
IMMACCS: An Experimental Multi-Agent C2 System

Jens G. Pohl
Anthony A. Wood (Col. USMC, Ret.)

Kym Jason Pohl
Collaborative Agent Design (CAD) Research Center, California Polytechnic State University,

One Grand Avenue (Bldg. 117T), San Luis Obispo, California 93407, USA
jpohl@calpoly.edu; awood@cdmtech.com; kpohl@cadrc.calpoly.edu

Abstract

The Integrated Marine Multi-Agent Command and Control System (IMMACCS) is a multi-
agent, distributed software system, designed to provide a Common Tactical Picture (CTP) with
integrated and meaningful decision-support facilities to authorized operators at any access node.
IMMACCS has been implemented as a three-tier architecture that distinguishes between
information, logic and presentation. It utilizes an object-serving communication facility with
subscription and multi-casting capabilities that is based on the Common Object Request Broker
Architecture (CORBA). With an emphasis on application, IMMACCS was designed and
implemented in concert with its military users as an integral component of experiments
conceived by the Marine Corps Warfighting Laboratory (US Marine Corps, Quantico, Virginia,
USA) to test emerging concepts in military command and control. It was field tested as the
command and control system of record during the Urban Warrior Advanced Warfighting
Experiment conducted by the US Marine Corps in Monterey and Oakland, California, USA,
March 12 to 18, 1999, and during a live fire Limited Objectives Experiment (LOE-6) held at
Twentynine Palms, California, USA, in March, 2000.

Background

In July 1995, General Charles Krulak, the newly appointed Commandant of the Marine Corps,
directed formation of the Marine Corps Warfighting Laboratory (MCWL). His action was based
on a deep conviction that it was no longer sufficient to modify cold war practices and
procedures, but that the era ahead demanded a new approach. It was his desire that the Sea
Dragon program, a series of concept-based experiments, would provide the basis for examining
new capabilities.

The Sea Dragon program was designed to be executed in phases. Hunter Warrior, the first phase,
was planned to focus on the capabilities required for small units employing enhanced tactics and
equipment to shape the battlefield through information and fires. Urban Warrior would follow
Hunter Warrior as the second phase, and would focus on combat in cities. Capable Warrior, the
third phase, drawing on the preceding four years of experimentation and integrating new
concepts and technologies, would identify selected concepts and capabilities for introduction into
the Marine Corps operating forces.

From the earliest internal debates the MCWL staff postulated that while various forms of cyber-
warfare and even more ambiguous types of conflict were probable, armed conflict requiring
commitment of trained military forces on the ground would remain decisive in forcing national
will on potential enemies. Furthermore, it was argued that future warfare would have several
other characteristics that collectively point to the need for a fresh approach to command and
control. For example, warfare would be increasingly public, implying the need for quick and
decisive results in complex conflicts. The outcomes of these conflicts would depend largely on
the judgements of subordinate leaders, particularly the small unit leaders struggling
simultaneously with the enemy, non-combatants, and rules of engagement. Additionally,
potential foes eyeing the results of Desert Storm would employ asymmetric approaches to
minimize the growing technological advantages in traditional conflicts.

Clearly future conflicts could involve widely divergent political objectives and scope.
Furthermore, the location and nature of the conflicts could vary just as greatly, while the
attitudes on all sides of multi-sided conflicts would likely differ and alter as the conflict
progressed. What was needed was a command and control framework that could adapt to these
wide variances and seamlessly integrate the air, ground, and logistic capabilities needed to
support emerging concepts such as Operational Maneuver From The Sea (OMFTS). This
developing framework of adaptive and integrated command and control capabilities became the
major influence in determining the shape of the Integrated Marine Multi-Agent Command and
Control System (IMMACCS).

While MCWL planners struggled to extrapolate trends and identify the likely characteristics of
future battle grounds, they had far less difficulty in perceiving the enormous potential as well as
serious threats inherent in the on-going information processing advances of the digital
revolution. Nowhere was the promise and the threat posed by these technical advances in
information gathering more hotly argued than in the discussions focused on centralized versus
decentralized control.

In visualizing the new approach MCWL planners postulated the need for the subordinate leaders
who actually did the fighting to exercise maximum initiative supported by greatly expanded
access to information. However, they saw the potential for the significant advances in
information gathering to create just the opposite situation; namely, to reinforce centralized
control. The reasons for this concern were related to the role played by uncertainty. It was
argued that centralized control would reduce uncertainty at the top, but the price to be paid was
to constrain initiative and flexibility among the subordinates facing the enemy. Decentralized
control and enhanced access to information would encourage initiative and flexibility among
these subordinates, but at the price of increased uncertainty at the top. In the end MCWL opted
for decentralized control coupled with the long-standing Marine notion that commanders must
accustom themselves to a high degree of uncertainty as the norm.

While debate continued on how to deal with control, a parallel and equally passionate discussion
simmered on the proper approach to command. This discussion focused on the commanders and
the future decision environment in which they would operate. Here, MCWL planners felt that the
art of command had been far less affected by changes in warfare or technological advances, than
was the case with control. Instead there was a developing consensus among MCWL staff that the

‘tempo’ of a commander’s (or any leader’s) decision making capabilities could be significantly
accelerated if:

1. A means could be found to improve and maintain individual decision skills.

2. The decision environment around the commander could be disciplined.

3. Useful decision-support were to be provided in the form of enhanced situation
awareness at every level.

Fundamental to the discussion of command was the belief that while uncertainty would remain a
permanent condition, the decision pace of skilled commanders would accelerate as they gained
confidence in the currency and accuracy of the information available. To achieve that enhanced
currency and accuracy, a way would have to be found for the supportive command and control
system to filter and convert data into useful information and inference on entry into the system.

Another key system characteristic that emerged from this discussion on future command was the
need for man-machine collaboration. It was generally agreed that while simulation and
prediction can be useful in certain situations, these are necessarily linear capabilities. War is not
linear, but presents a series of complex problems that defy simplistic approaches. Accepting this
notion, MCWL planners felt that the chaos and chance that pervade conflict demand a command
and control system that is collaborative, while maximizing human intuition, creativity and
conceptualization. Thus, to the adaptive set of characteristics already mentioned was added a
requirement that the emerging system concept provide tailored decision-support rather than
reshaping combat problems to fit the mould of pre-determined solutions.

Finally, the nature of the Marine Corps as the principal expeditionary force in readiness within
the US, demanded that the design of the new command and control system be focused on
execution and be near real-time. Further, because no one could predict just what doctrine would
be employed in future conflicts, the new command and control system would have to be capable
of accommodating any doctrine. The framework of required capabilities was now complete.
Building and testing IMMACCS, a proof-of-concept system embodying these capabilities was
the next step [Pohl et al. 1999].

IMMACCS Design Principles

IMMACCS was conceived as a distributed, open architecture, command and control (C2) system
to assist military commanders under battle-like (i.e., execution) conditions when dynamic
information changes, complex relationships, and time pressures tend to stress the cognitive
capabilities of decision makers and their staff. IMMACCS incorporates four notions that are
fundamental to its decision-assistance capabilities.

Firstly, IMMACCS is an object-based system that processes information. Unlike conventional
message-based systems that process data. In this context data are defined as numbers and words
without relationships, while information is defined as data with relationships. For example, the
meaning of the word ‘rifle’ derives from the associations that we make in our mind with our

experience and knowledge of rifles. This rich set of relationships converts data to information
[Minsky 1982, Pohl 2000]. The key to the assistance capabilities of IMMACCS is that the
system has some ‘understanding’ of the information that it is processing. In IMMACCS every
entity in the screen display of the battlefield (e.g., road, building, truck, tank, enemy unit, civilian
group, etc.) as well as intangible entities such as weather, attack, defense, and so on, are
represented as individual objects with characteristics and relationships to each other. Therefore,
the military commander and staff officer interact with a computer display that consists of
hundreds of real world entities (objects) that all have some understanding of each other’s nature,
interests and objectives, and a great deal of understanding of their own characteristics and
capabilities.

Secondly, IMMACCS is a collection of collaborative tools, not a library of predefined solutions.
This approach is intended to overcome the deficiencies of legacy systems in which built-in
solutions to predetermined problems often differ significantly from the complex operational
situations encountered in the real world. IMMACCS is a collaborative decision-support system
in which the operators interact with computer-based agents (i.e., decision making tools) to solve
problems that cannot be precisely nor easily predetermined.

Thirdly, IMMACCS incorporates agents that are able to reason about the characteristics and the
relationships of the many real world entities (objects), all of which embody meaning. In its field
tests IMMACCS has included agents that: apply their domain specific knowledge to weapon
selection and deconfliction; rules of engagement; and, anticipate logistical re-supply
requirements. These may be referred to as static agents since they provide predefined services.
IMMACCS also utilizes mentor agents that may be dynamically created to represent the interests
of warfighters and warfighting machines. During the Urban Warrior and LOE-6 field tests
mentor agents were configured to extend the capabilities of Marines at all levels by warning
friendly units of enemy intrusions into their territory.

Fourthly, IMMACCS integrates planning, execution and training within one common C2 user
environment. The computer-based agents and the IMMACCS users continuously collaborate as
they interact with each other in rapidly changing battlefield situations. In this respect IMMACCS
reflects the complexity of the real world where problem solutions must be continuously reviewed
as conditions change, and it becomes increasingly difficult and inconvenient to separate
planning, re-planning, execution, and training functions into artificially discrete activities.

System Components and Architecture

Although IMMACCS is designed as an integrated system it was developed as a team effort by
several government and commercial organizations, each taking responsibility for one or more of
the following principal components:

1. An Object Model (designed and developed by the Collaborative Agent Design
(CAD) Research Center, Cal Poly, San Luis Obispo, California) that facilitates the
internal representation of information, rather than data. In this respect data are
defined as numbers and words, while information combines data with
relationships that provide meaning and context. In particular, IMMACCS

supports the dynamic formation of associations among objects at both the user
and agent levels.

2. An Agent Engine (designed and developed by the CAD Research Center) that
automatically initiates an agent session in support of any desired ‘view’ of the
battlespace.

3. A Shared Net communication facility (designed and developed by the Jet
Propulsion Laboratory, Cal Tech, Pasadena, California) that manages the object-
based interactions among the various components on a subscription basis. All
IMMACCS components are clients of the Shared Net and indicate their
information interests by registering a subscription profile. Whenever, information
that is within the subscription of one or more clients (whether military
commander or squad leader) becomes available the Shared Net automatically
pushes this information into a cache memory area of the client, and if the
information is of high priority the client will also receive an alert message. In
addition, clients may also query for information to which they have not
subscribed. Even individual agent sessions are clients to the Shared Net and can
therefore take advantage of these communication capabilities.

4. A hardware independent Object Browser (designed and developed by the CAD
Research Center) that facilitates user interaction within the object-based
information context and the collaborative agent assistance capabilities of
IMMACCS. Through the Object Browser the user may: set alert conditions (e.g.,
request warnings of enemy advances to within a user-specified radius of the
current position of the operator); obtain agent reports and suggestions; request
agent explanations; explore the location and capabilities of key resources (e.g.,
local police and fire stations, hospitals, and government buildings) on the object-
based infrastructure display of the battlefield; and, enter information to
automatically activate any other client(s) of the Shared Net.

5. A set of Translators (designed and developed by the SPAWAR Systems Center,
San Diego, California) that are capable of mapping data received from external
applications, such as the Joint Maritime Command Information System (JMCIS)
and the Land Attack Warfare System (LAWS), to the object-based representation
held within the IMMACCS Object Model.

6. A hardware independent, lightweight 2-D Viewer user interface (designed and
developed by SRI International, Menlo Park, California) that connects the
warfighter in the battlespace via wireless communication to IMMACCS. Since
the Urban Warrior experiment the 2-D Viewer has been replaced by the
Battlefield Visualization Tool (BVT) user-interface (developed by FGM, San
Diego, California). In either case the user-interface hardware platform is provided
with a differential GPS (Global Positioning System) device that transmits
automatic position reports to IMMACCS. In this way IMMACCS is able to
automatically track the current position of all beacon equipped friendly units, and

make this information available to agents as they spontaneously and
opportunistically reason about events which might affect these units.

7. A Geographic Infrastructure Database (designed and developed by the Naval
Research Laboratory at Stennis Space Center, Mississippi) that provides
objectified battlespace infrastructure from National Imagery and Mapping Agency
(NIMA) Vector Product Format (VPF) data.

These components are integrated (Fig.1) within the Integrated Cooperative Decision Model
(ICDM) framework which the CAD Research Center has applied in several multi-agent decision-
support systems over the past decade [Pohl 1994; Penmetcha et al. 1997, Pohl 1995, 1997, 1998].

OBJECT
BROWSER

(IOB)

LINKAGE TO NON-IOM CLIENTS VIA TRANSLATOR

SHARED NET OBJECT-SERVING COMMUNICATION

IMMACCS OBJECT
MODEL (IOM)

OBJECT
INSTANCE

STORE

AGENT
SESSION

AGENT
SESSION

AGENT
SESSION

OBJECT
BROWSER

(IOB)

OBJECT
BROWSER

(IOB)

Fig. 1: Schematic representation of the IMMACCS components

The IMMACCS model is based on a three-tier architecture that makes clear distinctions between
information, logic, and presentation. These tiers are represented by the three major IMMACCS
system components; namely: the Shared Net (information tier); the Agent Engine (logic tier);
and, the IMMACCS Object Browser (IOB), 2-D Viewer or BVT user-interface (presentation
tier). Included in the information tier are two additional components. The first of these is the
Translator providing bi-directional information translation between IMMACCS and external
systems (e.g., JMCIS, LAWS, etc.). The second system is the Geographic Infrastructure
Database responsible for providing geographic infrastructure information (e.g., buildings, roads,
etc.) to the other IMMACCS components. Each of these tiers functions in an integrated fashion
to form a comprehensive agent-based decision-support execution framework. This framework
allows multiple human decision makers to solve complex problems in a collaborative fashion
obtaining decision-support assistance from a collection of heterogeneous on-line agents.

The Shared Net Information Server

The Shared Net, developed by the Jet Propulsion Laboratory (JPL), functions as an object-
serving communication facility. Clients subscribe to information and this information is
automatically ‘pushed’ to the subscribers as soon as it is instantiated and posted in the Object
Instance Store (Fig.1). Additionally, clients may send queries to the Shared Net and ‘pull’
information out of the Object Instance Store. In this respect the Shared Net operates very much
in the fashion of a distributed object server based on the Common Object Request Broker
Architecture (CORBA) specification [Mowbray and Zahavi 1995].

The information service capabilities of a distributed object broker obviate the need for clients to
be knowledgeable of either the source or the form of the information. In other words, clients
(including agents) communicate with the Shared Net and not directly with each other.

The Representation of Information

Fundamental to the decision-support capabilities of IMMACCS is the representation of
information within the system as objects with behavioral characteristics and relationships with
other objects [Myers et al. 1993]. It is important to note that the relationships among these
objects are often far more important than the characteristics that describe the individual behavior
of each object. While some of these associations are fairly static (e.g., a weapon is a kind of asset
and a lethal weapon is a kind of weapon) many of the associations are governed by current
conditions and are therefore highly dynamic. For example, as a platoon of soldiers moves
through the battlefield it continuously establishes new associations (e.g., to windows in buildings
from which snipers could fire on individual members of the platoon), changes existing
associations (e.g., higher levels of risk as the platoon nears an active combat zone), and severs
previous associations (e.g., as the platoon is forced to abandon its compromised command post).

Although distributed object servers by virtue of their name deal with objects, this in itself does
not guarantee the kind of object-based representation described above. If the information is not
represented at a high level upon its entry into the system, then the objects serve simply as shells
(i.e., wrappers) for data. In IMMACCS, the Object Model serves as the information framework
that preserves the objectified representation of information as it moves throughout the system,
and the Shared Net incorporates an object-oriented database management system (OODBMS)
for maintaining persistence.

The Agent Engine

The Agent Engine represents the logic-tier of the underlying three-tier architecture of
IMMACCS. Existing as a client of the Shared Net the Agent Engine is capable of both obtaining
and injecting information into the Shared Net. Architecturally, the Agent Engine consists of an
agent server capable of supporting collections of agents. These collections, or agent sessions,
exist as self-contained, self-managing, agent communities capable of interacting with the Shared
Net to both acquire and contribute information. As a Shared Net client with interests in events
and information, agent activity is triggered by changes in the environment represented by the
IMMACCS Object Model (i.e., the battlespace). Regardless of whether agents are interacting

with the Shared Net or each other, interaction takes place in terms of objects. This again
illustrates the degree to which an object representation is preserved as information as it is
processed throughout IMMACCS.

Dividing agent analyses into heterogeneous collections of agents allows for a number of
interesting configurations. These configurations determine the size, number, and individual
scope of the agent sessions. While a wide variety of Agent Session configurations exist,
IMMACCS has found considerable success in formulating these configurations based on two
primary criteria.

The first criterion introduces the notion of a ‘view’. A view is a conceptual perspective of reality.
In other words, a view can be thought of as a single investigation into solving a problem whether
it be based on fact or speculation. For example, a view may describe events and information
relating to what is actually occurring in reality. Another view may describe an alternative or
desired reality. As an example, IMMACCS uses a single view to represent the information and
events actually occurring in the battlespace. In a similar manner, IMMACCS employs any
number of additional views to represent hypothetical investigations to determine suitable
strategies for dealing with potential events or circumstances. Regardless of use, however, there is
a one-to-one correspondence between a conceptual view and an Agent Session (Fig.2). This
means that independent of which version of reality a view represents, there exists a dedicated
Agent Session providing users of that view with agent-based analysis and decision-support. Each
agent of a particular Agent Session deals only with the view associated with its Agent Session.
Organizing information analysis in this manner allows for an efficient and effective means of
distinguishing activities and information relating to one view from activities pertaining to
another. Unless prompted by user intervention, each set of information is completely separate
from the other.

The second configuration criterion specifies the number and nature of the agents contained in an
Agent Session at any particular point in time. IMMACCS employs two types of agents to
populate an Agent Session. These agent types are Domain Agents and Mentor Agents [Pohl
1995]. Service-oriented Domain Agents embody expertise in various command and control
domains (i.e., fires engagement, logistics, intelligence, fratricide, etc.). The collection of Domain
Agents populating an Agent Session at any point in time determines the variety of domain
specific perspectives and analytical depth available during analysis of the associated view. Under
the configuration scheme utilized by IMMACCS, users can add or remove these domain
perspectives in a dynamic fashion over time.

Mentor Agents, on-the-other-hand extend the notion of high-level information representation by
essentially agentifying information through empowering information objects with the ability to
act on their own behalf. This agentification of information into Mentor Agents can be initiated by
both human users or other agents on an as-needed basis.

Within the IMMACCS model each of these agent contingents is dynamically configurable by
both the user(s) in addition to the system itself. This approach to Agent Session configuration
promotes the notion of offering assistance in the form of dynamically configurable tools rather
than predefined solutions.

Fig.2: Multiple users can interact with a ‘view’ which in turn
is analyzed by a single Agent Session.

Architecturally, an Agent Session consists of several components including the Semantic
Network, Object Manager, Session Manager, Inference Engine, and Agent Manager (Fig.3).
These components operate in an integrated fashion to maintain a current information connection
between the agents residing in the Agent Session and the associated view described in the Shared
Net.

The Semantic Network consists of a collection of two sets of application specific information
objects. The first set is used for local collaboration among agents. Agents may use this local
Semantic Network to propose recommendations or request various services from each other.
This information is produced and modified by the agents and remains local to the Agent Session.
The second set of information is essentially a mirror image of the view information stored in the
Shared Net. In actuality, this information exists as a collection of object-based interfaces
allowing access to information pertaining to a view stored in the Shared Net. Such interfaces are
directly related to the IMMACCS information object model. In other words, these interfaces or
proxies [Mowbray and Zahavi 1995], are represented in terms of the objects described in the
IMMACCS Object Model (IOM). Through these interfaces, Shared Net clients have the ability
to access and modify objects contained in the Shared Net as though they are local to the client’s
environment. All communication between the object interfaces and their remote object
counterparts is encapsulated and managed by the Shared Net in a manner that is transparent to
the clients.

“Current set of
view users…”

Client User
Interface

Information
Tier View

Logic
Tier Agent

Session

Presentation
Tier

Client User
Interface

Client User
Interface

Fig.3: Agent Session Architecture

As the primary manager of the two sets of information described above, the Object Manager
focuses the majority of its efforts on the management of the bi-directional propagation of
information between Shared Net proxies and an equivalent representation understandable by the
Inference Engine. The purpose of this manager is to maintain mappings between the Shared Net
proxies and their corresponding Inference Engine counterparts. An additional responsibility of
the Object Manager deals with the subscriptions, or interests held on behalf of the agent
community. In other words, the Object Manager is responsible for maintaining the registration of
a dynamically changing set of information interests held on behalf of the Agent Session agents.
In addition, the Object Manager is responsible for processing notifications when these interests
are subsequently satisfied. Such processing includes the propagation of information changes to
the agent community which may in turn trigger agent activity. To perform these two interest-
related tasks the Object Manager employs the services of the Alert Manager. The Alert Manager
exists as an interface to the Shared Net subscription facility and is available to any Shared Net
client wishing to maintain a set of information interests.

The Inference Engine provides the link between changes occurring in the Semantic Network and
agent activation. For efficiency, IMMACCS employs the CLIPS expert system shell which is
based on the RETE algorithm [NASA 1992]. Since agent activation can occur when a change in
the Semantic Network is of interest to a particular agent, if follows that in such a case the
Inference Engine having knowledge of specific agent interests in addition to changes occurring
in the Semantic Network, is responsible for activating or scheduling the actions of the agents.
This activation list forms the basis for the Agent Manager to determine which agent actions to
execute on behalf of the currently scheduled agents.

The Agent Manager is responsible for the management of the agent community housed in an
Agent Session. This management includes the instantiation and destruction of agents as they are

Information Connection

Session Manager

Object
Manager

Proxy
Semantic Network

Alert
Manager

Agent
Manager

Mirror
Semantic Network

Agent Semantic Network

Agent
Community

Inference Engine

Agent Analysis

dynamically allocated and de-allocated to and from the agent community. In addition, the Agent
Manager is responsible for managing the distribution of execution cycles allowing each agent to
perform its actions. Disbursement of execution cycles occurs in a round-robin fashion allowing
agent analysis to be evenly distributed among the activated agents.

As the overall manager of the Agent Session environment the Session Manager has two main
responsibilities. The first focuses on the initialization of each of the other Agent Session
components upon creation. When an Agent Session is created as a response to the establishment
of a view, the Session Manager is the first component to be activated. Once initialized, the
Session Manager activates the Object Manager and Inference Engine. Continuing its efforts, the
Session Manager then activates the Agent Manager.

Upon start-up, the Agent Manager initializes itself by allocating an appropriate initial set of
agents. Once allocated, these agents register various subscriptions with the Shared Net based on
their current set of interests. Through various queries directed at the Shared Net, the agents also
begin to familiarize themselves with the current events and conditions in the battlespace.

Current IMMACCS Agent Capabilities

During the Urban Warrior and LOE-6 experimental exercises the IMMACCS Agent Engine
supported the following agent capabilities.

Sentinel Agents

Sentinel Agents are dynamic agents created by the Agent Engine as a user (e.g., military unit) in
the battlespace logs into IMMACCS. Sentinel Agents monitor and generate alerts for enemy
units coming within a specified radius (i.e., 300 meters during Urban Warrior) of its unit. The
Sentinel Agent also monitors Calls for Fire (CFF) and alerts its unit of fire missions with targets
closer than 300 meters.

In addition, Sentinel Agents handle the task of creating a unit’s weapons assets. When logging
into IMMACCS from the battlespace a unit typically supplies only its call sign, force code and
location (i.e., actually, these are automatically received from the end-user terminal without the
need for explicit user actions). The Sentinel Agent then maps that unit to encyclopedic data
providing more robust information and relationships for the agents to reason about.

Fire Agent

The Fire Agent is a static agent that responds to Call for Fire (CFF) messages by determining the
best weapon that is available, deliverable, and acceptable. The Fire Agent’s weaponeering
capabilities currently address range, time of flight, target type, urgency, circular error of
probability (CEP), effective casualty radius (ECR), availability, and rules of engagement (ROE).
The Fire Agent’s deconfliction capabilities include the trajectory of munitions relative (i.e.,
within time and space) to the position of other friendly assets (e.g., people, equipment, and other
munitions), civilian tracks, and infrastructure objects.

Rules of Engagement (ROE) Agent

The ROE Agent is a static agent that monitors Call for Fire (CFF) messages alerting to violations
in rules of engagement (e.g., fire missions that target on or near buildings designated as off-
limits). The ROE Agent augments the Fire Agent by alerting on available and deliverable
weapons that violate the current ROE.

Engagement Agent

The Engagement Agent is a static agent that monitors Call for Fire (CFF) messages alerting to
enemy units being directly or indirectly targeted.

Blue-on-Blue Agent

The Blue-on-Blue Agent is a static agent that monitors Call for Fire (CFF) messages alerting for
fratricide conditions, such as when a friendly unit is being directly or indirectly targeted.

Logistics Agent

The Logistics Agent is a static agent that monitors the level of supplies of blue units. The
Logistics Agent generates ‘yellow’ and ‘red’ alerts as levels of certain logistics supply items,
such as fuel and water, fall below preset thresholds. Upon alert creation the location of potential
re-supply points are highlighted on the map display.

Hazard Agent

The Hazard Agent is a static agent that monitors the battle space for indications of nuclear,
biological and chemical (NBC) weapons. For example, upon receipt of atmospheric events the
Hazard Agent generates an alert indicating the presence of an NBC condition and highlights an
approximate area of coverage. Units within the coverage area are also automatically identified.

Intelligence (Intel) Agent

The Intel Agent is a static agent with some dynamic capabilities. Based on the request of the
commander of the friendly forces (i.e., SPMAGTF(X)) during Urban Warrior and LOE-6 the
Intel Agent was provided with two unassociated capabilities.

The static capability required the Intel Agent to monitor the battle space for instances of hostile
Air Defense Systems (ADS). Detection of an ADS in passive mode generated an alert of the
existence of this high value target, while detection of an ADS in active mode generated an alert
of the existence and the automatic creation and submission of a Call for Fire (CFF).

The dynamic capability of the Intel Agent allowed the user to create Named Areas of Interest
(NAI). The Intel Agent then monitored enemy track movements generating alerts when a track
entered the NAI. The Intel Agent also monitored successive movements of the track alerting on
its speed and bearing.

IMMACCS User-Interfaces

Representing the third and final tier of the three-tier architecture employed by IMMACCS the
Client User Interface (CUI) exists as a culmination of instances of the 2D-Viewer or BVT, and
the IMMACCS Object Browser. Collectively, these user-interface choices provide human users
with a means of viewing and manipulating the information and analysis provided by the other
two tiers of the IMMACCS decision-support system.

As clients of the Shared Net, CUI users have the ability to interact with each other and the
agents. By either injecting or obtaining information from the Shared Net, CUI users working on
the same view have the potential of exchanging strategic or other kinds of information in a
collaborative manner. This type of information exchange occurs regardless of whether the
relevant view represents the Common Operating Picture or exists as a localized strategy explored
by a subset of users. All information and analysis remains localized within a particular view
unless explicitly copied into another view through user interaction. In this manner, no
informational or analytical collisions occur between conceptual views without the potential for
user-based supervision and subsequent reconciliation.

Fig.4: Typical Common Tactical Picture screen of the IMMACCS Object Browser user-interface
showing a column of agent status windows on the left and the Oak Knoll (Oakland, California)

battlefield site of the Urban Warrior experimental exercise in the central area of the screen.

In the typical Common Tactical Picture view provided by the IMMACCS Object Browser CUI,
shown in Fig.4, agent status windows or icons are located on the left side of the screen. An agent
alert is indicated by the appearance of a red border around the appropriate icon. Once this alert
has been acknowledged by the user the color of the border changes to blue. The concurrent
existence of multiple alert conditions in the same agent (i.e., some alerts have been
acknowledged and others have not) is signified by a yellow border.

Conclusion

A collaborative agent-based command and control system, such as IMMACCS differs from
conventional human-based command and control system in several significant respects. Firstly,
the continuous and automatic monitoring of warfighting units by the various types of agents that
operate spontaneously within the communication system potentially provides the warfighter with
access to instantaneous advice and guidance. The agent to agent communication which facilitates
this continuous access to information and intelligent analysis is not dependent on human to
human interaction. In a conventional command and control system the communication channels
are easily saturated by the continuous flow of human to human electronic and voice
communications. Efforts to control this traffic inevitably require the imposition of
communication restrictions that can easily prevent critical information from reaching the
appropriate commander or warfighter. In addition, the human to human interaction encourages a
build-up of support personnel in and around the theater. This build-up is costly in terms of
transportation and logistics, increases the danger of casualties, and places an additional burden
on the already overloaded communication facilities.

Secondly, the multi-agent system architecture decentralizes both the collection and analysis of
information. Individual warfighting units serve equally well as collectors and generators of
information, as they do as recipients of information. In this way a dispersed force of warfighters
can represent an important sensor array, with the ability to add value by converting data into
information and knowledge close to the source. This decentralization of the data analysis process
is particularly valuable in terms of distributing the communication traffic and validating the
results of the analysis at the collection source.

Thirdly, the seamless integration of planning, execution and training functions within the same
command and control communication system allows the commander and the individual
warfighter to continuously and instantaneously switch from one mode of operation to another. In
fact, the parallel nature of the system allows specific planning, execution and training tasks to be
undertaken concurrently. For example, the commander may wish to initiate a planning function
through one set of agents while executing a specific operation in the theater, and at the same time
simulate a particular ‘what if’ scenario in anticipation of a possible future situation.

Acknowledgements

The IMMACCS project is sponsored by the US Marine Corps Warfighting Laboratory,
Quantico, Virginia, with design and development responsibilities assigned as follows: overall
design concept, Agent Engine, Object Model, and Object Browser (Collaborative Agent Design
(CAD) Research Center, Cal Poly, San Luis Obispo, California); Shared Net and Object

Instance Store (Jet Propulsion Laboratory, Cal Tech, Pasadena, California); objectified
infrastructure (Navy Research Laboratory, Stennis Space Center, Mississippi); 2-D Viewer and
Backup System (SRI International, Menlo Park, California); Battlefield Visualization Tool or
BVT (FGM, San Diego, California); Translator(s) for external (i.e., legacy) applications and
System Engineering Integration (SPAWAR Systems Center, San Diego, California).

References

[Minsky, 1982] M. Minsky. Why People Think Computers Can’t. AI Magazine, 3(4), Fall, 1982.

[Mowbray and Zahavi 1995] T. Mowbray and R. Zahavi. The Essential CORBA: Systems
Integration Using Distributed Objects. Wiley, New York, New York, 1995.

[Myers, et al. 1993] L. Myers, J. Pohl, J. Cotton, J. Snyder, K. Pohl, S. Chien, S. Aly and T.
Rodriguez. Object Representation and the ICADS-Kernel Design. Technical Report (CADRU-
08-93), CAD Research Center, Cal Poly, San Luis Obispo, CA 93407, January, 1993.

[NASA 1992] NASA. CLIPS 6.0 Reference Manual. Software Technologies Branch, Lyndon
B. Johnson Space Center, Houston, Texas, 1992.

[Penmetcha, et al. 1997] K. Penmetcha, A. Chapman and A. Antelman. CIAT: Collaborative
Infrastructure Assessment Tool. in Pohl J. (ed.) Advances in Collaborative Design and Decision-
Support Systems, Focus Symposium: International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, Aug.18-22 (pp.83-90), 1997.

[Pohl 2000] J. Pohl. Adapting to the Information Age. InterSymp-2000, 12th International
Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany, Jul.31
to Aug.4, 2000.

[Pohl, et al. 1999] J. Pohl, M. Porczak, K. Pohl, R. Leighton, H. Assal, A. Davis, L. Vempati and
A. Wood. IMMACCS: A Multi-Agent Decision-Support System. Technical report (CADRU-12-
99), CAD Research Center, Cal Poly, San Luis Obispo, CA 93407, August, 1999.

[Pohl, et al. 1997] J. Pohl, A. Chapman, K. Pohl, J. Primrose and A. Wozniak. Decision-Support
Systems: Notions, Prototypes, and In-Use Applications. Technical Report (CADRU-11-97),
CAD Research Center, Cal Poly, San Luis Obispo, CA 93407, January.

[Pohl, et al. 1994] J. Pohl, L. Myers and A. Chapman. Thoughts on the Evolution of Computer-
Assisted Design. Technical Report (CADRU-09-94), CAD Research Center, Cal Poly, San Luis
Obispo, CA 93407, September, 1994.

[Pohl 1998] K. Pohl K. The Round-Table Model: A Web-Oriented Agent-Based Framework for
decision-Support Applications. in Pohl J. (ed.) Advances in Collaborative Decision-Support
Systems for Design, Planning, and Execution, Focus Symposium: InterSymp-1998, International

Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany,
Aug.17-21 (pp.47-59), 1998.

[Pohl 1995] K. Pohl. KOALA: An Object-Agent Design System. in Pohl J. (ed.) Advances in
Cooperative Environmental Decision Systems; Focus Symposium: InterSymp-1995,
International Conference on Systems Research, Informatics and Cybernetics, Baden-Baden,
Germany, Aug.14-18 (pp.81-92), 1995.

