A Distributed Command and Control Support System

Track 6

C2 Assessnent

José A. Rodrigues Nt.
Ivana Cardial de Miranda
Lander Loureiro da Silva

CASNAV
Brazilian Navy
Ilhadas Cobras, n — AMRJ ed. 8
Rio de Janeiro, RJ 20091 Brazil
+5521 3849-6464
rneto@computer.org,
{ivana, lander} @casnav.mar.mil.br

Tool s and Metrics

Sylviade Oliveirae Cruz
Renato F. G. Cerqueira
Departamento de Informética
Pontificia Universdade Catolica
R. Marqués de Séo Vicente, 225
Rio de Janeiro, RJ 22451-041 Brazil
+5521 529-9460

{ sylvig, rcerq } @inf.puc-rio.br

A Distributed Command and Control Support System

José A. Rodrigues Nt. Sylviade Oliveirae Cruz
Ivana Cardial de Miranda Renato F. G. Cerqueira
Lander Loureiro da Silva Departamento de Informética

CASNAV Pontificia Universdade Catdlica
Brazilian Navy R. Marqués de S&o Vicente, 225
Ilhadas Cobras, n —AMRJ ed. 8 Rio de Janeiro, RJ 22451-041 Brazil
Rio de Janeiro, RJ 20091 Brazil +5521 529-9460
+5521 3849-6464 {sylvia, rcerq } @inf.puc-rio.br

rneto@attglobal.net ,
{ivana, lander} @casnav.mar.mil.br

ABSTRACT

The construction of a C* (Command, Control, Computers, Communication and Intelligence) support
system requires an extreme care with architecture. By its nature, a C*l system spans a large variety of
requirements and usuadly serves many users with different needs. Also, in order to properly and timey
digolay information to the decision-makers, it shdl integrate data from other systems, not necessarily
built on the same technology.

The system presented here was designed in 1998 for the Mercury Project, which develops the Brazilian
Navy new C* support system. This paper, as an experience report, focuses on the main constructs and
projects decisons teken during the development of the Operations Theater Survellance System
(Sstema de Acompanhamento do Teatro de Operagdes — SATO). SATO displays and manages dl the
informetion that is presented to the users. In addition, as the sysem’s man subsystem, it lays the
foundation for integrating other subsystems and legacy systems.

Starting with an overview of the whole system, the architecture, the modules and their main behavior are
described. Then some congderations are made on the evolutions required and yet to be implemented.

This sysem provides the user an online graphicd presentation of dl resources being
controlled/survellled and their cinematic,c, on a geogrgphicd map background, as a Geographic
Information System.

Data enters Mercury from al Criss Control Centers (CCC), distributed throughout the country. The
information displayed has to be synchronized among dl centers, i.e, dl decisonrmakers must work on
the same operationd picture. Since the system is built for criss control, whenever a Stuaion develops
the information flow speed and rdiability are criticd. Therefore, a didributed object-oriented
architecture was developed to address these issues, usng CORBA, the Object Management Group
(OMG) gtandard for object distribution. The paper focuses on the software constructs used in the system,
with an architectural perspective, not the C*l architecture, presenting a successful architecture that can
aso be used in other didributed systems with smilar gpplications and requirements.

Keywords
Distributed Systems, C*1, C?S, Command and Control, CORBA, Architecture.

1 INTRODUCTION

The Mercury Project develops an integrated C* support system. As an experience report, this paper
presents a solution derived to face the many diverse and demanding requirements established for the
system, showing the software architecture created and explaining its main festures.

The man subsystem is the Operations Theater Survellance Sysem — SATO. This subsystem provides
the user an online grephical presentation of dl resources being controlled/surveilled and ther
cinematic, overlad on a geographicd map background. It is aso respongble for integrating data from
other subsystems. Data enters Mercury from dl Criss Control Centers (CCC), distributed throughout the
country, both from other instances of SATO running on these locations and from feeds of other systems
that should provide data to help the Command and Control (C2) organization [RODO1].

2 THE PROBLEM

Displaying synchronized information among al centers, i.e, providing dl decisonmakers with the
same opeaiond picture while being a plaform for integrating information origingting from different
sources was the basic problem for SATO. Many other requirements, some very smilar to the ones
described by Roodyn [ROO99] existed:
1. Capable of being integrated to other systems, taking differing types of data;
2. Accept data from more than one source. Data synchronization has to be accomplished, specidly
when different sources provide data about the same object;
3. Allow theintegration of sdlected Decision Support Systems,
4. Provide a way to derive data, including forecasting, mostly on the dients, using the parameters
provided by the interested user;
5. Clients should be able to sdlect data to be presented and the how it is presented;
6. Server should be able to filter data to be transmitted based on cdlient type, classfication and other
criteria established by the user;
7. Clients should be notified of new data or modifications on exigting deta, in atimey manner;

8. Store data for historicd anadysis and auditing purposes. All data changes must be tracked to the
user tha originated them; and

9. Be rdiable, supporting uninterrupted operation 24x7x365, in any condition, including WAN
falure
Due to the fact that the customer was dready usng Windows NT, it was required that the sysem should

be built on it, usng both Digitad Alpha and Inted machines, with the Microsoft SQL Server as the
sydem’ sDBMS.

3 THE SOLUTION

Requirement 1,2 and 3 cdled for a solution based on a middleware capable of cresting some type of
abdraction layer to fecilitate integration. Besides being a standard, avoiding a crestion of a proprietary
solution with the use of socketss, CORBA would provide severd advantages, such as the use of
multithreading on both client and server programs and reduction of the complexity of the server-side
software [URB99]. IONA Orbix was sdected due to its stability and multiple platform and language
support [URB99] [IONA].

Although grict time congraints were not explicit, the nature of the system required a red-time approach.
This way, and meeting requirement 7, the solution should be &ble to provide a soft red-time
environment [PRESS [EMM99].

Requirements 4 and 5 would ask for client applications dlowing different scenarios and smulations to
be built by each user, and even different clients, custom-built for the userS needs. Also taking into
account requirement 8, alayered architecture would provide severd benefits on this case [SHAWM].

An Event-based architecturd style would help in implementing requirements 6 and 7 [SHAWM], and
aso 1 and 3 [CAR99] [CUG98]. Findly, requirement 9 demanded the object distribution to be done in a
way that operation would continue even in the event of afailure of the network infrastructure.

In view of the drategic nature of the system, since it would run on dedicated hardware and integrated
with legacy code, a distributed objects architecture was chosen as the basic solution [SCH99)].

Conddering dl the requirements above, the following characteristics should be pat of the adopted
architecture:

Didtributed Objects;

Layered Sysem;

Event-Based;

Redundant; and

Soft Redl- Time.

The bass for building the solution was the MVC concept [KRA88]. The Trim and Fit Client paitern
[BRO97] was then used as the starting point to design the system.

4 |IMPLEMENTING THE SOLUTION

SATO's development was planned to be done in three main phases, which would produce systems with
the following characteridtics:

1% Phase- Stand-aone;

2" Phase - Digtributed Map-based presentation based on centralized objects server/databases;
and

39 phase - Distributed Map-based presentation and object management based on replicated
objects serverg/databases (local to each CCC).

Figure 1- Mercury Deployment Scheme (2nd phase)

In its second stage, as a three-tier system, SATO relies on centralized objects server/databases |ocated
in one of the CCC's (figure 1). It displays al the information required by the C4l dructure. This means,
for ingtance, that besdes displaying the target’s postion and movement, it dso displays detalled data
about the target, upon request. Many client applications access the server sde application — the object
manager — through a network digtributed all around the country. The basic data required by the client
gpplicationsis kept in memory, on the gpplication server, and perssted in arelationd database.

SATO is desgned as a four-layer system (figure 2) [BRO97]. The two top layers resde on the dients
and are in the user-working environment. Each different client gpplication that composes the sysem has
its basic building blocks, except for the visud objects (VO), just used on map-based applications, i.e.,
gpplications that show maps and the targets movements on it.

Windows Visual Objects
INTERFACE
Application Manager
APPLICATION
Domain Manager DOMAIN
Named Pipes
Persistence
INFRASTRUCTURE

Figure 2- SATO layered architecture

The VO's were derived to avoid unnecessary use of memory and performance degradation. The VO's
are speciad copies of the objects that reside on the server — domain objects (DO) — tha remain in
memory during the whole agpplication execution. They keep the essentid information exigent on their
domain counterpart and some data needed for their presentation, like its position on the screen. Since the
VO's are dynamic, i.e, ae targets that keep moving the whole time, its movements are caculated
locdly, on the client, without any need for communication with the servers. In addition, since the users
constantly access part of the basic data about targets, like target’s classification, course and speed, these
data is kept on the VO's too. This feature dso presents an extra benefit, which is the posshility of
implementing Smple mechanisms that dlow the presentation of the targets to be cusomized on a per
client bass.

The Application Manager (AppM) is typicd of each client gpplication, i.e. each dlient type has its own
AppM. It is respongble for implementing its main functiondities. The two man dients in the sysem
now are the Graphica Presentation Module (GPM — map-based) and the Data Management Module
(DMM). In the Map-based Clients, for instance, AppM is responsble for keeping track of collisons
between VO's.

The lower two layers resde on the server. The domain layer congtitutes the main part of the Didributed
Objects Server Module (DOSM). It is responsible for data distribution and synchronization. It aso
provides services to other gpplications that communicate with the system, like the Message Management
System (Sistema de Geréncia de Comunicagdes — SGC), which automatically delivers and extracts data
from SATO, through a CORBA based, customized AP!.

The Infrastructure layer is where the persastence of the DO's is done. It uses SQL, through named pipes.
The DO's are kept in memory the whole time and changes on its data are written on the databases.

As a C'l support system, any new information introduced in any of the systems dlient workstations shdl
be immediately notified to dl others, dlowing the operators and decison-makers to assess the changes
dmog a the same time it was introduced. As explained earlier, there were no explicit time condraints
imposed to the system. However, the users evaduate the systiem congtantly and report any problem to the
development team as in Roodyn and Emmerich work [EMM99]. This characteristic presents a few
problems. Two of them are of fundamenta importance. Firs, the sysem deeply relies on networked
communicetions that are not fail safe. Second, since it may exist concurrent attempts to update systems
data, due to sensor information produced by different controllers — CCC, specid care is required in a
digtributed gpplication of this kind. To address the former, Mercury, on its current phase, implements a
mechanism that keeps track of the client's connections “hedth” (discussed on the Fault Tolerance
subsection). To the latter, it implements a concurrency control solution.

The Distributed Objects’ Server Module

The DOSM is the main server-sde component of SATO. It takes care of al objects digribution,
including dient's initidization and object changes broadcagting, concurrency and persistence. For the
latter, it relies on two databases. The first one, Target Control Database (TCD) gores dl the information
related to targets movements and operations. It is the back-end for SATO's object persstence. DOSM
is responsble for keeping these data synchronized among al client goplications and TCD. The other
one, Target Information Database (TID), Sores detalled information about ships, arcrafts and troops
characteristics. Both databases are represented in figure 3 as DB. DOSM has no responsibility over the
data that exigs on the latter, regarding didribution and synchronization — it just retrieves what is
requested by the client application, working as a communication link between client gpplications and
database.

To take care of dl its tasks, DOSM has two managers. the Domain Manager and the Event Manager
(Figure 3).

SERVER SIDE CLIENT SIDE
DOSM GPM - DMM

hind

Create-ohject(..} " Tern
Delete-ohject(0ID) *

Domain
Manager

& & A

bind
Sub scrib e (return references’ lists)

- e Cancel-subscription

B Get- OID-lists

Maintain-ohject
(CRUDY)

hind

Publish-ohject{OID, type)

Change-ohject{OID, type...}

Remove- object(OID, type) - Updating
i 2 Thread

b 4 Inform-upd ate

Notify-client
Update-chjects

Update read-ohject

* only on DM ! vo

Figure 3- The SATO Distributed Objects | mplementation

The Domain Manager is mostly responsble for kegping the DO's in memory, taking to the databases
and keeping them updated. It uses both CORBA and SQL for communicating with the dients and the

databases, respectively.
The Event Manager takes care of the DOs digtribution. It provides the data necessary for initidizing the

clients, recaives ther information about changes on DO's, keeps them informed of every change made
by other clients and keeps track of the connected clients and their connections' status.

The Application Manager

On the client sde, the Application Manager does the essentid work. Whenever a client is darted, it
establishes connection with the server, preparing to communicate, telling the server tha it is an active
client and, in return, should be notified of every modification on the DO's, that are of interest for its
client type. The Application Manager has a specid interface, caled Natification Manager (NoM), which
receives, and processes, al information of changes from DOSM. Since the number of such notifications
is very large, it has separate threads to conduct the changes on each VO. AppM has another significant
function. On every natification sent by the server, it is respongble for the acknowledgement. If for any
reason, the acknowledgement, after a certain time, is not receved by DOSM, it deactivates the client.
This means, for DOSM, that the client is no longer able to recelve natifications and it is out of
synchronization. When this happens, the next time this deactivated client tries to connect to the server, it
will be forced by it to proceed with afull synch, i.e., a subscription.

The Event Manager

The Event Manager is implemented as a Singleton [GAM95]. Clients associated to it can receive 4 types
of events.

DOSM available objects;

New object;

Changed object; and

Removed object.

Each client associated to DOSM has an event queue associated with it. Every new event hat has to be
sent to the client is placed in the queue and is associated with one specific domain object, called
EventTarget. In the case of the InitidizationEvent, the EventTarget is the Domain Manager, which keeps
track of dl DO's. The tatic structure of the EventManager and related objects is shown in figure 4.

EventTarget

+GetBasicData()
- +GetData()
Client +GetKey()
EventManager +IncludeEvent() 1
Subscription +RemoveEvent() 0.*
+DistributeNotifications() . :mgz:gﬁlclusiono
+Subscribe() 1 X Event
o +NotifyChange()
+CancelSubscription() +NotifyDeletion()
+Notifylnit() 1.% * |+Notify()
+IsOfInterest() 4
GPMClient DMMClient

InitializationEvent| |InclusionEvent| |ChangeEvent| |DeletionEvent

Figure 4 — Event Manager and related classes

The client’s subscription process darts with a bind on the EventManager. Using the latter's proxy, the
client subscribes the DOSM sarvices. According to the dient type (informed in the subscription), the
EM creastes an appropriate concrete Client. The notifications follow the Digtributed Cdlback pattern
[MOW97], avoiding the need of subsequent binds. When the subscription is finished, the client darts
waiting for notifications. The DOSM cregtes an InitidizationEvent then. This event is associated with
the Domain Manager, placed in the dient’s event queue and DOSM darts its naotification. Only after this
natification is finished, the dient is incduded in the lig of clients adle to accept regular naotifications. A
separate thread treats each client event and priority is adjusted to avoid starvation of a client. Figure 5
shows the Sequence Diagram for the Subscription process.

Although implemented this way now, the EM was not planed to work this way. On its firg
implementation, the subscription data was returned as out parameters of the subscription method, instead
of as an event created by the DOSM (and sent when it is “freg’). As origindly implemented, it turned
out to be ineffective. The preparation of the dlient’s initidization data is a codtly process, and letting the
control of when to perform it on the client did not work. DOSM was eventudly interrupted, during an
important task, to answer anew client connection.

Client Side Server Side

:ApplicationManager :EventManager :EventSubject

i bind (out proxy)
Subscribe (ClientiOR,

ClientType, 1 > Create4’| :ConcreteClient |

]
out DomainM gnager| OR)

—

Create (DomainManaﬂel’\"—l, 'I :InitializationEvent |
|

AddEvent (Event) | L_l

StartNotifications |

:|AddCIient(CI ient) i Notify

— :I PullEvent (out Ev

Notify

|
|
|
|
i
otifylnitializatio
i i\l y
|
[}
[}
|

)

- T

_________ F-——-—-—--- I

| SethdObjects (Data, IORS)
' i

| I

' 1

| I

. |

[|

] |

|

Figure 5— Subscription Sequence Diagram

|
GetData (out Data)

e ¥]

Fault Tolerance

System vulnerability resdes on the DOSM (EM) since it is responsible for dl the communications with
the clients. Three basic problems arise:

Dependency of one single ingtance, aggravated by the fact that it operates on a network;
Performance, since every dlient will depend on it and the number of dientsis not limited; and
Dataintegrity, as network disruptions could produce a nor+trustable client.

While the firg problem will be addressed on the third verson of the system, the second and the third
were dready taken care on this verson. In order to reduce the bottleneck, EM was implemented as a
multi-threaded object, with fault and deadlock detection algorithms.

Typicdly, EM controls one notification thread per dient. These threads can share the object the
notification refers to, though. Semaphores are used to guarantee exclusve access to the shared object
and locks are time-limited to avoid deadlocks.

Besides tha, a client’s fault detection dgorithm was implemented, so EM would not waste time trying
to notify dients that lost their connection, what could end up flooding DOSM. This dgorithm defines
four satesfor aclient, as shown in figure 6.

Every client sarts, by subscription, on the Connected state. When Connected, its thread las the highest
priority. At the first detected error on a notification to a client, it trangtions to the Faulty state. On this
date, Snce there is a suspicion that a communication problem is occurring, the thread has its priority
reduced, to alow the norma operation of the other clients. However, the notification is not los — EM
will keep trying to deliver it, until a certan number of unsuccessful attempts. In addition, during this
time, new events that may arive are placed on the client’s queue. When the limit of attempts is reached,
the client trangtions to the Not Updated date. If, before reaching the limit, a notification succeeds, the
client trangtions back to Connected and the events in the queue are dl dispaiched. On the Not Updated

notification OK

subscribe first error on

notification
error on
notification
DI octed Initialization successful Fault
bl Event OK notification aulty

-

Not N errors on
[e] . .
notifications
Updated

M errors on
InitializationEvent’s error on
InitializationEvent

Figure 6— EM Client’s State Transition Diagram

state, its event queue is cleaned and EM tries to send an InitidizationEvent (like on the Subscription
process) but now, with a lower priority, since the chance of having logt the connection is higher. Again,

if a successful attempt is obtained, the client retuns to Connected. Else if an edtablished limit of
attempts is reached, the client trangtions to the Disconnected date. Then, only a new subscription brings
the client back to Connected.

The limits (M and N) shown on figure 6, were determined on system'’s trids and can be adjusted to
specific network configurations, asthis proved necessary.

5 SUMMARY AND FUTURE WORK

This paper presented the Mercury Project and the architecture created for its main subsystem — SATO.
The solution adopted was a mixing of severd architecturd dyles. Although, as mentioned before, the
performance of the system was not benchmarked, it has been quite acceptable to the users. Initidly, it
was not what the users expected but, after tuning up the subscription process, dl fel into place. The
Event sarvice [BAK97] implementations tested (ORBIX and COOL Chorus), a the time, were not
satisfactory. Some problems, especidly with the multithreading versons were faced and so, the event
management was fully implemented for the project. This choice was dso made because we believed that
a more flexible filtering mechanism would be required [CUG98] and specid adjusments would have to
be made for the find verdgon of the system.

As shown above, the Mercury Project faces several demanding requirements. Implementing the EM and
adjugting its behavior to the networks it runs on, was a tough job. The subscription process is onerous
both on clients and on DOSM. At this stage, performance was a problem and had to be achieved a any
cost. Changing the way EM worked and providing it the capecity to be adjusted to different networks
was crucid to the success. However, phase 3 will be much harder. Requirement 9 imposes
gynchronization of multiple Objects Servers and Databases, which promises to be a chadlenging task.
Presently, the team works on an architecture that will let the clients connect to any DOSM, choosing it
dynamicaly and being able to switch the DOSM being used a any time. This requires the use of
optimization dgorithms, as minimum cost routing, and tagged events, which will dlow the dient to
update itsdf when changing from one DOSM to ancther.

ACKNOWLEDGEMENTS

The expertise of Jose Gomes from the Brazilian Navy Research Lab (IPgM), gained in the condruction
of the Brazilian Navy Academy Navigation Smulator was of greet vaue.

REFERENCES
1. [BAK97] Baker, S. CORBA Distributed Objects. ACM Press, 1997.
2. [BRO97] Brown, K. Crossing Chasms — The Architectural Patterns. www.ksccary.com

3. [CAR99] Carzaniga, A. Rosenblum, D.S. Wolf, A.L. Chalenges for Didributed Event Services:
Scalability vs. Expressiveness. Proceedings of EDO 99, |EEE Press.

4. [CUGY98] Cugola, G. Di Nitto, E. Fuggeta, A. Exploiting an Event-Based Architecture to
Deveop Complex Didributed Systems. Proceedings of ICSE 98, |EEE Press.

5. [EMM99] Roodyn, N. Emmerich, W. An Architecturd Style for Multiple Red-Time Data Feeds.
1999.

6. [GAM95] Gamma, E. Hdm, R. Raph, J Vlissdes J Desgn Paterns — Elements of Reusable
Object-Oriented Software. Addison-Wedey Publishing Co., 1995.

7. [IONA] IONA Technologies Ltd. ORBIX Programming Guide. 1998

8. [KRA88] Krasner, G.E. Pope, ST. A Description of the Mode-View-Controller User Interface
Paradigm in the Smdltalk-80 System. ParcPlace Systems, 1988.

9. [MOW97] Mowbray, T.J. Maveau, R.C. CORBA Design Patterns. John Wiley & Sons, 1997.

10. [PRESS] Pressman, RS. Software Enginesring — A Practitioner's Approach. 4" edition.
McGraw-Hill, 1997.

11. [RODO01] Rodrigues, JA., Cruz, SO. e¢ d A Command and Control Support System using
CORBA.. Proceedings of ICDCS 2001, |EEE Press.

12. [RO0O99] Roodyn, N. A Software Architecture for A Red Time Data Digtributed Objects
System. Proceedings of EDO 99, |IEEE Press.

13. [SCH99] Shonhage, B. Eliéns, A. From Didributed Objects to Architectural Styles. Proceedings
of EDO 99, |EEE Press.

14. [SHAWM] Shaw, M. Garlan, D. Software Architecture — Perspectives on an Emerging
Distipline. Prentice Hall, 1996.

15. [URB99] Urban, SD. Fu, L. Shah, JJ. Harter, E. Bluhm, T. Hartman, B. The Implementation
and Evduation of the Use of CORBA in an Engineering Desgn Application. Proceedings of
EDO 99, IEEE Press.

