
A 3-D Framework for C2 Based on Web Technologies

Hubert D. Callihan
John A. Balash

NetSpace Corporation
9640 Downing Place

North Huntingdon, PA 15642
(724) 861-8228 Voice
(724) 861-0999 Fax

admin@netspacecorp.com

Abstract

Web applications are proliferating in the commercial sector due in large part to developmental
frameworks that promote rapid web site creation, simpler maintenance, and complete back-end
database integration. While 3-D on the web has enjoyed a modest degree of success on the web,
it is typically relegated to "dynamic picture" status where scenes are presented with the user in
control of viewing angles and other camera-like actions. Few applications have shown the full
capability of web 3-D as a basis for event handling whether user-induced actions or externally
supplied by remote sensors. In other words, objects (including avatars) depicted in the scene act
and react based on actual events, real time or otherwise. C2 offers a natural arena for
collaboration in 3-D where interactions among users, remote events, and object control are very
realistic. A web framework for developing such C2 applications will be presented along with
some actual applications based on ideas filtered from our current work in network commun-
ications. Major issues related to the use and relevance of 3-D technologies for C2 such as
Remote Monitoring and Control, Collaboration, and 3-D Visual Frameworks will be discussed.

1. Introduction

Recent advances in commercial Information Technology (IT) have produced a variety of web-
based technologies, which hold considerable promise for domains of interest where dispensing
of information is rapid, reliable, and timely, while giving the recipient the option of several
degrees of interaction with the information in near real time. Naturally, the digital communi-
cations network is the key transport mechanism to deliver this information. In the commercial
sector, it is the Internet with its standard TCP/IP protocols. In the military sector, it is similar but
with added capability to incorporate encryption. Server and end-user devices are commercially
available requiring little or no special customization features. Our interest has been in using 3-D
web environments integrated with the full suite of complementary web technologies, to create a
compelling visual environment to support the C2 process covering a wide range of situations
from command level to the war fighter.

Command and Control has been widely studied domain of interest that shares many of the same
general features as current commercial systems supporting varied decision-making capabilities.
These include (1) identification of the current state of the business climate, (2) using what we
know to compare it to some desirable profit direction, (3) decide what to do, and (4) take action

to realize the decision. These principles have been broadly discussed from a military perspective
as well by Boyd [2], Orr [5], Lawson [4] and others. From this perspective, Lawson's model
seemed to lend itself to visual representation and subsequent drill-down through the phases of his
C2 process… [1] sense the environment, [2] process using the status of our own forces, [3]
compare using a desired state, [4] decide, and [5] act using our own forces in the environment.
We use Lawson's model to demonstrate the features of a 3-D framework to support C2.

2. Approach

Highlighted below are several major considerations that are important for web-centric C2 appli-
cation development considered by Gardner, et al [3].

• "Examine the use of web-centric technologies to rapidly prototype significant C2
applications. Many web components of varying degrees of complexity are available in
the public domain or, in the case of 3-D models, from the user’s own CAD, CAM or
similar archives.

• Determine the utility of web technology in solving remote collaboration problems; real
time data acquisition can be straightforwardly embedded.

• Produce an iterated prototype that can be extended quite easily rather than undergo
complete redesign; Complex hyperlink systems can be developed in man-weeks or man-
months.

• Make the software product easy for domain personnel to use; the “look-and-feel”
approximates that of popular business or office system software. Where possible, test
components in the field with military users.

• Produce a body of re-usable object components for new extensions and modifications;
tools for development, modification and maintenance are widely available."

Furthermore, we have used web technologies in concert with the development software to enable
rapid creation of web pages and 3-D environments. In agreement with the work of Gardner, et
al, we have realized several benefits to the end user: cross-platform interoperability, common
browser-based user interfaces, operational scalability from a single user to the worldwide
enterprise, and platform scalability from laptop PCs to high performance workstations.

3. A 3-D Framework for C2

Web-based development consists of digital content, which includes HTML-linked pages,
images, audio, video, and 3-D objects having varying degrees of detail from simple color models
to photo-realistic objects possessing their own behaviors and lifelike features. These elements
can be easily combined to depict portions of the C2 environment. Pages can contain behavioral
scripts to enable event handling, error capture, and animations. This custom behavioral code is
included and does not expose itself except to present buttons and otherwise interact with the
objects on the page. The 3-D approach provides a window into the world of interest with no
restrictions on size and detail. Objects can come and go dynamically within the sphere of

interest. Their properties can be influenced by some external source such as sensor input, GPS
location, database updates, etc.

Multi-site collaboration in a C2 decision support context can benefit from many of these
attributes. In addition, applications using this type of 3-D framework tend toward simplified
maintenance, co-existence with legacy applications, and even enhancement of these legacy appli-
cations.

We define a 3-D framework for these purposes as a development environment that supports rapid
prototyping, unlimited extensibility, reusability of objects, a rich set of event-based behaviors,
and simplified integration with existing data sources.

3.1 Rapid Prototyping

Rapid prototypes of a 3-D application are often not given consideration because of the time
required to develop realistic models of objects, code to endow the objects with behaviors, and a
user interface that permits direct interaction within the 3-D environment. These capabilities have
always been present in 3-D code libraries such as OpenGL, but the time required to develop
content is prohibitive when a rapid prototype is needed. We think of a rapid prototype as a
demonstration system outfitted with many of the features of the eventual system but able to be
developed in a matter of weeks or even days. Most importantly, the rapid prototype shows the
target users what a system will look like and how it will be navigated. It often functions as a
requirement-gathering tool for subdividing the problem space and showing possible user
mechanisms to support interaction.

Our framework permits the prototype developer to incorporate existing libraries of objects and
behaviors and assign attributes to common user interface widgets including 3-D controls as well
as many multimedia controls such as audio, video, and animations.

Figure 1 Multi-Function Button Control

For example, a common multi-function button control, Figure 1, can be situated in the

environment to provide several capabilities. The control dynamically loads/unloads a
collection of thematic 3-D elements, such as a collection of maps or globes, that are referenced
as an http hyperlink… another 3-D worldview, an HTML page, or any other mime-type
association. A second button group might load a set of nodes in a network and place them on the
map. A third button group might load the network connections between the nodes. Naturally,
"Label" would be a bitmap containing some text or icon associated with the corresponding

button group, such as maps, networks, or links. The other buttons enable help , toggling the

visibility of these items on Error! Unknown switch argument. and off , toggling any pre-defined

audio, or sound effects, associated with the objects , toggling pre-defined animations , and

loading a submenu for this button group. The button permits the button group to be
dragged elsewhere within the 3-D frame. All of these button groups are part of a head-mounted
display effect (HUD) and do not move with the 3-D items they control. Each group is an
instantiation of the pre-defined button-group template object with parameters to be set by the
user. Therefore, the definition of these user interface elements is fast and simple.

In short, these button groups control the handling of a collection of 3-D entities. They are
defined by associating URL references in simple text form. Pre-defined audio, video, and
animations are constructed at design time for each object to emphasize its features or attract the
user's attention to its current state. They are activated by the buttons, but can also be activated
by any event occurring within the scene, or from outside sensors, database changes, etc.

The objects that populate the scene can be virtually anything, from simple geometry, to complex
representations of lifelike objects. They can be constructed using common CAD or Visual
Modeling software and exported to the standard VRML 97 web format. Mapping textures to
surfaces on objects is an easy way to gain apparent realism without extraordinary modeling
detail. For example, in a network example, routers might be simple boxes or more detailed
geometry complete with panels imported from photographs of the real thing. The 3-D
environment benefits from level-of-detail in the same way humans can perceive shapes and
colors from a distance but are able to distinguish considerable detail as the distance between
them is reduced. The greatest benefit this computer representation of the LOD phenomenon is
increased performance.

3.2 Event-Based Behaviors

For most 3-D applications familiar to web enthusiasts, objects have striking appearances with
textures, animations, and perhaps some degree of user interaction (rotate, pan, zoom). However,
few applications probe the capabilities that an event-driven framework containing these objects
can offer. Revisiting our network example once more, if a link between two routers suddenly
goes down, the link object, which may be as simple as a line between two routers, may turn red,
or it may flash. If such a link showed an animation portraying the movement of data from one
router to the other, then the animation would stop and perhaps flash red. It is fair to say that
nearly any event, whether emanating from a source within the scene, some user interaction, or
some outside influence, can be represented and portrayed realistically in this environment. In
fact, the event mechanisms are one of the key ingredients of the 3-D framework we discuss.

Although CAD systems and most visual modelers do an exceptionally good job of defining detail
on the objects themselves, they often do very little to aid the designer in establishing event
mechanisms that give the objects realistic behaviors. This is accomplished by using a modeling
tool for creating behaviors on models.

3.3 Unlimited Extensibility

Early in our experience building these 3-D web applications, we found that they can grow
considerably large if they are to be realistic. Thousands of items in the scene are common.
Therefore, individual static scene construction often reaches its limits long before the details are
all included. Based on this experience, we adopt a dynamic loading/unloading scenario for our
3-D scenes that require objects and their behaviors to be self-contained and have their own well-
defined interfaces to send and receive events. This approach results in a considerably smaller
memory footprint for typical application frameworks, decreased loading times, and faster overall
performance on even mediocre PC platforms. Our framework exploits this dynamic capability
and results in a very manageable scenario for even large applications, since most do not require
all objects and data be visible at all times. If fact, when much data is shown in one view, the user
is often quite confused when trying to interpret it.

We claim the framework has infinite extensibility, since there are virtually no limits to the
number of URL links and pages that can be loaded/unloaded separately. The user understands
that he must manage this activity to achieve higher performance and views that are interpretable
and useful.

3.4 Reusability of Objects

One of the real benefits of having object templates, such as the button groups we described
earlier with defined interfaces for an application, and objects that can be instantiated from a
template, is that they are created once and used forever. Any changes to the object template will
immediately trickle down to the applications that are using it. Moreover, they can be the basis
for building other objects (inheritance) with the same or additional behaviors. Although the
software regimen for developing these objects is akin to object-oriented development, it has
neither been formalized in this 3-D context nor enforced by any of the web development tools,
including this 3-D framework. Developers of frameworks such as this would benefit enormously
from such formalization activity and tool sets that enforce a content development process.

Our notion of reusability for this discussion is aimed primarily at the significant reduction in
time that results from using prototype objects over and over that have well-defined parameter
interfaces to accept and produce parametric elements and event mechanisms. These are simply
3-D black box objects with a well-defined control interface. Instantiation of these objects
consists of declaring an instance of the prototype, defining the interface parameters and
connecting any event mechanisms in the interface that permit the object to send and receive
events.

For the button group presented earlier, this interface is defined as shown in Figure 2. The field
parameters are treated as local hidden parameters in the interface, eventIn declares events
receivable by the interface, and eventOut declares events that are generated internally by the
object and receivable by objects external to the prototype. The SFVec3f indicates a field type
consisting of a single ordered triple (3-D vector). SFString indicates a single-valued string of
arbitrary length. MFString indicates multiple strings of arbitrary length. SFInt32 indicates a 32-

bit integer. SFBool indicates a single-valued Boolean (true or false). Values to the right of field
names are default values, which are used if the field is not declared when instantiated.

35272�ORDGHU%XWWRQ�>
ILHOG�6)9HF�I��EXWWRQ6L]H:+'���������� ��ZLGWK��KHLJKW��DQG�GHSWK�RI�WKH�EXWWRQ�JURXS
ILHOG�6)9HF�I��WUDQVODWLRQ ����� ��ORFDWLRQ�RI�EXWWRQ�JURXS�RQ�WKH�VFUHHQ

ILHOG�0)6WULQJ�WH[WXUH�>@ ��ELWPDS�LPDJH�IRU�/DEHO�EXWWRQ�
ILHOG�0)6WULQJ�XUO�>@ ��85/�IRU�JURXS�RI�REMHFWV�WR�EH�ORDGHG
ILHOG�6),QW����P\,QGH[����� ��LQGH[�QXPEHU�WR�VHUYH�DV�LGHQWLILHU�IRU�WKLV�JURXS
ILHOG�6)6WULQJ�VWDWXV/LQH���� ��WH[W�PHVVDJH�GLVSOD\HG�ZKHQ�KRYHULQJ�RYHU�/DEHO

ILHOG�0)6WULQJ�KHOS8UO��>@ ��85/�IRU�+HOS�ILOH�ZKHQ� �FOLFNHG

ILHOG�0)6WULQJ�DXGLR8UO��>@ ��85/�IRU�ORDGLQJ�DXGLR��ZDY��DX��PSHJ��HWF��
HYHQW,Q�6)%RRO����LV9LVLEOH� ��HYHQW�WR�WHOO�JURXS�WKH�VWDWXV�RI�JURXS�YLVLELOLW\
HYHQW2XW�0)6WULQJ�XUOBFKDQJHG ��HYHQW�UHIOHFWLQJ�FXUUHQW�85/�IRU�WKH�JURXS

HYHQW2XW�6)%RRO���VHW9LVLELOLW\ ��WRJJOHV�YLVLELOLW\�RI�WKH�JURXS�XVLQJ�

HYHQW2XW�6)%RRO���SOD\$XGLR ��HYHQW�WR�WRJJOH�DXGLR�XVLQJ�

HYHQW2XW�6)%RRO���VHW%OLQN ��HYHQW�WR�WRJJOH�DQLPDWLRQ�XVLQJ�
HYHQW2XW�6),QW����VKRZ0\,QGH[� ��HYHQW�WR�VKRZ�LQGH[�LGHQWLILHU

HYHQW2XW�6)%RRO���VKRZ6XE0HQX ��HYHQW�WR�WRJJOH�VXEPHQX�XVLQJ�
HYHQW2XW�6),QW����UHPRYH8UO,QGH[��HYHQW�WR�XQORDG�WKLV�LQGH[�LWHP�IURP�PHPRU\

@

Figure 2 Button Prototype Interface. Details of the prototype are contained after the declaration and are not
included here since instantiating this prototype does not require knowledge beyond the interface parameters.

These parameters operate similarly to those in a standard windowing system, but have the
advantage of being associated with 3-D objects in the framework space.

Instantiating such an object can be accomplished using a statement of the form shown in Figure
3. Here a button group named Button1 is DEFined as an instantiation of the loaderButton
prototype object. Vectors are triples of numbers with or without decimals, and strings are in
double quotes in the case of SFString. For MFString, either double quotes or brackets [] with
multiple double quoted items inside if there is more than one string contained in the MFString.
In a URL, these multiple strings specify the order the items should be searched if the leftmost
URL cannot be found.

'()�%XWWRQ��ORDGHU%XWWRQ�^
VWDWXV/LQH� �&OLFN�WR�/RDG�8QORDG�,WHPV�
P\,QGH[�
EXWWRQ6L]H:+'� �������������
WUDQVODWLRQ� ��������������
XUO� �J�PDSV�ZUO�
KHOS8UO� �J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH� >�LPDJHV�LFRQV�J�PDSV�MSJ�����GHPR�LPDJHV�LFRQV�J�PDSV�MSJ�@

`

Figure 3 Instantiation of a Button. The details of the buttons are hidden when a prototype is instantiated.

Although this may seem a bit technical at the outset, the value becomes evident when
instantiating several of these button groups as shown in the screen shot in Figure 4. The buttons
appear in gold above the 3-D controls in gray, which are part of the 3-D viewer plugin for
Internet Explorer. The decoration at the top of the view is part of Explorer. The logo in the
upper right is an instantiation of another prototype.

Clicking on the maps button loads a variety of maps and a submenu to toggle between them.
These maps may be unloaded from memory by clicking the maps button again. The visibility
button turns the maps on and off button still retains them in memory.

Figure 4 Framework Showing Buttons for C2 Processes

These buttons were instantiated using the declarations shown in Figure 5. Note that no audio or
animations are defined for these buttons. The translation parameter locates the button group on
the screen in the HUD context. For example, 0 -15 0, locates the group at x=0 (on screen left),

y=-15 (15 units down on y), and z=0 (at 0 depth into the screen). Each group is placed along
increments of 5 along x, at the same y of -15, and the same depth of z=0. Placing these groups at
the top of the screen would mean changing the y value to +15 for each group. The
buttonSizeWHD determines the span distance covered by the button group along x and y, where
z represents the button depth along z.

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�0DS�,WHPV�
P\,QGH[�
EXWWRQ6L]H:+'����������
WUDQVODWLRQ��������
XUO��J�PDSV�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�PDSV�MSJ�����GHPR�LPDJHV�LFRQV�J�PDSV�MSJ�@��`

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�6HQVLQJ�,WHPV�
EXWWRQ6L]H:+'����������
P\,QGH[�
WUDQVODWLRQ��������
XUO��J�GHPRQRGHV�G�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�VHQVH�MSJ�����GHPR�LPDJHV�LFRQV�J�VHQVH�MSJ�@��`

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�3URFHVVLQJ�,WHPV�
EXWWRQ6L]H:+'����������
P\,QGH[�
WUDQVODWLRQ���������
XUO��J�GHPROLQNV�G�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�SURFHVV�MSJ�����GHPR�LPDJHV�LFRQV�J�SURFHVV�MSJ�@��`

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�&RPSDULVRQ�,WHPV� �������������
EXWWRQ6L]H:+'����������
P\,QGH[�
WUDQVODWLRQ���������
XUO��J�FRPSDUH�G�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�FRPSDUH�MSJ�����GHPR�LPDJHV�LFRQV�J�FRPSDUH�MSJ�@��`

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�'HFLVLRQ�,WHPV�
EXWWRQ6L]H:+'����������
P\,QGH[�
WUDQVODWLRQ���������
XUO��J�GHFLGH�G�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�GHFLGH�MSJ�����GHPR�LPDJHV�LFRQV�J�GHFLGH�MSJ�@��`

'()�%XWWRQ��ORDGHU%XWWRQ�^ VWDWXV/LQH��&OLFN�WR�/RDG�8QORDG�$FWLRQ�,WHPV�
EXWWRQ6L]H:+'����������
P\,QGH[�
WUDQVODWLRQ���������
XUO��J�DFW�G�ZUO�
KHOS8UO��J�KHOS�LFRQV�KWPO�FRQWUROLFRQ�
WH[WXUH�>�LPDJHV�LFRQV�J�DFW�MSJ�����GHPR�LPDJHV�LFRQV�J�DFW�MSJ�@��`

Figure 5 Instantiations of Multiple Buttons

3.5 Simplified Legacy Integration

In one of our development efforts, we were asked to synthesize collections of disparate legacy
network data contained in a plethora of files and databases by showing a 3-D representation and
present it to a non-technical audience. The data were contained in text files and SQL databases.
During the past, these vast tables of data resulted in extensive technical reports that required
considerable time to read and assimilate on a weekly basis. We defined an ambitious goal to
extract significant performance and availability information from these data sources and present
it in very simplified form using a 3-D approach. The result was a comprehensible global view
with drill-down capabilities to exploit more and more detail in the data required by various levels
from top-level management to technical personnel.

4. A C2 Process Model

The work we present here reflects a transfer of these ideas to the C2 world. The remainder of
this paper addresses the use of a prototype 3-D framework to support Lawson's Model cited
earlier as taken from Allard's Command and Control and the Common Defense as shown in
Figure 6, Lawson's Command and Control Model [1].

Environment

Own
Forces

Sense

Process

Compare

Decide

Act

Desired
State

Status

Source: AFCEA Press

Figure 6 Lawson's Command and Control Model

We decided to represent this model in the 3-D framework and show how the five major C2
activities could be incorporated and made to respond to drill-down requests using objects
common in C2. Figure 4 shows how a high-level view of these activities could be presented.
Naturally, the drill-down process expects to link to information that is presentable in a web
browser context.

We have added a maps capability to the displays where a variety of maps may be toggle on and
off. Often the C2 environment requires that data be registered on a map to be meaningful.
Although not shown here, we have the option of displaying all data on a 3-D globe complete
with registration at GPS coordinates. This is very useful for representing space, ground, and
undersea assets. With the event-handling capability of this 3-D environment, nearly any data can
be used to drive the actions of the 3-D objects to portray a realistic scene in near real time.
These features provide a compelling way to use this framework to represent Lawson's five C2
processes. In Figure 4, the colored pins representing location of some meaningful object have
multiple attributes and can be used as the hyperlink to drill down to further detail. These could
easily be military assets that could be shown with a realistic 3-D icon. In any event, these visual
icons are cues to the user to probe further.

Experience has shown that the more detail and voluminous the 3-D environment becomes, the
greater the utility of this framework to account for the objects and provide a perspective in a
global sense. Because one can zoom, pan, and rotate within an infinite digital space, there is no
limit to the extent one can include additional iconic objects representing a C2 process space.
Unlike the desktop metaphor common in 2-D applications of the past, the 3-D window into the
domain space gives rise to a battle space or a C2 space metaphor.

5. Software Requirements

Web browsers are freely downloadable and upgradable from these sources.

Microsoft's Internet Explorer for PCs and MACs at http://www.microsoft.com
Netscape's Navigator/Communicator at http://home.netscape.com
Sun's HotJava browser from http://www.javasoft.com
Complement for IE Explorer called NeoPlanet at http://www.neoplanet.com

3-D browser plug-ins and add-ons are freely available from these sites.

CAI's CosmoPlayer 2.1.1 VRML add-on for IE Explorer 4.0+ at
http://www.cosmosoftware.com

CAI's CosmoPlayer 2.1.1 VRML plug-in for Netscape Navigator at
http://www.cosmosoftware.com

Additional flexibility with dynamic content can be provided through the use of the Extensible
Markup Language (XML) that significantly enhances HTML-like tagging for broad use. More
information is available from this site. http://www.xml.com

Commercial product offerings for building specialized web applications are available from these
sites.

3-D applications integrated into HTML web pages at http://www.sgi.com

6. Summary

The use of 3-D frameworks in a C2 environment is in its infancy. In this paper, we have
discussed a candidate framework in the context of C2. In the near future, we expect bodies of
digital objects and event scenarios to permit rapid population of these frameworks. This
technology has the potential to have a unifying and simplifying effect on decision making within
C2.

7. References

[1] Allard, Kenneth. "Command, Control, and the Common Defense, 2nd Ed." National
Defense University, Institute for National Strategic Studies, October 1966, pp154-163.

[2] Boyd, John R. "Organic Design for Command and Control," briefing paper, March 1984,
pp5, 32-35.

[3] Gardner, et al. "Exploitation of Web Technologies for C2," 5th ICCRTS, 1999.

[4] Lawson, Joel S. "Naval Tactical C3 Architecture, 1985-1995." Signal 33:10 (Aug 1979),
pp71-72.

[5] Orr, Maj. George E. Combat Operations C3I: Fundamentals and Interactions (Maxwell Air
Force Base, AL: Air Univ. Press, 1983), pp 23-27.

