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Abstract

A thorough understanding of the relationships between a centre of gravity (COG) and
its underlying critical capabilities and requirements is crucial to the development of a
sound military plan. In this paper we describe the concepts underlying the COG
Network Effects Tool (COGNET), which uses Bayesian (or causal probabilistic)
networks to investigate this relationship structure. COGNET provides a visual
representation of the causal structure and provides an effects-based analysis
capability, which facilitates the determination of the critical vulnerabilities that have
to be degraded or negated to influence the COG. Furthermore it provides a
framework, which can serve as a knowledge base representing generic causal
relationships to aid knowledge reusability and knowledge transfer.

1. Introduction

The initial stage of any operational-level planning process typically includes some
form of mission analysis. This involves identifying and analysing the superior
commander’s intent in order to ensure that commanders and staff can determine
which tasks are essential to achieve the operational objective. Correct assessment of
the objective is deemed to be crucial to success at the operational level ([1], Chapter
4). Mission analysis relies heavily on input from the intelligence preparation of the
battlespace, in particular intelligence on the enemy centre of gravity (COG) and the
likely enemy courses of action (COA). The COG, a key concept of operational art, is
defined as that characteristic, capability or locality from which a military force,
nation or alliance derives its freedom of action, strength or will to fight at that level of
conflict [1].

Having determined the enemy COG, planners must now generate suitable COAs.
Suitability refers to whether it meets the objectives as detailed in the mission analysis
step. Since directly targeting the enemy COG is not usually feasible a critical
capability analysis is conducted at this stage of the planning process. A critical
capability is defined to be a characteristic or key element of a force that if destroyed,
captured or neutralised will significantly undermine the fighting capability of the
force and its centre of gravity [1]. Each critical capability might have a number of
associated critical requirements, which are essential for it to be fully functional. These
requirements may be further decomposed into critical vulnerabilities: elements that
are potentially vulnerable ([1], Chapter 8). The idea behind critical capability analysis



is to identify which aspects of the threat critical requirements can be targeted in order
to influence the enemy critical capabilities and hence the COG.

A good understanding of the key concepts of operational art is as essential for military
operational planners as it is for developers of planning support tools. The qualitative
relationship between these planning concepts has already been explored [3,10]. In this
paper we describe the concepts underlying the COG Network Effects Tool
(COGNET), which uses Bayesian (or causal probabilistic) networks that reflect the
relationships among the critical capabilities and requirements. Using this model it is
possible to investigate the effect that a set of actions has on the enemy centre of
gravity. The model facilitates the drafting of a COA and determination of the critical
vulnerabilities that have to be degraded or negated to influence the COG. It can
therefore provide the principal components to an effects-based modelling capability.

2. Bayesian Networks

Bayesian networks (BN) are graphical representations of causal relations in a
particular domain. They are typically used to model a domain that has inherent
uncertainty due to a combination of incomplete knowledge of the domain and
randomness in the environment [4]. The network may be represented by a directed
acyclic graph whose nodes correspond to random variables, which can take on two or
more values, and which are linked by causal dependencies. The causal direction is
represented by the direction of the arcs in the graph. Nodes that have arcs directed
towards them are called destination nodes while nodes with arcs directed away from
them are known as origin nodes. Internal nodes are both origin and destination nodes,
whereas the nodes at the edge of the network are either root nodes (they only have
arcs directed away from them) or terminal nodes (purely destination nodes).

The strength of the causal relationship is expressed as a conditional probability. Each
node has associated with it a set of two or more potential values or states. The
probability of being in each particular state is conditioned on the state of each of its
neighbouring origin nodes. The probability distribution of a Bayesian net is specified
by assigning to each root node an initial probability of being in each state and all other
nodes are assigned conditional probabilities, given all possible combinations of the
states of all neighbouring origin nodes. As Pearl [8] points out, the advantage of this
graphical representation is that it allows a specification of direct dependencies
representing the fundamental qualitative relationships. The network structure then
augments these relationships with a consistent set of induced indirect dependencies,
which are stable and independent of the numerical probability estimates. It is then
possible to calculate the probabilities of the states of the terminating nodes each time
the probability values of the root nodes change.

The numbers required for a Bayesian network are normally elicited from a domain
expert. They may be completely subjective estimates of the likelihood of an event.
However, in Bayesian formalism the measures must obey the fundamental axioms of
probability theory, which allows us to determine whether the model is complete and
consistent. Another advantage of using Bayesian nets is that determining context-



dependent probabilities is much more compatible with human reasoning than
estimating absolute probabilities. In the statement “the probability of A given B”, B
serves as a context of the belief attributed to A and is much easier to determine than
“the probability of A and B”. Probabilities provide the means for drawing inferences
from causal connections and the relative strengths of those connections.

3. The COG Network Effects Tool (COGNET)

The causal networks we consider represent the centre of gravity (own or threat) and
all the elements that influence it. Functional decomposition [3] of the centre of gravity
is used to identify the influencing elements and to categorise them into a hierarchy:
COG, critical capabilities and critical requirements. Evaluation of the Bayesian net
enables a systematic analysis that helps to identify possible critical vulnerabilities
among the critical requirements. Thus, in our model, the only terminal node
represents the COG while possible critical vulnerabilities appear as root nodes at the
edge of the network. Such a decomposition ensures that the direction of influence
travels up the hierarchy. In other words, targeting a critical vulnerability in order to
change its state produces an effect on all related elements higher up in the hierarchy
and hence the COG. All the networks presented in this paper were produced in
HUGIN [4], a software tool for building Bayesian networks, which forms a Bayesian
engine for the COG Network Effects Tool (COGNET). The probability-updating
algorithms used in HUGIN yield exact probabilities.

In addition to HUGIN, COGNET will include:

� An underlying database for the flexible management of COG element
categorisation;

� A higher-level user interface that aids military end-user model construction,
maintenance and interaction;

� The ability to define desired effects in terms of influence on COG;
� Software utilities for recursive sensitivity analysis and metrics;
� Alternative, high-level visualisation of COG dependencies, including three-

dimensional views;
� Mechanisms for integration of COGNET within a broader spectrum of models

for COA development and analysis that includes modelling and simulation
tools for COA scheduling and resource allocation [11], target systems and
element analysis, and synthetic environments for war gaming and rehearsal
[7].



Figure 1: A simple representative COG network

The net depicted in Figure 1 represents a simple case of a COG with two critical
capabilities, each of which has a number of critical requirements depending on other
requirements, in turn. For logical convenience, we further decompose the critical
requirements into a hierarchy ensuring that root nodes represent possible critical
vulnerabilities. The node colours, as shown in Figure 2, represent the levels of the
hierarchy. Thus, the critical requirements represented by the yellow nodes (i.e. CR5,
CR6 and CR7) are possible critical vulnerabilities. In this case we have four levels of
critical requirements as well as the root-node level, but the number of levels is
arbitrary. Once the model has been populated it is possible to calculate a relative
measure of the effect the state of each of the possible critical vulnerabilities has on the
centre of gravity. Software utilities for sensitivity analysis will enable desired
influence (effect) on COG to drive determination of a set of candidate target critical
vulnerabilities.

Figure 2: Node-colour/hierarchy-level mapping

Acquiring the probabilities for a Bayesian network is sometimes problematic. Take
the simple example shown in Figure 1: CC2 is dependent on three critical
requirements. If each of the requirements can be in two possible states, then eight
conditional probabilities would have to be specified for CC2, one for each
configuration of the states of CR1, CR2 and CR7. Some of these configurations may
be too specific for any expert, who might be able to specify the probability of CC2
being in a certain state given the state of CR1 but might have difficulty estimating the



probability of CC2 having to consider the states of all three nodes. However, in
practice, conceptualisation of causal relationships can be simplified by creating
hierarchies of small clusters of variables whose interactions can be categorised into
prototypical structures for combining different combinations. One such structure
(Pearl’s Noisy OR [8]) arises when any one of the dependent requirements is likely to
produce the same effect. Higher-level interfaces that facilitate elicitation of
conditional probabilities are also being developed.

Let us demonstrate a Bayesian Network representation of a typical critical capability
analysis. The node colours represent the same hierarchy levels as shown in Figure 2.
The network shown in Figure 3 represents a COG analysis exercise observed by the
authors. It is based on a fictitious scenario used for training purposes. The perceived
threat was an imminent invasion of an island belonging to an ally. The assigned
mission was to deter or dislodge the enemy and return sovereignty of the island to its
government. The threat COG was assessed to be the enemy’s ability to project force,
and this was further assessed to be dependent on the threat sustainment, amphibious
landing and airborne force capabilities. Associated critical requirements appear as
neighbouring origin nodes. The root nodes represent the critical elements that are
potential targets and hence vulnerable. Each node can take on two values, normally
called strong and weak, which describe the current state of the capability or
requirement corresponding to that node. Note that this model is not very extensive.
There are possibly three reasons for this: a) the exercise participants were trainees –
not experienced in Joint Planning; b) there were tight time constraints; c) it is a rather
tedious exercise to derive a comprehensive model. However, the model can be shown
to be consistent as necessitated by the formalism inherent in the modelling.

                        Figure 3: An example threat COG network



Figure 4 shows the initial probability distribution assigned to the network. Each root
node is assigned a probability of being in each state, independent of the status of all
the other nodes. All the remaining nodes have a conditional probability table defining
the probability of being in each state conditioned on the states of its neighbouring
origin nodes. For example, the probability that the enemy Air Requirements capability
is in a strong state is conditioned on whether Petroleum Oil and Lubricants (POL)
stocks, Air Crews, Air Platforms and Airfield Infrastructure are in a strong or a weak
state. The conditional probability table is shown in Figure 5.

Figure 4: Initial probability distribution for the root nodes

Figure 5: Conditional probabilities for the Air Requirements capability



The numbers were estimated by the modellers and are only indicative. However, they
still demonstrate the potential power of the tool and its usefulness. In Figure 6 we see
the initial probability distribution for all the random variables. Note that all the root
nodes are assigned a 99.99% probability of being in a strong state. This is as one
might expect at the start of a conflict. As the probabilities propagate up to the terminal
node the probability that the COG is in a strong state is calculated to be 99.89%. This
is therefore the base case for our problem.

Figure 6: Initial probability distributions – the base case

We are now in a position where we can answer some “What if” questions. Based on
the scenario and our own force’s strengths and weaknesses we can choose which of
the enemy critical requirements can be targeted. This information can be fed into the
COGNET model to investigate the effect of such actions on the COG. In Figure 7 we
show the effects of targeting the enemy’s POL stocks, Command & Control, Air
Platforms and Amphibious Platforms. The probability that the COG is in a strong
state has been updated to 34.58%, given that the probability distributions of the
targeted requirements are as shown. Software utilities that will enable sensitivity
analysis to determine target critical vulnerabilities based on the desired effect on the
COG are under development. Once again we note that the network is overly
simplified. In the next section we outline a description of a comprehensive generic



model. Of course, when the network is large and complex a more extensive sensitivity
analysis would be necessary to calculate these effects for as many combinations of
targets as is plausible.

Figure 7: Examining the effects of targeting certain critical requirements

4. A Modular Knowledge Representation Framework

Deliberate (long-term) planning at the operational level aims at developing generic
plans that meet the objectives set out by strategic guidance. It is conceivable that for a
particular enemy the centre of gravity might change according to circumstance or type
of conflict. However, the current force structure and capabilities can be reflected by a
relatively fixed causal network over a fixed set of critical capabilities depending on a
fixed set of requirements. The network structure would be invariant for a range of
problem instances but the causal strengths may vary with respect to the specific COG
being considered.



We propose a knowledge representation framework, expressing the invariant causal
relationships, which can be constructed for each specific domain. This would serve as
a knowledge base expressing generic causal relationships with probabilistic strengths
integrated into the model to tailor it to a particular situation. A generic framework can
be built on the basis of a categorisation of operational-level capabilities. A “natural”
categorisation could be based on military functional areas such as Command &
Control, Protection, Deployment etc and their underlying requirements, organised in
hierarchies of subnetworks, which can be combined as required for each specific
instance. In order to ensure that the generic model is sufficiently extensive and
consistent, a hierarchically organised reference system such as a Joint Task List (JTL)
is used as a basis. Task areas at the top level of the hierarchy are mapped to military
capabilities, while subtasks at the lower levels are mapped to critical requirements
wherever possible. The structure of a JTL is such that any task can be traced through
the hierarchy to determine its contribution to higher-level tasks. In the same way our
generic model can help determine which of the requirements are critical for a friendly
or threat capability. Such a comprehensive Bayesian net will necessarily be large and
complex but may be built from a library of modular subnets reflecting the hierarchical
structure and capturing the stable patterns of probabilistic relationships. Each specific
COG network would consist of a subnet of capabilities and requirements from the
generic model – nodes that are irrelevant for a specific COG are simply deleted or
‘desensitised’ along with any nodes that only influence deleted nodes. Similarly the
probabilistic interrelationships among relevant nodes are re-examined in light of the
specific problem at hand. HUGIN facilitates establishing such a capability, however,
COGNET includes additional utilities for the management and flexible configuration
of COG network modules.

Figure 8 shows an example of a generic model. The model is based on a subset of the
Universal Joint Task List [2]. It shows critical capabilities and Level One critical
requirements. One of the Level One CRs, Offensive Ops, is expanded, as is one of its
component requirements, Amphib Assault, which is also expanded all the way down
to possible critical vulnerabilities. It is clear from the diagram that expanding a few
more nodes will result in a sizeable complex network. A modular network structure is
necessary for such a model to be feasible. The modules could be built for each
specific domain and stored in a knowledge base for future use. Maintenance of
random variables and conditional probability updates can be handled by using object-
oriented Bayesian Networks [5], in which network fragments describe the
probabilistic relations between the attributes of an object. An object here can be a
random variable (a node in a BN) or may represent the relationships between
attributes, which might themselves be objects. The object-oriented approach allows
inheritance hierarchies as well as the ability to enclose objects within other objects.

This ability to encapsulate objects allows the user to ignore some of the detail at first.
Domain experts often consider a related set of variables together. Representation of
conceptually meaningful aggregates of variables and their interrelationships facilitates
both knowledge elicitation and knowledge base maintenance. Similar modelling
techniques for constructing and maintaining complex Bayesian networks have been
previously applied to problems in military situation assessment [6] and fault diagnosis
in engineering systems [9].



Figure 8:  Designing a generic model

5. Conclusions and Future Work

A thorough understanding of the relationships between a COG and its underlying
critical capabilities and requirements is crucial to the development of a sound military
plan. The relationship structure is often complex and not always easy to determine.
The COG Network Effects Tool described in this paper goes a long way to facilitate
this task and it provides an effects-based analysis capability. The graphical
representation allows a specification of direct dependencies resulting in a network
structure that reflects induced dependencies. Furthermore it provides a framework,
which can serve as a knowledge base representing generic causal relationships to aid
knowledge reusability and knowledge transfer. Future research will include
investigating modularisation techniques using object-oriented Bayesian networks.

Another promising avenue for research is to link the critical capability analysis
described in this paper to the next step in the planning process in which a line of
operations is derived from a sequence of tasks. Operational architectures philosophy
advocates the adoption of a standard language (such as a Joint Task List) for
describing a defence force’s capabilities. Once a JTL has been defined a set of Joint
Mission Essential Tasks (JMET) considered essential to the assigned mission is



derived from the high level concept of operations and the mission objective.
However, the logical link between the essential tasks and the defined objective is not
always clear. By definition the mission objective for a friendly force is to negate the
threat COG while maintaining our own. Thus both COGs have a direct relationship to
the mission objective. We propose, therefore, that a JMET list (a subset of the JTL)
can be produced for each mission based on the results produced by COGNET. The
relationship between the generic model and each mission-specific sub model would
then be equivalent to the relationship between the UJTL and the JMET.
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