in individual i,
rm = lower bound for number of routes (ratio of total demand over vehicle capacity),
di = total traveled distance related to individual i,
dm = average traveled distance over the individuals forming the initial population,

n = number of customers,

jα = penalty associated with temporal constraint violation j,
i
jb = scheduled time to visit customer j in individual i,

jl = latest time to visit customer j,

β = penalty associated with number of violated temporal constraints,

iViol = number of temporal constraints violated in individual i.

The proposed evaluation expression indicates that better individuals generally (but not
necessarily) include fewer routes, and smaller total traveled distance, while satisfying temporal
constraints. The general algorithm is as follows:

Initialization
Repeat

p=1
Repeat {evolve population Popp - new generation}

For j =1..np do
Select two parents from Popp

Generate a new solution Sj using recombination and mutation operators associated with Popp

Add Sj to Popp

end for
Remove the np worst individuals from Popp using the evaluation function (1).
p=p+1

Until (all populations Popp have been considered)
if (Pop2 includes a new best feasible solution) then

{eliminate all Pop1 individuals}
Set Pop1 = Pop2

Modify Pop2 solutions by applying RSS_M {reduces number of routes by one}.
endif

Apply RC_M on the best solution {customer reordering}
Until(convergence criteria or max number of generations)

Feasible solutions for initial populations are first generated using a sequential insertion heuristic
in which customers are inserted in random order at randomly chosen insertion positions within
routes. The initialization procedure then proceeds as follows:

For p = 1..2 do {revisit Pop1 and Pop2}
For j = 1..np do

Generate a new solution Sj using the EE_M mutator (defined in Section 2.3.2)
Add Sj in Popp

end for
Remove the np worst individuals from Popp using Evali

end for
Determine Rmin, the minimum number of tours associated with a feasible solution in Pop1 or Pop2.
Replicate (if needed) best feasible solution (Rmin routes) in Pop1.
Replace Pop1 individuals with Rmin-route solutions using the procedure RI(Rmin).
Replace Pop2 members with Rmin-1 route solutions using the procedure RI(Rmin-1).

RI(r) is a re-initialization procedure creating an r-route solution. It first generates r one-customer
routes formed from randomly selected customers. Then, it uses the insertion procedure proposed
by Liu and Shen [Liu and Shen, 1999] to insert as many customers as possible without violating
time window constraints. Accordingly, customer route-neighborhoods are repeatedly examined

for insertion. The next customer for insertion is selected by maximizing a so-called regret cost
function that accounts for multiple route insertion opportunities:

 ∑
∈

−=
)(

*)}()({costregret
iRNr

ii rcrc , (4)

where
)(iRN = route-neighborhood of customer i,

)(rci = minimum insertion cost of customer i within route r,

*)(rci = minimum insertion cost of customer i over its route-neighborhood.

Remaining unvisited customers (if any) are then inserted in the r-tour solution maximizing an
extended insertion regret cost function, in which)(rci includes an additional contribution

reflecting temporal constraint violations:

 r

n

j
jjj Viollb

r

βα +−∑
=1

},0max{ (5)

in which

rn = current number of customers in route r,

jα = penalty associated with temporal constraint violation j,

β = penalty associated with the number of violated temporal constraints,

jb = scheduled time to visit customer j in route r,

jl = latest time to visit customer j,

rViol = current number of temporal constraints violated in route r.

2.2 Selection

The selection process consists of choosing two individuals (parent solutions) within the
population for mating purposes. The selection procedure is stochastic and biased toward the best
solutions using a roulette-wheel scheme [Goldberg, 1989]. In this scheme, the probability of
selecting an individual is proportional to its fitness value. An individual fitness value is
computed as follows:

Population Pop1:

 i

n

j
j

i
jjii Viollbdfitness βα +−+= ∑

=1

},0max{ (6)

Population Pop2:

 i

n

j
j

i
jji Viollbfitness βα +−= ∑

=1

},0max{ (7)

The notations are the same as in equations 1−3. Better individuals generally (but not necessarily)
tend to include short total traveled distance in Pop1 and satisfy as many temporal constraints as
possible in Pop2.

2.3 Genetic Operators

The proposed genetic operators mostly rely on two basic principles. First, for a given number of
tours, an attempt is made to construct feasible solutions with as many customer visits as possible.
Second, the remaining customers are inserted into existing routes through temporal constraint
relaxation. Constraint violation is used to restrict the total number of routes to a constant value.
The proposed genetic operators incorporate some key features of the best heuristic routing
techniques such as Solomon’s insertions heuristic I1 [Solomon, 1987] large neighborhood search
[Shaw, 1998] and the route neighborhood-based two-stage metaheuristic (RNETS) [Liu and
Shen, 1999]. Details on the recombination and mutation operators used are given in the next
sections.

2.3.1 Recombination

The insertion-based IB_X(k) recombination operator creates an offspring by combining, one at a
time, k routes of parent solution P1 with a subset of customers, formed by nearest-neighbor
routes {r2} in parent solution P2. The k routes ({r1}) are selected either randomly, with a
probability proportional to the relative number of customers or based on the average distance
separating consecutive customers on the routes. A removal procedure is first carried out to
remove from r1 some key customers believed to be most suitably relocated within some alternate
routes. More precisely, the stochastic customer removal procedure removes either randomly
some customers, customers rather distant from their successors, or customers with waiting times.
Then, a modified insertion heuristic of [Solomon, 1987] is applied to build a feasible route,
considering the modified partial route r1 as the initial solution and unrouted customers in routes
r2 for insertion. The I1 standard insertion heuristic of [Solomon, 1987] is coupled to a random
customer selection procedure, to choose the next candidate customer to be routed. Once the
construction of the child route is completed, and reinsertion is no longer possible, a new route
construction cycle is initiated. The overall process is repeated for the k routes selected from P1.
Finally, if necessary, the child inherits the remaining “diminished” routes of P1. If unrouted
customers still remain, additional routes are built using a nearest-neighbor procedure of
[Solomon, 1987]. The whole process is then iterated once more to generate a second child by
interchanging the roles of P1 and P2. Further details of the operator may be found in [Berger and
Barkaoui, 2000]. In order to keep the number of routes of a child solution identical to its parents,
a post-processing procedure is applied. If the solution has a larger number of routes than
expected, the RSS_M (Section 2.3.2) procedure is used repeatedly to reduce the number of
routes. Conversely, for solutions having a smaller number of routes, new feasible routes are
constructed repeatedly by breaking the most populated route in two until the targeted number of
routes is obtained.

2.3.2 Mutation

A suite of five mutation operators is proposed, namely LNSB_M, EE_M, IEE_M, RS_M,
RSS_M and RC_M. The LNSB_M (Large Neighborhood Search -based) mutation operator relies
on the concepts of the Large Neighborhood Search (LNS) proposed by [Shaw, 1998]. The LNS
consists of exploring the search space by repeatedly removing related customers and reinserting
them using constraint-based tree search (constraint programming). As in [Shaw, 1998], a set of

related customers is first removed. In addition, LNSB_M removes customers violating temporal
constraints from their routes. The proposed customer re-insertion method differs from the
procedure proposed by [Shaw, 1998] in two respects, namely, the insertion cost function used,
and the order in which customers are considered for insertion (variable ordering scheme) during
the branch-and-bound search process. Unvisited customers (if any) are then reinserted using the
same customer re-insertion method while relaxing temporal constraints. Insertion cost is defined
by the sum of key contributions referring respectively to increased traveled distance, and delayed
service time, as specified in Solomon’s procedure I1 (c11+c12), as well as to constraint violation
(equation (5)). Concerning customer visit ordering, customers ({c}) are sorted (CustOrd)
according to a composite ranking. The ranking is defined as an additive combination of two
separate rankings, previously achieved over best insertion costs (RankCost(c)) on the one hand,
and number of feasible insertion positions (Rank|Pos|(c)) on the other hand:

))()((}{ cRankcRankcSortCustOrd PosCost +← (8)

The smaller the insertion cost (short total distance, traveled time) and the number of positions
(opportunities), the better (smaller) the ranking. The next customer to be visited within the search
process is selected according to the following expression

)]([DrandLINTEGERCustOrdcustomer ← (9)

in which
L = current number of customers to be inserted,
rand = real number over the interval [0,1] (uniform random number generator),
D = parameter controlling determinism. If D=1 then selection is purely random (default:
 D=15).

Once a customer is selected, tree search is carried out over its different insertion positions as
specified in [Shaw, 1998]. However, the search tree expansion is initiated using a non-constant
discrepancy factor, selected randomly over the set {1,2,3}.

The EE_M (edge exchange) and RS_M (repair solution) mutators focus on inter-route
improvement. EE_M uses the λ-interchange mechanism of [Osman, 1993], performing
reinsertions of customer sets over two neighboring routes. Here, route neighborhood is
determined by route centroid proximity. Customer exchanges take place as soon as the solution
improves, i.e., we use the first-accept strategy. Assuming the notation (x,y) to describe the
different sizes of customer sets (λ) issued from the neighboring routes, the current operator
explores values running over the range (x=1, y=0,1,2). The RS_M mutation operator focuses on
exchanges involving one illegal customer. Each illegal customer in a route is exchanged with an
alternate legal one or two-customer sequence in order to generate a new set of customers with
either violated or non-violated temporal constraints. The objective is to further explore the
solution space (diversity) while possibly improving quality. The IEE_M mutation operator is
similar to EE_M except for customer reordering in which customer permutations are restricted to
the same route.

The RSS_M (reinsert shortest Solomon) mutation operator eliminates the shortest route (smallest
number of customers) of the solution, decreasing by one the total number of routes. Customers
from the shortest route are first removed. Then, following an iterative process, unvisited
customers are re-inserted into existing routes using the insertion procedure proposed by [Liu and
Shen, 1999] in which the regret cost function (equation (4)) has been extended to include a
constraint violation contribution (equation (5)). The entire iterative process is repeated over I
different sets (e.g. I=20) of randomly generated parameter values.

The RC_M (reorder customers) mutation operator is an intensification procedure that tries to
reduce the total distance of feasible solutions by reordering customers within a route. The
procedure consists of repeatedly reconstructing a new tour using the sequential insertion
procedure I1 of Solomon [Solomon, 1987] over I different sets (e.g. I=2) of randomly generated
parameter values.

2.4 Parallel Implementation

The parallel implementation consists in using the parallel virtual machine PVM [Geist and al.,
1994] software based on a master-slave message-passing paradigm that enables a collection of
heterogeneous computers to be used as a single coherent and flexible computational resource
supporting concurrency. In the current version, the master processing element supervises and
controls the execution of the algorithm, handles the parent selection process, population
replacement and the emergence of a new feasible solution, selects and synchronizes (activation
and completion) atomic genetic operations, finalizes construction of new generations while the
slave processing elements supervised by the master concurrently execute reproduction and
mutation operators. Current and new genetic operators have been revisited or configured to
reduce processor starvation over each generation. In a nutshell, the master component of the
networked parallel implementation presents similar characteristics to the sequential version of
the algorithm except that genetic operators are concurrently executed as atomic operations on
multiple processors. The algorithm has been implemented in C++, using a modified version of
the GAlib genetic algorithm library of [Wall, 1995], on a 19-computer cluster architecture: Linux
platform environment, 19 Athlon 1.2 GHz processors (a master and 18 slaves) with 768M of
RAM with a 100M/sec communication bandwidth, and a 3 module switch including 41 ports.
The overall run-time for the algorithm has been limited to two minutes.

3. Computational Experiment

A computational experiment has been conducted to compare the performance of the parallel
version of the proposed algorithm with some of the best techniques designed recently for
VRPTW. The algorithm has been tested with 56 VRPTW benchmark problems of Solomon
[Solomon, 1987]. Each problem involves 100 customers, randomly distributed over a
geographical area. The travel time separating two customers corresponds to their relative
Euclidean distance. Customer locations for a problem instance are either generated randomly
using a uniform distribution (problem data sets R1 and R2), clustered (problem data sets C1 and
C2) or mixed, combining randomly distributed and clustered customers (problem data sets RC1
and RC2). The experiment consisted in performing three simulation runs for each problem
instance in a given data set.

3.1 Configuration

Parameter setting and simulation configuration for the investigated algorithm are specified as
follows:

Populations: 2 (Pop1 and Pop2)
Run-time: 120 seconds
Recombination and mutation rates: 100%
Recombination operator: IB_X
Mutation operators: LNSB_M(d), EE_M, IEE_M, RS_M, RSS_M and RC_M

Within the LNSB_M(d) mutation operator the number of customers considered for elimination
varies within the range [12, 17]. The discrepancy factor d is randomly chosen over {1,2,3}. In
fitness, evaluation and insertion cost functions:

jj ∀= ,100α

10000 =α

100=β

The probabilities and parameter values for the proposed genetic operators are defined as follows.
For all data sets except C1 and C2:

Population size: 25
Pop1:

Population overlap per generation: n1=1
LNSB_M(d) (100%)
EE_M (50%) + IEE_M(50%)

Pop2:
Population overlap per generation n2=17.
LNSB_M(d) (100%)
RS_M + EE_M + IEE_M (33%), RS_M + EE_M (33%) and RS_M + IEE_M (33%)

For data sets C1 and C2:
Population size: 25
Pop1:

Population overlap per generation: n1=15
IB_X(k=2) (100%) (for C2: k=1)
RC_M(I=2) (100%)

Pop2:
Population overlap per generation n2=3.
IB_X(k=2) (100%) (for C2: k=1)
RC_M(I=2) (100%)

Because of limited computational resources, the parameter values were determined by trying just
a few intuitively selected combinations, and selecting the one that yielded the best average
output. This is justified by the fact that the sensitivity of the results with respect to changes in the
parameter values such as recombination and mutation rates was found to be generally quite
small. Population size was chosen empirically to balance intensification and diversification.

Population overlaps (n1 and n2) were selected such that the sum (n1 + n2) matches the maximum
number of slave processors in order to generate a new population as quickly as possible while
minimizing processor starvation and, alleviate the impact of the intrinsic serial part of the
parallel program. Population overlaps have been determined according to the most prominent
characteristic of a data set. As we aimed at computing the minimum number of routes first, over
a limited time, the idea consists in allocating a maximum number of processors to Pop2, as
number of tours minimization generally represents the most difficult task to achieve. But, for
cases where computing the minimum number of routes does not present a major challenge, more
computational resources are allocated to reduce total traveled distance. Consequently, more
processing power were devoted to evolve Pop1 for clustered data sets (n1=15, n2=3), emphasizing
total traveled distance minimization. Alternatively, computational resources were primarily
dedicated to Pop2 evolution for alternate problem instances (n1=1, n2=17), stressing number of
routes minimization. Variations over computed solution quality regarding population overlap
parameters are negligible as far as we exploit basic data set characteristics (clustered versus non-
clustered distribution). Communication and synchronization cost combined to processor
starvation, following genetic operations when constructing an entire new generation, impose
inevitable performance limits on parallel computation. In order to counter this adverse condition,
processor starvation was minimized by configuring genetic operators to keep processing time as
uniform as possible through genetic operations suite during child computation.

For a matter of run-time convenience, different parameter settings are proposed for C1 and C2,
as opposed to other data sets. The parameters instantiation was inspired from a previous genetic
algorithm by [Berger and Barkaoui, 2000]. In fact, this class of problem instances does not
present a real challenge for most VRPTW metaheuristics as convergence generally occurs very
quickly.

3.2 Results

The results for the six problem data sets are summarized in Tables 1-2 for some of the best
reported methods for VRPTW, namely, GTA [Gambardella et al., 1999], RT [Rochat and
Taillard, 1995], SW [Shaw, 1998], TB [Taillard et al., 1997], CR [Chiang and Russell, 1997],
LS [Liu and Shen, 1999], HG [Homberger and Gehring, 1999], CLM [Cordeau et al., 2001] and,

Table 1: Best performance comparison among VRPTW algorithms.

Problem RT LS CR TB GTA HG (ES1) HG (ES2) BB1-2
R1 Vehicles

Distance
12.25

1208.50
12.17

1249.57
12.17

1204.19
12.17

1209.35
12.00

1217.73
11.92

1228.06
12.00

1226.38
11.92
1221.1

R2 Vehicles
Distance

2.91
961.72

2.82
1016.58

2.73
986.32

2.82
980.27

2.73
967

2.73
969.95

2.73
1033.58

2.73
975.43

C1 Vehicles
Distance

10.00
828.38

10.00
830.06

10.00
828.38

10.00
828.38

10.00
828.38

10.00
828.38

10.00
828.38

10.00
828.48

C2 Vehicles
Distance

3.00
589.86

3.00
591.03

3.00
591.42

3.00
589.86

3.00
589.86

3.00
589.86

3.00
589.86

3.00
589.93

RC1 Vehicles
Distance

11.88
1377.39

11.88
1412.87

11.88
1397.44

11.50
1389.22

11.63
1382.42

11.63
1392.57

11.50
1406.58

11.50
1389.89

RC2 Vehicles
Distance

3.38
1119.59

3.25
1204.87

3.25
1229.54

3.38
1117.44

3.25
1129.19

3.25
1144.43

3.25
1175.98

3.25
1159.37

ALL Vehicles
Distance

415
57231

412
59317

411
58502

410
57522

407
57516

406
57876

406
58921

405
57952

BB1 [Berger, Barkaoui and Bräysy, 2002] and BB2 for the sequential and parallel versions of the
parallel hybrid genetic algorithm respectively. The results are usually ranked according to a
hierarchical objective function, where the number of vehicles is the primary objective and, for
the same number of vehicles, the secondary objective is total traveled distance.

The best computed results are shown in Table 1. Each entry refers to the best performance
obtained with a specific technique over a particular data set. The first column describes the
various data sets and corresponding measures of performance defined by the average number of
routes (or vehicles), and total traveled distance. The following columns refer to particular
problem-solving methods. The performance of our PHGA is depicted in the last column (BB1-
2). Results indicate that PHGA matches or outperforms the best-known heuristic routing
procedures. The last row refers to the cumulative number of routes and traveled distance over all
problem instances. The total number of tours computed over all problem data sets outperform by
one the best-computed result so far, reported by Homberger and Gehring [Homberger and
Gehring, 1999]. In addition, PHGA is the only method that found the minimum number of tours
consistently for all problem data sets. PHGA also succeeded in improving six of the best-known
solutions. Accordingly, Table 2 provides six new best-known solutions and compares them with
the previous best-known solutions. Details of the new solutions can be made available by the
authors.

Table 2: New best computed solutions for some Solomon problem instances
Problem Best-Known Solutions New Best Solutions

Vehicles Distance Reference Vehicles Distance
R108 9 963.99 SW 9 960.88
R110 10 1125.04 CLM 10 1119
RC105 13 1637.15 HG 13 1629.44
RC106 11 1427.13 CLM 11 1424.73
R210 3 955.39 HG 3 954.12
R211 2 910.09 HG 2 906.19

Overall, computational results for BB2 have shown a significant improvement over the
sequential algorithm (BB1), mostly matching or even improving solution quality. The parallel
implementation of the PHGA algorithm has generally shown a speed-up of five over the
sequential version, in computing solutions having near similar quality, that is solutions
presenting the same minimum number of tours and comparable traveled distance.

Even though solution quality is expected to grow with the number of processing elements, the
parallel implementation involves important limitations such as processor waiting time
(starvation), communication cost and the inherent ratio of the serial/parallel code attached to the
proposed method. Intrinsic sequential contributions include synchronization constraints involved
in the computation and completion of a new generation, fitness computation and population
replacement scheme. However, the current experiment shows that run-time associated with
computation of solutions presenting similar or comparable quality, steadily decreases with the
number of processors. Saturation on performance is eventually expected to happen as the
solution space is further explored, but this did not occur within the context of the current
experiment (19-processor (maximum number) cluster environment).

4. Conclusion

A parallel implementation of a promising hybrid genetic algorithm (PHGA) targeted to the
vehicle routing problem with time windows has been successfully developed. The
implementation of the technique is based upon a master-slave message-passing paradigm
(networked parallel computing) using the PVM software within a 19-computer cluster
environment. The master processing element controls the execution of the algorithm,
synchronizes atomic genetic operations and handles the parent selection process while the slave
processing elements concurrently execute reproduction and mutation operators. Genetic
operators have been designed and revisited to further reduce processor starvation over each
generation. Results from a computational experiment show a significant speed-up of the method
over its sequential version mostly matching or even improving solution quality. Accordingly, a
new best result has been computed for the R1 Solomon's data set, while improving best-known
solutions for some instances of the R2 data set.

Future work will focus on comparative average performance analysis while extending
computational experiments to larger VRPTW problem instances to better characterize the
limitations of the approach. Variants of the parallel algorithm, addressing design limitations with
respect to processor starvation, communication cost and current serial/parallel code ratio, might
be investigated as well.

5. References

Berger, J., M. Salois and R. Begin (1998), “A Hybrid Genetic Algorithm for the Vehicle Routing
Problem with Time Windows”, Lecture Notes in Artificial Intelligence 1418, AI’98, Advances in
Artificial Intelligence, Vancouver, Canada, 114−127.

Berger J., M. Sassi and M. Salois (1999), “A Hybrid Genetic Algorithm for the Vehicle Routing
Problem with Time Windows and Itinerary Constraints”, In Proceedings of the Genetic and
Evolutionary Computation Conference, Orlando, USA, 44−51.

Berger, J. and M. Barkaoui (2000), “An Improved Hybrid Genetic Algorithm for the Vehicle
Routing Problem with Time Windows”, International ICSC Symposium on Computational
Intelligence, part of the International ICSC Congress on Intelligent Systems and Applications
(ISA'2000), University of Wollongong, Wollongong, Australia.

Berger J., M. Barkaoui and O. Bräysy (2002), "A Parallel Hybrid Genetic Algorithm for the
Vehicle Routing Problem with Time Windows", to be published.

Blanton, J.L. and R.L. Wainwright (1993), “Multiple Vehicle Routing with Time and Capacity
Constraints using Genetic Algorithms”, In Proceedings of the 5th International Conference on
Genetic Algorithms, S. Forrest (editor), 452−459 Morgan Kaufmann, San Francisco.

Bräysy, O., J. Berger and M. Barkaoui (2000), “A New Hybrid Evolutionary Algorithm for the
Vehicle Routing Problem with Time Windows”, Presented in Route 2000 Workshop, Skodsborg,
Denmark.

Bräysy, O. and M. Gendreau (2001a), “Vehicle Routing Problem with Time Windows, Part I:
Route Construction and Local Search Algorithms”, Working Paper, SINTEF Applied
Mathematics, Department of Optimisation, Norway.

Bräysy, O. and M. Gendreau (2001b), “Vehicle Routing Problem with Time Windows, Part II:
Metaheuristics”, Working Paper, SINTEF Applied Mathematics, Department of Optimisation,
Norway.

Chiang, W.-C. and R.A. Russell (1997), “A Reactive Tabu Search Metaheuristic for the Vehicle
Routing Problem with Time Windows”, INFORMS Journal on Computing 9, 417−430.

Cordeau, J.F., G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis (2001), “The VRP
with Time Windows”, To appear in The Vehicle Routing Problem, Chapter 7, P. Toth and D.
Vigo (eds), SIAM Monographs on Discrete Mathematics and Applications.

Cordeau, J.-F., G. Laporte and A. Mercier (2001), “A Unified Tabu Search Heuristic for Vehicle
Routing Problems with Time Windows”, Journal of the Operational Research Society 52, 928–
936.

Jong De, K. A. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Ph.D. Dissertation, University of Michigan, U.S.A.

Desrosiers, J., Y. Dumas, M.M. Solomon and F. Soumis (1995), “Time Constrained Routing and
Scheduling”, In Handbooks in Operations Research and Management Science, Vol. 8. Network
Routing, M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser (eds), North-Holland,
Amsterdam, 35−139.

Gambardella, L. M., E. Taillard, and G. Agazzi (1999), “MACS-VRPTW: A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows”, In New Ideas in
Optimization, D. Corne, M. Dorigo and F. Glover (eds), 63−76, McGraw-Hill, London

Gehring, H. and J. Homberger (1999), “A Parallel Hybrid Evolutionary Metaheuristic for the
Vehicle Routing Problem with Time Windows”, Proceedings of EUROGEN99 - Short Course on
Evolutionary Algorithms in Engineering and Computer Science, Reports of the Department of
Mathematical Information Technology Series. No. A 2/1999, University of Jyväskylä, Finland,
K. Miettinen, M. Mäkelä and J. Toivanen (eds), 57−64.

Gehring, H. and J. Homberger (2001), “Parallelization of a Two-Phase Metaheuristic for Routing
Problems with Time Windows”, Asia-Pacific Journal of Operational Research 18, 35−47.

Geist, Al et al. (1994), A Users' Guide and Tutorial for Networked Parallel Computing, MIT
Press Scientific and Engineering Computation, Janusz Kowalik Editor, Massachusetts Institute of
Technology, Boston, (http://www.netlib.org/pvm3/book/pvm-book.html).

Goldberg, D.E (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, New York.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor.

Homberger, J. and H. Gehring (1999), “Two Evolutionary Metaheuristics for the Vehicle
Routing Problem with Time Windows”, INFOR 37, 297−318.

Liu, F.-H. and S.-Y. Shen (1999), “A Route-Neighborhood-based Metaheuristic for Vehicle
Routing Problem with Time Windows”, European Journal of Operational Research 118,
485−504.

P. Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms, Concurrent Computation Program, C3P Report 826,
Caltech, Pasadena, U.S.A.

Osman, I.H.(1993), “Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem”, Annals of Operations Research 41, 421−451.

Potvin, J-Y. and S. Bengio (1996), “The Vehicle Routing Problem with Time Windows Part II:
Genetic Search”, INFORMS Journal on Computing 8, 165−172.

Rochat, Y. and E. Taillard (1995), “Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing”, Journal of Heuristics 1, 147−167.

Solomon, M.M. (1987), “Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints”, Operations Research 35, 254−265.

Shaw, P. (1998), “Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems”, In Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, M. Maher and J.-F. Puget.(eds.), 417−431, Springer-Verlag, New York.

Taillard, É., P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin (1997), “A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows”, Transportation Science
31, 170−186.

Tan, K.C., L.H. Lee and K. Ou (2001), “Hybrid Genetic Algorithms in Solving Vehicle Routing
Problems with Time Window Constraints”, Asia-Pacific Journal of Operational Research 18,
121−130.

Thangiah, S.R., I.H. Osman, R. Vinayagamoorthy and T. Sun (1995), “Algorithms for the
Vehicle Routing Problems with Time Deadlines”, American Journal of Mathematical and
Management Sciences 13, 323−355.

Thangiah, S. (1995a), “Vehicle Routing with Time Windows Using Genetic Algorithms”, In
Application Handbook of Genetic Algorithms: New Frontiers, Volume II, 253−277, L. Chambers
(editor), CRC Press, Boca Raton.

Thangiah, S.R. (1995b), “An Adaptive Clustering Method using a Geometric Shape for Vehicle
Routing Problems with Time Windows”, In Proceedings of the 6th International Conference on
Genetic Algorithms, L.J. Eshelman (editor), 536−543 Morgan Kaufmann, San Francisco.

Wall, M. (1995), GAlib - A C++ Genetic Algorithms Library, version 2.4.
(http://lancet.mit.edu/galib-2.4/), MIT, Boston.

