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Abstract

This paper addresses some of the pertinent issues related to the workforce configuration of a C2
organization within the Canadian Forces.  The mission of the latter is to produce Geomatics
Information supporting US National Imaging and Mapping Agency’s (NIMA) Foundation Based
Operations (FBO).

Initially, the open queueing network representation of the Geomatics division (where each node
or station is governed by a GI/G/s queue) is examined and its complexity analyzed.  The
Geomatics network belongs to the class of queueing network with signals.  An alternate network
architecture is proposed and the intent of which is to provide a simplified network whereby the
theory of product-form solutions can be employed to evaluate the workforce configuration.  The
equivalence of the L�  norm on the waiting times between the original and the revised network is
demonstrated.  A nonlinear integer programming model to minimize the L�  norm on the waiting
times for the revised network is formulated.  The solution procedure involves transforming the
nonlinear problem into a linear problem using approximation techniques.  Fictitious data are used
to illustrate the methodology.

1.  Introduction

This paper is based on the concept that a military intelligence organization has, as one of its
functions, the requirement to process defined quantities of messages within stipulated periods.  It
is therefore of interest to test the ability of any given system to fulfil that requirement and to
investigate means for improving the system efficiency.  This paper outlines an approach to
model the workforce configuration of the Canadian Forces (CF) Geomatics organization.  The
mission of the latter organization is to produce and deliver Global Geospatial Information &
Services to the Canadian Forces that cannot be acquired elsewhere for reasons of uniqueness,
urgency and security.

The discussion of this paper will focus on analyzing the processing of information for the
Foundation Data Concept where its aim is to support the Canadian Forces’ objectives in Global
Preparedness, Theater Readiness and Mission Responsiveness.  The Foundation Data Concept is
a framework developed by the U.S. National Imaging and Mapping Agency (NIMA) in support
of Joint Vision 2010 and it consists of geospatial information of sufficient data content and
accuracy.  The data can be grouped into 3 categories, namely the Foundation Data (FD), Mission
Specific Data Sets (MSDS) and Qualified Data.  The objective of the Foundation Data is to
provide information useful for strategic operations and planning; whereas the Mission Specific
Data Sets furnish useful information for tactical operations and planning.  Qualified Data is an
alternative source to FD and MSDS.  In essence, the database holding FD will host information
extracted from multiple sensor types collected from a variety of platforms obtained through
multi-national sources.  On the other hand, MSDS consists of higher resolution data and is also
referred to as dense foundation data.  The Foundation Data of interest in this paper are
Controlled Image Base (CIB) with 5-meter resolution, Feature Foundation Data (FFD) and
Digital Terrain Elevation Data (DTED) level 2 information with 30-meter resolution.  The
MSDS of interest here are the higher resolution CIB, DTED and densified FFD information
products.  The development of FFD and DTED information from raw source data requires a



lengthy time period to prepare, with FFD being the most expensive and difficult to produce.
Depending on the area to be covered, the production of bare earth DTED data for a region
typically takes months to complete.  Therefore the development and sustainability of FD and
MSDS database covering significant areas of the world will undoubtedly require a multi-national
effort.

In general, there exist three main approaches to the analysis of an organization’s workflow
process.  a).  Static (allocation) models.  These simply add up the total amount of jobs allotted
to each resource, and estimate the performance from these totals.  Such a model tends to be too
simple as it ignores most of the dynamics, interactions and uncertainties of the system.  On the
other hand, it can be useful as a rough initial estimator of the system size and performance.  b).
Aggregate dynamic models.  Such models account for some of the dynamics, interactions and
uncertainties in the system in an aggregate way.  Typically, they use analytical techniques from
stochastic processes, queueing theory and queueing networks.  However, the performance
measures estimated are often only the steady state averages.  Still, these models tend to give
reasonable estimates of performance and relative to alternative approaches, are very efficient.
c). Detailed dynamic models.  These approaches include Petri Nets, Stochastic Petri Nets and
Monte Carlo simulation.  Petri nets are a graphical method of describing concurrent systems and
have proven to be very useful for describing protocols in networks [Schneeweiss, 2001].
Discrete event simulation models, on the other hand, can mimic the operation of the system in as
much detail as required and desired.  Combined with visual animation, these models can be
powerful tools for communicating the results of an analysis.  However, apart from the problems
of validating large and complex simulations, the complexity of the simulation models often
results in limited insights into the factors determining behaviour.  Rarely do complex simulation
models suggest how the design or operation could be improved [Buzacott et al., 1992].

This paper studies a CF Geomatics division, a typical Information Technology (IT) organization,
by examining its network representation.   The complexity of the network is discussed.  An
alternate network architecture is proposed.  The equivalence of the L�  norm on the waiting times
between the two networks is demonstrated.  The intent of deriving an alternative network
representation is such that the theory of product-form solutions [Gross and Harris, 1998], which
renders the mathematics involved to be more tractable, can be applied to evaluate the optimal
configuration.  A nonlinear integer programming model to minimize the L�  norm on the waiting
times is proposed. That is, the optimal allocation of servers to the nodes/stations such that the
smallest upper bound on the waiting times is achieved, will be determined.  Our solution
procedure involves linearizing the nonlinear terms using a pre-determined probability related
function in LINGO6 software [Lindo System, 1999].  A sequence of linear integer programming
problems is then solved iteratively.  The LP relaxation to the integer problem is also discussed
with an aim to gain useful information on the solution space and on post-optimality analysis.

2.  Geomatics Organization - Network Representation

A typical Foundation Data project (job) involves the preparation of images for a region or a sub-
region by extracting features and contour information from the input data.  The production of
images is affected by the following factors or variables, notably the image source (satellite image
versus aerial photography), the image scale (surface covered by the image), the project area (for



example 100 km × 125 km), and the area density (quantity of information in an area) etc.   The
preparation routine for CIB, FFD and DTED consists of the setup, collection, extraction, edge
matching and quality control/assurance operations.   In brief, Figure 1 represents the pictorial
architecture for the CF Geomatics division under investigation.
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Figure 1  Pictorial Description of the CF Geomatics Organization.



Figure 2 is the network representation of the division with the corresponding routing
probabilities as indicated. The input data for the CF Geomatics system is summarized in Table 1.

The network (Figure 2) is interpreted as follows. The nodes or stations represent the
subsections/operations of the organization. The network has N single-station queues and each
station has si servers.  It is assumed that there is an unlimited waiting space for the jobs at each
station. At appropriate locations along the network, jobs/projects are inspected at the quality
control/assurance stations and are subject to rework if required or warranted.  Jobs finishing
service at station i join the queue at station j with probability pi,j or leave the network altogether
with probability ri, independently of each other. Since a job leaving station i either joins some
other station in the network, or leaves, one must have
                         17

                         ∑  pi,j  + ri  = 1,                     i =1, 2, 3, .., 17                                             (1)
                                    j=1

Consider the job processing sequence after the project setup node 7 (a procedure that involves
creating the project database, calibrating the camera, importing & magnifying images and
preparing for the image).  A team of servers at node 12 will concentrate on preparing the feature
collection for the image (that is preparing for the population, surface drainage, transportation and
vegetation coverage). Simultaneously, another team of servers at node 13 will focus on contour
collection, namely examine the boundary and elevation coverage.

13

1 2 3 4 5

6 7

12

8 9 10 11

14 15 16 17

Exit
Source

0.02
0.05 0.05

0.05
0.05

0.05

0.05 0.050.475

0.475

0.475

0.05

0.98

1 0.95

0.95

0.9

1

0.95

0.95 1

0.95

1

1

1 1

1

Figure 2  Network Representation of the Geomatics Organization.
 Solid and dotted lines represent the job (customer) and signal routes, respectively.



External Arrival Service
Station

(i) Rate
(jobs/day)

Squared Coefficient
of Variation

Rate
(jobs/day)

Squared Coefficient
of Variation

1 0.8 1.05 95 0.824
2 0 0 95 0.917
3 0 0 12 1.135
4 0 0 48 1.134
5

CIB

0 0 48 1.077
6 1.6 0.95 0.2 0.824
7

DTED /
FFD 0 0 0.4 0.917

8 0 0 0.0126 1.135
9 0 0 0.05 1.134

10 0 0 0.2 1.077
11

DTED

0 0 0.065 0.804
12 0 0 0.04 1.044

13 0 0 0.04 1.044
14 0 0 0.09 0.916
15 0 0 0.3 1.145
16 0 0 0.16 0.973
17

FFD

0 0 0.21 0.806

Table 1 -  Input Data for the Geomatics Organization

These teams use the same set of raw data input from the project setup node and the arrival rate of
jobs at the feature collection and contour collection nodes (12 and 13) is identical.  In addition,
the job service times at these two nodes are approximately the same.  Upon job completion, the
two different jobs at nodes 12 and 13 merge as one job and are readied to be quality checked at
node 14.  The difficulty in analyzing the Geomatics network stems from the sudden increase and
decrease in population size at nodes 7 and 14.   That is at these nodes, jobs trigger simultaneous
events and the network Figure 2 belongs to the class of networks of queues with signals [Chao et
al., 1999]. The latter class of queueing network involves, besides the regular jobs, also signals
that carry commands and move around from node to node.  When a signal arrives at a node, it
causes a certain event to occur.  This event may imply either the deletion of one or more jobs (for
example at node 14 of Figure 2) or the addition of one or more jobs (at node 7 of Figure 2).  The
latter behaviour involving the sudden increase and decrease in population size is also
symptomatic in many other information technology and intelligence processing organizations
and industries.



The above qualitative description can be expressed mathematically by the routing probabilities at
node 7.  Since  p7,6 + p7,8 + p7,12 + p7,13   is greater than unity, it violates equality (1).   Initially, our
approach is to propose a reduction on the network architecture, given by Figure 3.

The network in Figure 3 is constructed in view of the following observation.  It is noticed that
the characteristics of the two branches connecting node 7 to node 14 via the arc through node 12
or via the arc through node 13 are identical.  That is the transition probabilities p7,12, p7,13 , the
station service times and the feedback transition probabilities p14,12 , p14,13  are the same for the
two branches.  The two networks only differ in that the branch from node 7 to node 14 via node
13 does not exist in Figure 3.  On the other hand, Figure 3 has an arc (which is missing from
Figure 2) connecting node 14 to an external node that exits the system, with r14 denoting the
probability of jobs leaving the system from node 14.  The transition probabilities at node 14 in
Figure 3 satisfies p14,15 + p14,12  + r14  = 1, with the value r14  equal to p14,13  in Figure 2.

It will be demonstrated that given the same configurations to the two systems, the L�  norms on
the waiting times (that is the upper bound on the waiting times for all nodes in the network) are
equivalent.  The theory of product-form solutions can then be applied to analyze Figure 3.

Lemma 1. Given the same configurations to systems Figures 2 and 3, that is (s1, s2,…,s17) with s13

= s12 in Figure 2 and (s1, s2,…, s12, s14,.., s17) in Figure 3, the L�  norms on the waiting
times between two systems are equivalent.

Proof:    Define Wq
^  =  L�  norm on Wq,i in Figure 2,                     1 ≤ i ≤ 17    

Wq* =  L�  norm on Wq,j in Figure 3,                    1 ≤ j ≤ 17, j � 13
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Figure 3  Alternate Geomatics Network Representation.



where Wq,i  is the steady state time a job spends at node i in the queue.  The proof is trivial
by  virtue of the fact that the characteristics at nodes 12 and 13 are the same, that is
Wq,12  = Wq,13.
First, Wq

^ ≥  Wq,i ,      1 ≤ i ≤ 17,        by definition
                      = Wq,j ,      j =1,2,..,12,14,..17

Thus Wq
^ ≥  Wq*

On the other hand,
Wq* ≥  Wq,j ,     j =1,2,..,12,14,..17   
       = Wq,i ,   1 ≤ i ≤ 17,

or       Wq*  ≥  Wq
^.

 Combining the two inequalities, Wq
^ ≡ Wq*.

3.  Mathematical Model

Given the arrival process of jobs to nodes 1, 6 of the Geomatics division (Figure 3) is of the
renewal type.  The (external) means and squared coefficients of variation (scv) of the inter-
arrival times are denoted by 1/ë01, ca01, 1/ë06 , ca06  respectively.  The service times at each
station/node as well as the inter-arrival times to each node cannot be approximated by
exponential distributions.  The jobs arriving to node i are processed according to the first come
first served (FCFS) service protocol.  There are 17 stations/nodes in the network where node i
has si parallel servers.  The service times at node i are independent and identically distributed
with mean service time equal to 1/ì i and scv equal to csi.  The utilization of each node is less
than or equal to unity.  The problem is to determine the optimal configuration for the Geomatics
division with the total number of servers S given.

3.1  Formulation

Among the earliest attempts to provide queueing network models are the exponential network
results of Jackson [Jackson, 1957].  A Jackson network is a collection of queues with exponential
service times in which the customers (jobs) travel from node to node according to transition
probabilities given by a Markov chain.  Customers (jobs/projects) from outside the network
arrive according to a Poisson process and are served at each facility (with identical servers)
subject to a first-come, first served discipline.  In brief, if the network is stable and in steady
state, a Jackson network can be treated as N independent multiserver birth and death queues
where they are coupled via the traffic equations.  The success of expressing the solution of
Jackson network in product form has prompted researchers to approximate non-Markovian
networks (i.e. where one cannot assure the conclusions of Poisson arrival streams and
exponential service times) using a similar approach.  The basic idea is to approximately
characterize the arrival processes by two parameters and then to analyze the individual nodes
separately.  Many authors have developed two-parameter approximations for networks of
queues, [Reiser and Kobayashi, 1974], [Kuehn, 1979], [Sevcik et al, 1977], [Chandy and Sauer,
1978], [Gelenbe and Mitrani, 1980] and [Shantihikumar and Buzacott, 1981].  Generally
speaking, this method approximately characterizes each arrival and service process by two
parameters: the arrival rate and its variability parameter; the mean service time and its variability
parameter.  The nodes are then analyzed as standard GI/G/s queues partially characterized by the
first two moments of the interarrival time and service time distributions.  Our approach follows



the development of the Queueing Network Analyzer by [Whitt, 1983], whereby one can obtain
the system performance measures by simply solving two systems of linear equations.  Applying
Whitt’s Queueing Network Analyzer (QNA) concept, the first step is to solve for the flow rates,
and the variability parameters at the internal arrival processes.  Let

λj = average arrival rate at node j; λ0j = external arrival rate to node j;
ì j = average service rate at node j;
caj = squared coefficient of variation (scv) for the arrival process at node j; ca0j is

the scv of the external arrival process to node j;
csj = squared coefficient of variation (scv) of the service time distribution at

node j;
R = routing matrix [pij]; pij is the probability that a job visiting station i

will visit station j after completion of service at i;

       n

λi = λ0i + ∑   λj pji i=1,2,…,n                          (2)
    j=1

n                                                    n
λi cai - ∑ {λj (1 - ρj

2) pji
2caj} = λ0i ca0i + ∑ {λj pji ( ρj

2 pji csj + 1 - pji )}                   (3)
                       j=1                                                                          j=1

i=1,2,…,n

The system of equations (2) represents the traffic equations that estimate the composite mean
arrival rates to each station.  The second set of equations (3) provides the variability of the arrival
process to each station, which is obtained by combining the three basic network operations:
superposition (merging), thinning (splitting), and flow through a queue (departure).  The
derivation of the system of equations (3) is described in detail in [Whitt, 1983], [Bitran and
Dasu, 1992] and once the λi s are determined from equation (2), the system of equations (3) is
linear in cai .  Since the performance of the queue is estimated on the basis of the first two
moments of the interarrival and service times, the necessary flow parameters have all been
determined.

The performance measures at each station are next estimated using approximation formulae that
are based on the first two moments of the interarrival and service times.  A wide variety of
approximations has been proposed for the analysis of GI/G/s queues (see [Bitran and Dasu,
1992] for references therein).  The remainder of this section will focus on the determination of
the optimal configuration for the CF Geomatics organization using GI/G/s approximations by
[Whitt, 1983], [Allen, 1990].  Whitt’s approximation formulae are based on the behaviour of
M/M/s, D/M/s and M/D/s queues, heavy traffic approximations for GI/G/s queues and
computational experiments.  The Allen-Cunneen approximation was developed by pattern
recognition, not by formal proof.  It is basically the Whitt formula but without the correction
term and it is exact for the M/M/s, M/G/1 queueing systems.  It gives reasonable good results for
many queueing systems and is easier to compute.  Table 2 summarizes Whitt, Allen-Cunneen
approximation formulae for the GI/G/s queues.  In view of lemma 1, our objective will be to
minimize the L�  norm on the waiting times in Figure 3.
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Table 2 - Approximations for Waiting Time.

Lemma 2.  The optimal configuration for the CF Geomatics organization is given by the
solution of the following system, (S = the total number of servers),

Min L� norm on Wq,i
(GI/G/s) � Min-Max Wq,i

(GI/G/s) ,  i =1,2,..,12,14,..,17              (4)
                                                   si

subject to ρi  ≤  1 ,  ρi  = λi/(si ì i)   (stability constraint)                    (5)

17

∑    sj = S – s13,   s13  = s12               (servers capacity constraint)              (6)



           j=1, j�13

                         17

                       λi = λ0i + ∑   λj pji ,  i=1,2,…,n                (traffic equations)               (7)
                                      j=1, j�13

                             17                                                            17

  ∑ λi cai - ∑ {λj (1 - ρj
2) pji

2caj} =  ∑ λ0i ca0i + ∑ {λj pji ( ρj
2 pji csj + 1 - pji )}  (8)

                      j=1, j�13                                                                  j=1, j�13

                                                                         i=1,2,..,12,14,..,17

(equations governing the variability of the arrival process)

sj    non-negative integers

and the expressions for Wq,i
(GI/G/s)

  (the expected steady state time a job spends waiting at
node i in the GI/G/s queue) are defined in Table 2.

Since Wq,i
(GI/G/s) is a nonlinear function, system (4 - 8) belongs to the class of nonlinear integer

programming problems.  The solutions of which are known to be notoriously difficult.  Our
solution approach is to replace Wq,i

(GI/G/s) by the Allen-Cunneen or Whitt approximations and
express the Wq,i

(M/M/s) term using Erlang’s busy function.  The latter probability related function
has been pre-tabulated in LINGO6 software for any given s servers. Therefore Wq,i

(GI/G/s)  can be
obtained as table-look-up values once si is specified.

For example Wq,i
(GI/G/s) � ( cai + csi)Wq,i

(M/M/s)/2            by Allen-Cunneen approximation
       = (cai + csi)P(j �  si) /2(si ì i – ëi)

where P(j �  si) is the Erlang busy probability defined as

P(j �  s) = (sñ)sp0/s!(1-ñ),

p0 = steady state probability that no job is present in the system.   Consequently, the system
becomes a linear integer programming (IP) problem.  (The same argument easily holds by using
the Whitt approximation.)

A sequence of linear optimization problems is solved iteratively, with the initial guess of the
solution given by the solution of Jackson network.  Rewrite the objective function (4) by

Min ù           subject to ù � Wq,i
(GI/G/s)

  for all i        (9)

The steps for the solution of system (9, 5, 6, 7, 8) are as follows.
1. Solve the traffic equations for λi.

                                        17

            λi = λ0i +    ∑     λj pji    i=1,2,..12,14,..,17                (7)
                j=1,j≠13

and denote the solution of the Jackson network as
vi = optimal configuration (servers),
Vq   = optimal value of the objective function.



2. k � 0;  initialize si(k) (server si in iteration k),  Wq,i
(GI/G/s)(k) (queue time at station i in

iteration k):
si(k) � vi  ;
ù(k) � Vq.

3. k � k  + 1;  input λi , si(k-1) in            
17                                                                            17

λi cai - ∑ {λj (1 - ρj
2) pji

2caj} = λ0i ca0i + ∑ {λj pji ( ρj
2 pji csj + 1 - pji )}      (3)

                     j=1,j≠13                                                               j=1,j≠13

i=1,2,…12,14,..,N
     where ρj = λj /( sj(k-1) ì j ) and solve for cai .
4. Solve the system (9,5,6,8) using LINGO6.
5. If  |(ù(k) - ù(k-1)) / ù(k-1) | ≤ tolerance factor, stop.  Else, go to step 3.

Initially we are to consider the LP relaxation of system (6,5).  (It is feasible to obtain the LP
solution since Erlang’s busy function tabulated in LINGO6 has been extended to non-integer
servers by linear interpretation.)  The latter will provide insight on the feasibility of the IP
solution space.  Another interesting observation is that the LP relaxation allows us to examine
the effect of having servers with ancillary activities [Hall, 1989], i.e. servers can alternate
between different nodes/stations.  The efficiency gains from this option should be obvious. What
would otherwise be idle time becomes productive time.  Additionally, it is well known that if the
LP relaxation is infeasible, then so is the IP system (9,5,6,8).  The feasible region to the LP
relaxation problem is clearly convex and therefore a unique solution exists.  Table 3 summarizes
the difference between the solutions for the LP relaxation and the IP system (9,5,6,8) with the
total number of servers 210, tolerance factor 1×10-2× ù(k-1).

Integer Solution LP Relaxation Solution

Waiting Time (days)
(Wq,1, Wq,2, .., Wq,17)

(0.0001, 0.0001, 0.0059, 0.0004, 0.0004,
1.641, 2.047, 3.612, 4.157, 3.909, 3.647,
3.554, 3.554, 3.606, 5.504, 4.100, 2.222)

(2.552, 2.552, 2.552, 2.552, 2.552,
1.302, 1.302, 2.474, 2.474, 2.604, 2.604,
2.604, 2.604, 2.604, 2.892, 2.748, 2.748)

Number of Servers
(s1, s2, s3, …. ..., s17)

(1, 1, 1, 1, 1, 10, 5, 77, 20, 5, 15, 24, 24,
11, 3, 6, 5)

(0.0134, 0.0133, 0.1006, 0.0258, 0.0244,
10.227, 5.274, 78.157, 20.735, 5.242,
15.415, 24.504, 24.504, 11.337, 3.274,
6.285, 4.866)

Table 3 – Comparison between LP Relaxation and IP Solution for 210 servers.

Sensitivity analysis for the LP relaxation problem can be easily conducted from the output of
LINGO6.  For example, the dual variable to the servers’ constraint is 0.1515, which implies that
the smallest upper bound on the waiting times for the network will be reduced by 0.1515 days for
every unit increase in the total number of servers.  On the other hand, parametric integer



programming is much more complicated than its LP counterpart.  An alternative is to use
approximate methods, such as the ‘response surface methodology, where it involves fitting a
hyperplane tangent to the response surface at a given arbitrary point [Ng and Lam, 1994].  Since
the objective function (9) is a function of the servers and the scv of the service times, the
response surface might be difficult to compute.  However, the crux lies in whether it justifies
devoting effort in using an approximate method on parametric programming to study queueing
network models which employs approximations.  In this paper, no sensitivity analysis will be
performed on the IP system (9,5,6,7,8).

4.  Conclusion

In this paper, we have proposed a mathematical model to evaluate the optimal system
configuration to a hypothetical division in the Canadian Forces Geomatics organization devoted
to the production of information in support of the U.S. National Imaging and Mapping Agency’s
(NIMA) Foundation Data Concept.  In a continuation paper, given the optimal system
configuration, the authors [Ng et al, 2002] have extended their model to examine the system
behaviour of the Geomatics network.  Bounding analysis in classical queueing theory is used
extensively to acquire insights to the workflow analysis problem.  In conclusion, the  workforce
configuration and workflow analysis provide some timely contributions towards the
understanding of some of the challenges arising in military organizational studies.  As a result,
the analysis and solution of these studies are therefore of prime and utmost importance in
resolving certain Command and Control issues.
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