Issues In Representing And Preserving
Information System Architectures In Large Organisations

Abdel El-Sakka
Joint Systems Branch
Defence Science and Technology Organisation
Department of Defence
Canberra ACT 2600
Phone: +61 2 6265 8832
Abdel.el-sakka@dsto.defence.gov.au

Abstract

Civilization owes its advances not only to those who generate knowledge, but also to those who
preserve it and maintain its currency and relevance.

Large organisations are fast acknowledging the importance of treating their information systems
as they treat their other valuable assets. When information systems are developed and evolved to
specifications and used and reused to their full capabilities, like assets, they have the potential to
generate value for now and for the future and in that they help sustain and improve the
businesses of their organisations.

The expectation is that large organisations should be in a position to protect the value of their
information systems, as assets, by simply maintaining full synchronization between the
architectures of information systems and their source codes. However, the majority of large
organisations have not yet succeeded in meeting that expectation, mainly due to important issues
of concern to them, which require resolution. Some of the important issues include firstly,
treating architecture and source code as equal contributors in constituting the asset of an
information system, secondly, deciding the content of architecture and how it should be
represented, and thirdly, ensuring that architecture representations are preserved and presented.
In this way, architecture content will remain current, relevant and accessible by whoever requires
it across the organisation. This paper will discuss three issues, present an Architecture
Framework Conceptual Model, and exmaine its potential in resolving these issues.

1. Introduction

Despite the importance and criticality of information systems to the survival and growth of large
organisations; a large number of organisations remains neglectful in providing the necessary
resources for representing and preserving the architectures of their information systems. This
paper identifies three main issues of concern which require resolution, so that these organisations
can deal effectively with the representation and preservation of information system architectures.
The paper addresses these issues and offers a conceptual model as a potential approach to
resolving them.

The first issue intends to highlight the fact that some large organisations, even today, treat
source code as the main part constituting the asset of individual information systems. This
attitude has led these organisations to commit scarce resources to preserving, maintaining, and
evolving source codes, rather than committing them equally between the two constituents of the
information system asset. In resolving this issue, discussion is focused on proving that individual
information systems are in fact valuable assets. Three main aspects have been addressed to
support this discussion. The first aspect is examining existence of a link and relationship between
information system performance and organisation performance as a whole. The second aspect is
assessing information systems in terms of their business value and their technical condition, the
aim of which is to assess their worthiness to the organisation. The third aspect is evaluating the
impact of the explicit description level of information system architectures and their worthiness
level on the performance of the organisation.

With the importance of architecture availability and currency of its explicit description in mind,

the paper turns its attention to address the second issue, which is the content of architecture, its
description and representation. To aid the discussion, a number of questions have been raised and
attempts made in providing answers to them. The questions include: where in the Information
System Development Cycle (ISDC) is architecture generated; how should architecture be
described, and what views are required; what is the relationship among the selected views
describing the architecture; who are the stakeholders whose concerns and requirements are
reflected in the selected views; and are how the selected views represented?

After justifying the need for identifying the content of architecture and for representing its
selected set of views, it will be logical to raise and discuss the third issue. This issue is about
ensuring that architecture representations are preserved and presented. In this way, architecture
content will remain current, relevant and accessible by whoever requires it across the
organisation. In order to make these architectural representations, visible and accessible; it is
important to address the requirements for a common repository, where all the generated
architectural representations can be preserved and their currency maintained, and ways to present
them. The need for a repository in itself also creates another challenge, which is "In what format
should the architectural representation be deposited?" To save the architectural description as
graphical representations will definitely require vast storage space and at the same time restrict
manipulation. This has motivated a discussion on the need for codifying the representation and
the use of Architecture Description Language (ADL) to manipulate this codification.

Finally, this paper presents an Enterprise Architecture Conceptual Model, and examines its
potential in resolving the three issues described. The conceptual model is based on the
"Architecture Practice Conceptual Model" [Rihal.,1998], which was originally introduced in

the 1998 Australasian Workshop on Software Architectures (AWSA'98) in Melbourne. The
recommended conceptual model consists of interdependent components including Enterprise
Architecture, Architecture Generation Process, Architecture Representation and Preservation
Process and Architecture Representation Repository.

For the immediate future, the main challenge will be what views will need to be selected and
how to represent them in an enterprise repository. As for the long—term future, the main
challenge will be how to make the architectural description of individual information systems an

inseparable part of the source code so that an information system will have two main physical
properties associated with it. The first will be its architecture and the second will be its source
code. Under this new philosophy, architecture will become the instrument which will directly
control the life cycle of the information system from development through evolution to
retirement.

2. Individual Information Systems as Valuable Organisational Assets

A system is a collection of components organised to accomplish a specific function or a set of
functions according to IEEE Std 610.12-1990 [IAWG, 1998]. Defining an "Information System"
(IS), using the IEEE definition, translates to a collection of hardware, software and people,
organised to accomplish transactional or informational functions within large organisations.

To prove that individual information systems are valuable organisational assets, the author will
rely on:

» Establishing that there is a link and relationship between the performance of an information
system and performance of its organisation as a whole,

» Assessing information systems for their worthiness based on their business value and
technical condition, and

» Evaluating the impact of the worthiness level of information systems and the explicit
description level of their architectures on the performance of the organisation.

2.1 Relationship between Information System Performance and Organisation
Performance

The transactional and informational functions of information systems are essential in their
support to the accurate and timely execution of various business activities, which large
organisations conduct in their environment. The design of these business activities is, in turn,
fundamental and crucial in its support to the successful achievement of the goals and objectives
of these organisations. Therefore, one can easily conclude that there is a link and relationship
between information system performance and organisation performance; this link and
relationship is depicted in figure 2.1. Consequently, one can also state that, if there is a link, there
is an impact. In other words, the performance of individual information systems will
undoubtedly have an impact, on the performance of their organisations.

Information Business Goal & Mission
System Activities Objectives

Figure 2.1 - Relationship between Information System Performance and
Organisation Performance

2.2 Assessing the Worthiness of Information Systems

Before addressing the impact of the architecture of individual information systems on the
performance of large organisation, it is important that these information systems are assessed
first in terms of their business value and their technical condition. One information system
assessment method is based on the application portfolio assessment method by Meta Group
[Meta Group, 1999], which is used to assess the value of information systems, as assets, within
organisations. The factors comprising the business value and technical condition are as follows:

» Business value is an indicator of the benefit derived by the enterprise from an information
system. The following factors assess business value: evaluate information system impact,
determine business importance, determine information completeness, determine information
system frequency of use, and review information system expectations.

» As for the technical condition, this is an indicator of the robustness, efficiency, and flexibility
of an information system and its underlying computing and communications architecture. The
following factors assess technical conditions: performance, software condition, documentation
condition, maintenance, technology, design and inter-relationships.

Based on the assessed business value and technical condition of a particular information system,
there are four strategies to guide the enterprise on the level of worthiness that it has to the
organisation. The four strategies that can be applied to an assessed information system are divest,
redevelop, evolve, and reposition, as shown in Figure 2.2.

Technical Condition
High

Reposition Evolve

Divest Redevelop

Low

Low High .
g Business Value

Figure 2.2 — Information Systems Assessment Matrix [Based on Matrix by Meta Group]
The four strategies are briefly explained as:

Divest Strategy This strategy is best applied when the assessed information system is low in its
technical condition and low in its business value.

Redevelop StrategyThis strategy is best applied when the assessed information system is low in
its technical condition and high in its business value.

Evolve Strategy This strategy is best applied when the assessed information system is high in its
technical condition and also high in its business value.

Reposition Strategy Fhis strategy is best applied when the assessed information system is high
in its technical condition and low in its business value.

2.3 Impact of Information System Architectures on the Organisation’s Performance

The examination of an information system, under the microscope, reveals that there are two main
contributors to its value. The first is its source code and the second is its architecture. The
"source code" term is well understood and accepted and does not generate confusion. On the
contrary, "architecture” term usually triggers divergence and disunity when defining what
architecture is. In this paper, Information System Architecture (ISA) is defined as knowledge
about an Information System. This knowledge is described and represented by a set of
interdependent views, which collectively reflect the concerns and requirements of the
stakeholder community of that system [El-Salkkaal, 1999]. Figure 2.3 shows the worthiness

level of information systems and the explicit description level of their architectures and the
impact on the organisation performance.

Explicit Description Level
of IS Architecture

High
Marginal Impact Positive Impact
(Asset)
Neutral Impact Negative Impact
(Liability)
Low Worthiness Level
Low High of IS

Figure 2.3 — Impact of Architecture on Organisation Performance

The impact of IS architectures on organisational performance is described below:

* When the worthiness level of an information system is low, and the explicit description level
its architecture is low (i.e. synchronization between source code and architecture does not
exist), the impact of this system on the organisation’s performance is neutral. In other words,
the presence or absence of this system will not add any value to the organisation. Under these
conditions, the organisation must not spend resources to regenerate, represent or preserve its
architecture.

* When the worthiness level of an information system is low, and the explicit description level
of its architecture is high (i.e. synchronization between source code and architecture does
exist), the impact of this system on the organisation’s performance is marginally positive. In
other words, the presence of this system will not add any value to the organisation, however,
its architectural description has reuse value in future information systems development. Under
these conditions, the organisation should maintain the currency of its architectural description.

* When the worthiness level of an information system is high, and the explicit description level
of its architecture is high (i.e. synchronization between source code and architecture does
exist), the impact of this system on the organisation’s performance is positive (valuable asset).
In other words, the presence of this system is critical and adds value to the organisation
performance. The high level explicit description of its architecture allows the organisation to
be adaptive and responsive in exploiting opportunities and overcoming threats, by
implementing necessary changes ahead of the competition, and in that, it helps the
organisation to positively improve its performance. Under these conditions, the organisation
must maintain the currency of its architectural description, representation and preservation.

* When the worthiness level of an information system is high, and the explicit description level
of its architecture is low (i.e. synchronization between source code and architecture does not
exist), the impact of this system on the organisation’s performance is negative (liability). In
other words, the presence of this system is critical and adds value to the organisation’s
performance. The low level explicit description of its architecture does not allow the
organisation to be adaptive and responsive in exploiting opportunities and overcoming threats,
and therefore slows the implementation of necessary changes ahead of the competition, and in
that, it weakens the organisation performance. Under these conditions, the organisation must
improve and maintain the currency of its architectural description, representation and
preservation.

3. Describing and Representing Individual Information Systems Architectures

Section 2, has shown that individual information systems can be valuable assets or liabilities to
their organisation depending on the availability and currency of their architectures. Whether they
are assets or liability, they affect and impact the performance of their organisation. What can be
concluded here is that architectures must be made available and current at all times so that those
information systems, classified as assets, are maintained and those classified as liabilities are
converted into assets. With the importance of architecture availability and currency in mind, the
intention in this section is to focus on the content of an architecture, how to describe and
represent it, by raising and addressing the questions below:

i) Where is architecture generated in the Information System Development Cycle (ISDC)
i) How should architecture be described — what views should be selected

iii) What is the relationship among views describing the architecture

iv) Who are the stakeholders of the architecture

v) How are views represented

3.1 Information System Development Cycle (ISDC) and Architecture Generation

It is imperative to identify where in the ISDC the information system architecture is generated
and what is created. Figure 3.1, shows the involvement level of business and technical
communities as they cooperate towards generating an architecture for a new IS, using the four
phases of the ISDC: Problem Understanding (Requirement Analysis), Preferred Solution
Planning (Design), Solution Development (Coding) and Solution Stabilization (Testing).

Involvement Level of Stakeholders
Original Planned Architecture

Requirement (Blueprint)

Baseline
High (1 _I se @
<

Requirement

Actual Architecture
(Associated)

Pre-release
Actual
Architecture

108 5
00t 071y
l;‘hlﬂlll | l;\l.ﬂtl‘]l 7/
(‘olﬂ L-L)ll l
Low >
Information System Development Cycle (ISDC)
Problem Preferred Solution Solution
Understanding Solution Plannin Development Stabilisation
Phase Phase Phase Phase
<Analysis> <Design> <Coding> <Testing>

Figure 3.1 - Involvement Level of Stakeholders in the Generation of Architecture
for a New Information System

Problem Understanding Phase this phase depends entirely on the availability of documented
business requirements for the new system undergoing development. These documented business
requirements are considered as the “Original Business Requirements”, which should require a
high level of involvement from the business community for its development. As the business
and technical communities communicate with regard to the business requirements, the
involvement level of the technical community will naturally increase as the need for
understanding the requirements increases. At the end of this phase, the two communities will
have reached a common understanding of the original business requirements, and as a result,
will culminate in the development of “Baseline Business Requirements”.

I) Original Business Requirement this document constitutes the business need as envisaged
by the business community.

II) Baseline Business Requirementthis document constitutes the preferred solution as agreed
by the business and technical communities.

Solution Planning Phase -without the two documents generated earlier preferred solution
planning activity can’t possibly proceed. The involvement of the technical community in
carrying out this activity is much higher than that of the business community. Eventually, the
solution planning activity will culminate in the generation of the planned architecture comprising
of a set of design plans, which collectively form the solution’s master design plan. The number,
type and detail level of the design plans generated will rely entirely on the composition of the
stakeholder community whose ultimate concern will be meeting the baseline business
requirements.

Blueprint is the planned architecture of the system prior to its construction and implementation.
Once the new system is constructed, tested and implemented, its architecture becomes an
attached property of the system and in this case is called the actual architecture.

Based on the two phases described above, architecture is the result of the preferred solution
planning (design) phase. In other words, the design process will result in the generation of
architecturgMedvidovic et al, 1997]

3.2 Describing Generated Information Systems Architectures

One way to describe the architecture of an information system is through the development of a
set of interrelated and interdependent views which are selected to best, reflect and meet the
requirements of the stakeholder community of that particular system. It can be argued that the
views should not be a fixed set, as they vary depending on the nature of business the system is
designed to support, and the composition of the stakeholder community. In other words, the set
of views varies relatively from one information system to another. This does not mean that there
are no common important views that should be studied and analysed.

The four main views describing an information system architecture and their sub-views are
tabulated in Table 3.1. The main views are Strategic, Business, Information and Technical. Table
3.1 only provides some of the technical sub-views and is by no means an exhaustive list.

Table 3.1 — Information System Architecture Views and their Sub-views

View Sub-view Brief Description

1 Strategic Describes the goals and objectives the architecture is
designed to support.

2 Business Describes business functions the architecture is
designed to support.

3. Information Describes information the architecture is designed o
consume and derive to support the business view.

4. Technical Describes the technology the architecture is designed
to support in processing the business function and its
information.
Application Describes the design elements of the system strugture,
where they are deployed and how they cooperate |with
each other.
Data Describes the data entities it uses and their relationship
to support business functions of the application.
Network Describes the communication infrastructure gver
which the Information System’s functions and data|are
deployed and processed.
Middle-ware Describes how the information system's compongnts
communicate locally and remotely with each other.
Platform Describes the hardware platforms and associated
operating systems that the Information System use for
the processing of its functions and data.
Security Describes how the information system can control |and
protect its data and functions.

3.3 Relationships Among the Views Describing the Architecture

Figure 3.4 shows the relationship among the Strategic, Business, Information and technical views
describing information system architecture.

The strategic viewidentifies which objectives and goals the architecture is designed to support,
and at the same time guides the business view into identifying the business functions the
architecture is designed to support. Thesiness viewdirects theinformation view into
identifying what information the architecture is designed to consume and derive to support
processing for business functions. Tamplication viewrelies on the information ardhta view

to identify where data and functions are distributed across the enterprise, so that the system can
perform its operations on the business functions provided by the business vieniddileeware
viewrelies on the application view to identify how data, functions and information are processed
and communicated between the components of the systems within a heterogeneous and
distributed environment. Thenetwork view relies on the middle-ware to identify the
communication infrastructure to support the middle-ware used by the systemlaifben view

relies on the networked physical mainframe, server and workstation and their operating systems
that support the processing of the system components across the enterprise.

3.4

The stakeholders of an information system architecture can be classified into principal and

Strategic
View

o

Business
View

a0

Information
View

!

Application
View

ig

Middle-Ware
View

il

Network
View

o

Platform
View

secondary users [IAWG, 1998]:

)

Data
View

bbb NS

vy vV VvV VIV

Clientsthe users, operators, and acquirers

Architects- those that develop and describe architectures
Developers- those that develop, deliver and maintain the system (architects, designers,
programmers, maintainers, testers, domain engineers, quality assurance staff, configuration
management staff, suppliers and project managers), and
Evaluators - those who oversee and evaluate systems and their development (chief
information officers, auditors, independent assessors).

Figure 3.4 - Relationships Among the Views Describing IS Architecture

Stakeholders of the Information System Architecture

The principal users comprise stakeholders engaged in the development and evolution of the
architecture, including:

i) The secondary users comprises those involved in the enterprise-wide, infrastructure
activities that span multiple system developments, including: methodologists, process and
process improvement engineers, researchers, producers of standards, tool builders and
trainers.

3.5 Representation of Information System Architecture
To represent the architecture of an information system is to represent its selected views and their

relationships. Figure 3.5, shows a high level decomposition of an Information System
Architecture Representation.

Information
System Architecture

oy

| A Set of Views |

=

| A Set of Models |

-

A Set of Graphical Diagrams with
Textual Descriptions

-

Standard Representation Language
[Using Architecture Description Language (ADL)]

Figure 3.5 - High Level Decomposition of IS Architecture Representation

Figure 3.5 illustrate that an information system architecture can be represented by a set of view
such as the four views (Strategic, Business, Information and Technical) described in 3.2. Each
view can then be represented by one or more models. As an example, a data view may have an
entity-relationship and data flow as two possible models to represent it. Each model, at this level,
can be represented textually and/or graphically using boxes and lines. The representation at this
level requires the use of a language that can convert boxes and lines into notation; a language
that is capable of such conversion is known as Architecture Description Language (ADL).

One common way of facilitating understandability and communication is by providing a
graphical notation, in addition to the textual notation. A key role of an explicit representation of
an architecture is to aid understanding and communication about a software system among
different stakeholders.

4, Preservation and Presentation of Individual Information Systems Architectures

Section 3, has raised some questions to guide the discussion on the issue of describing and
representing information system architectures, and at the same time, it has provided high-level
answers to these questions. The answers have collectively provided insight into the content of
architecture and how it should be represented. This section will now focus on discussing the
main requirements for ensuring that architecture representations are preserved and presented. In
this way, architecture content will remain current, relevant and accessible by whoever requires it
across the organisation. The discussion on requirements will cover the:

i) Need for Architecture Description Language (ADL)
i) Need for Architecture Representation Repository
iii) Need to present and visualise stored architecture representation

4.1 Architecture Description Language (ADL)

The representation of information system architecture, as descriped in 3.5, can be decomposed
from a set of interrelated views to a set of graphical diagrams made of boxes and lines. The
ability to convert the graphical models into notations, and the ability to manipulate them do
require the use of an Architecture Description Language (ADL).

Realising the importance of capturing information system architectures, a large number of
Architecture Description Languages (ADLs) has been proposed, each of which embodies a
particular approach to the specification and evolution of an architecture. Examples are Rapide
[Luckham et al, 1995a, 1995b], Aesop [Garlaet al, 1994], MetaH [Vestakt al, 1996],
UniCon [Shawet al, 1995], Darwin [Mageet al, 1995, 1996], Wright [Alleret al, 1994a,
1994b], C2 [Medvidoviet al, 1996a, 1996b], [Medvidovic, 1996] and SADL [Moricatial.,

1995]. Recently, initial work has been done on an architecture interchange language, ACME
[Garlanet al, 1995, 1997], which is intended to support mapping of architectural specifications
from one ADL to another, and hence provide a bridge for their different foci and resulting
support tools.

There have also been a number of surveys aimed at understanding and exploring the features that
ADLs provide, including those by Clements [Clements, 1996], and by Medvidovic and Taylor
[Medvidovic et al, 1997b]. ADLs provide both a concrete syntax and a conceptual framework

for modeling a software system's conceptual architecture. The building blocks of an architectural
description are:

= components units of computation or data stores;

* connectors architectural building blocks used to model interactions among components and
rules that govern those interactions; and

» architectural configurations connected graphs of components and connectors that describe
architectural structure.

4.2 Requirements for an Architecture Representation Repository (ARR)

The main requirement for an architecture representation repository is to provide the capability to
save, modify, delete, search, and retrieve architectural notations produced by ADL.

4.3 Architecture Presentation Using Model Visualization Capability

A capability is required to allow for retrieving and visualizing the stored architectural notations
as models. Also, this model visualization capability should give the users the choice to select the
mode to visualise the retrieved architecture representations for a particular information system.
There are three possible visualization modes:

Single View Visualization Mode this mode allows for individual views of Information System
Architecture Representation to be viewed separately - one at time.

Integrated View Visualization Modethis mode allows for more than one view of Information
System Architecture Representation to be viewed at the same time — creating integrated views.

Relative View Visualization this mode allows for individual views of Information System
Architecture Representation to be viewed relative to their corresponding enterprise view. As an
example, this mode will allow for the visualization of a data view relative to the data view of the
enterprise.

5. A Proposed Architecture Framework Conceptual Model (AFCM)

Section 4, has provided a high-level description of the main requirements for ensuring that
architecture representations are preserved and presented. It has explained the need to convert
graphical models into architectural notations using ADL, and the need for an Architecture
Representation Repository for storing architectural notations, and finally the need for
architecture presentation using a model visualization capability. This section will now present an
Architecture Framework Conceptual Model, briefly describe its main components and then
explain how these components integrate and cooperate to address the three issues identified
earlier.

5.1 Main Components of AFCM

The main components of the proposed AFCM are shown in Figure 5.1. The components include:
i) Enterprise Architectures of Private and Public Organisations

i) Organisation's Own Enterprise Architecture

iii) Architecture Generation Process

iv) Architecture Representation and Preservation Process

V) Architecture Representation Repository

A Brief description of the main components is provided below:

i) Enterprise Architectures of Private and Public Organisations

The enterprise architectures of private and public organisation such as C4ISR AF, Meta Group
EAS, Zachman Framework, and Microsoft Solutions Framework are a sample of external

sources an organisation can use as valuable input into the process of developing its own
Enterprise Architecture.

i) Organisation’s Own Enterprise Architecture

The main views comprising the organisation's own enterprise architecture are the strategic view,
business view, information view and technical View.

Strategic View Describes the goals and objectives the organisation is entrusted to achieve.

Business View Describe what business functions the organisation as a whole is designed to
support.

Information View- Describe what information the organisation as a whole is required to
consume and derive to support the business functions.

Technology View Describe the technology the organisation as a whole employs to support in
processing the business function and its information. The technology view includes sub-views
such as: enterprise data, enterprise middle-ware, and enterprise security.

iii) Architecture Generation Process (AGR

The AGP will result in the generation of individual architectures for information systems. The
information system architecture's views are generated using the common services provided by
the organisation's own enterprise architecture. Also, the generated views are conformant to the
enterprise views. These architectures, prior to their physical implementation, are called planned
architectures or blueprints. The implementation of these blueprints will result in the physical
actualization of existing systems. These architectures after their physical implementation are
called actual architectures or associated.

iv) Architecture Representation and Preservation Process (ARPP)

The generated architectures (Associated and Blueprints) will need to be represented using a
common language such as the Unified Modeling Language (UML) and an Architecture
Description Language (ADL) so that they can be preserved or stored in a repository or database
for future reuse.

V) Architecture Representation Repository (ARR)

The main purpose of the ARR is to capture and retain architecture representations which become
valuable knowledge about individual information systems. These architecture representations are
made available and ready for future reuse by future system development.

Existing System

10

Planned Architecture
(Blueprint)

12

Architecture Generation
Process

1T

Organisation's Own
Enterprise Architecture

1o

Enterprise Architecture
(Private & Public Organisatio

—

Legacy Systems

-

A

Actual Architecture
(Associated)

-

Architecture Representation
& Preservation Process

<jrchitecture Re(%

)

i

Architecture
Representation
Repository

~

Figure 5.1 - A Proposed Architecture Framework Conceptual Model

5.2 The role of AFCM in Resolving the Three Identified Issues

The proposed Architecture Framework Conceptual Model acts as the environment which
governs the realization and evolution of architectural representations, and ensures its protection
for future use and reuse within the enterprise. This can be related to the three issues in this paper.

First issue- treating architecture and source code as equal contributors in constituting the asset
of an information system.

The main purposes of the component "Architecture Generation Process (AGP) is to guide the
generation/evolution of the architecture description of individual information systems. This
process consists of the two phases namely "Problem Understanding <Analysis>" and "Preferred
Solution Planning <Design>" of the ISDC. The process also ensures that architectures are
generated using the common services provided by the Enterprise Architecture, prior to
developing the source code. In that way, the conceptual model treats architecture as an essential
contributor and demands its generation in forming the asset of an information system.

Second issue deciding the content of architecture and how it should be represented.

The main purposes of the component "Architecture Representation and Preservation Process"
"Architecture Generation Process (AGP) is to decompose the architecture description from a set
of views to graphical models, convert the graphical models into notations using an ADL and then
store it in the Architecture Representation Repository.

Third issue - ensuring that architecture representations are preserved and presented

The main purpose of the Architecture Representation Repository (ARR) is to provide the
capability to save, modify, delete, search, and retrieve architectural notations produced by ADL.
ARR also provides another capability, the purpose of which is to allow for retrieving and

visualizing the stored architectural notations as models using model visualization modes.

6. Conclusion

The main uses of an architectural representation include expression of the system and its
evolutionary states; communication among the system stakeholders; evaluation and comparison
of architectures in a consistent manner; activities of system development; expression of the
persistent characteristics and supporting principles to guide acceptable change; and recording
contributions to the body of knowledge of the architecture of software-intensive systems

The proposed Architecture Framework Conceptual Model (AFCM), will ensure that information
system architectures are generated, described, represented, and preserved. Also, full
synchronization between the architectures of information systems and their source codes will
always be maintained.

For the immediate future, the main challenge will be determining what views should be selected
and representing them in an enterprise repository. As for the long—term future, the main

challenge will be how to make the architectural description of individual information systems an
inseparable part of the source code, so that an information system will have two main physical
properties associated with it. The first will be its architecture and the second will be its source
code. Under this new philosophy, architecture will become the instrument, which will directly
control the life cycle of the information system from inception through development to
retirement.

7. Acknowledgement

The author wishes to express his thanks and appreciation to Dr Leoni Warne and Irena Ali of the
Enterprise Social Learning Architectures in DSTO, for their constructive feedback, valuable
comments and sound advice.

8. References

[Allen et al., 1994a] R. Allen and D. Garlan. Formal Connectors. Technical Report, CMU-CS-
94-115, Carnegie Mellon University, March 1994.

[Allen et al., 1994b] R. Allen and D. Garlan. Formalizing Architectural Connection. In
Proceedings of the Sixteenth International Conference on Software Engingeges 71-80,
Sorrento, Italy, May 1994.

[Chen et al., 1998] Pin Chen, Abdel El-Sakka, and Jennie Clot@Gmemiext Analysis of
Architecture Practice within Large Organisatigridroceedings of the Australasian Workshop on
Software Architectures, pp 2-13, Melbourne, November, 1998.

[Clements, 1996] P. Clements. A survey of architecture description languagescéedings of
the 8th International Workshop on Software Specification and De&igderborn, Germany,
March 1996.

[El-Sakka et al., 1999] Abdel El-Sakka, Pin Chen and Jennie CloKnenyvledge Acquisition
Improvement through Enterprise Architetcure Practieeoceedings of the Software Engineering
Australia 1999 (SEA’99), Canberra, April, 1999.

[Garlanet al., 1994] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural
Design Environments. In Proceedings of SIGSOFT'94: Foundations of Software Engineering,
pages 175-188, New Orleans, Louisiana, USA, December 1994.

[Garlan et al., 1995] D. Garlan, R. Monroe, and D. Wile. ACME: An Architectural
Interconnection Language. Technical Report, CMU-CS-95-219, Carnegie Mellon University,
November 1995.

[Garlan et al., 1997] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Interchange
Language. Submitted for publication, January 1997.

[IAWG, 1998] IEEE Architecture Working Group (AWG)EEE Recommended Practice for
Architectural DescriptionlEEE Std 1471, Draft Version 4.1, December 1998.

[Luckham et al., 1995a] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W.
Mann. Specification and Analysis of System Architecture Using RafiidteE Transactions on
Software Engineeringpages 336-355, April 1995.

[Luckham et al., 1995b] D. C. Luckham and J. Vera. An Event-Based Architecture Definition
LanguagelEEE Transactions on Software Engineeripgges 717-734, September 1995.

[Magee et al., 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. IRroceedings of the Fifth European Software Engineering Conference
(ESEC'95) Barcelona, September 1995.

[Magee et al., 1996] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In
Proceedings of ACM SIGSOFT'96: Fourth Symposium on the Foundations of Software
Engineering (FSE4)pages 3-14, San Francisco, CA, October 1996.

[Medvidovic, 1996] N. Medvidovic. ADLs and Dynamic Architecture Changes. In A. L. Wolf,
ed., Proceedings of the Second International Software Architecture Workshop (ISAAG2%
24-27, San Francisco, CA, October 1996.

[Medvidovic et al., 1996a] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using
object-oriented typing to support architectural design in the C2 stylroceedings of ACM
SIGSOFT'96: Fourth Symposium on the Foundations of Software Engineering ,(p&geh 24-

32, San Francisco, CA, October 1996.

[Medvidovic et al.,, 1996b] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal
Modeling of Software Architectures at Multiple Levels of AbstractionPinceedings of the
California Software Symposium 199&ges 28-40, Los Angeles, CA, April 1996.

[Medvidovic, 1997] N. Medvidovic. A Classification and Comparison Framework for Software
rchitecture Description Languages. Technical Report, UCI-ICS-97-02, University of California,
Irvine, January 1997.

[Medvidovic et al, 1997a] N. Medvidovic and D. Rosenbliomains of Concern in Software
Architectures. and Architecture Description Languadésiversity of California, October 1997,
California, U.S.A.

[Medvidovic et al., 1997b] N. Medvidovic and R. N. Taylor. A Framework for Classifying and
Comparing Architecture Description Languages. In Proceedings of the Sixth European Software
Engineering Conference together with Fifth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, September 22-25, 1997.

[Meta Group, 1999] Meta Grouf,he Application Portfolio Planning Imperativ&AS, Delta,
066, December 1999.

[Moriconi et al., 1995] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture
RefinementlEEE Transactions on Software Engineeripgges 356-372, April 1995.

[Shaw et al., 1995] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, pages 314-335, April 1995.

[Vestal et al., 1996] S. Vestal. MetaH Programmer's Manual, Version 1.09. Technical Report,
Honeywell Technology Center, April 1996.

