
Pervasive Computing and Defence

Dr Jerzy Jagiello, Nicholas Tay, Erika Rodriguez
Defence, Science and Technology Organisation (Australia)

DSTO C3 Research Centre, Fernhill Park
Department of Defence

Canberra ACT 2600

Abstract

This paper will consider two aspects of pervasive computing; the delivery of information to
mobile devices and the transmission of software entities in the mobile environment. The
CharM project will demonstrate the benefits of immediate, wireless access to information
in a Defence context. CharM will enable mobile users access to Defence information and
services through readily available commercial infrastructure such as phones and PDAs.
DSTO’s Quebec project will demonstrate the concept of mobile functionality. Mobile
components can be simply and dynamically assembled by a user, sent across the network
and used to execute its tasks in another environment in real time. Quebec is used to
provide a basic example of the potential power of having a sentient entity that can possibly
roam around a network, gathering information and executing tasks and objectives a user
could specify in real time.

Introduction

In the information age, the ability to be informed about events is of utmost importance. In our
world, a person possessing more information than another would gain an advantage, as they are
aware of more issues and their decisions can be more calculated and relevant to the situation at
hand. However, being informed is not merely concerned with the access of information, but also
with its management. The Internet is a good example of the problems of information access
without adequate information management. Users who access the World Wide Web would
recognise that they have a great deal of information at their fingertips, but will also experience
the difficulties of obtaining specific information. Search engines are useful to some extent in
limiting the amount of information presented to a person, but even given the bounded results that
are returned, users could still be left with a large amount of data, most of which is irrelevant to a
person’s desires.

Pervasive computing is an emerging technology direction that is going to exasperate this
growing problem. It is changing the face of computing from a PC era, where one person is
associated with one device; to a ubiquitous era, where a person could interact with many devices.
Lou Gerstner stated that he saw “traditional computing evolving and expanding to include
perhaps a billion people and a trillion devices” [Gerstner, 2000]. The pervasive computing
vision can be described in simple terms as the integration of everyday devices that contain
computing technology. Devices such as personal digital assistants (PDAs), mobile
communication devices, fridges, automobiles and others are increasingly being integrated with
computing functionality to improve the activities and lifestyles of users.

Pervasive computing allows people to be continuously connected to the network through the use
of personal devices that can be conveniently carried by them. This feature is of particular
interest to mobile users, as it enables them to have instant access to information without the need
to go to an established computer terminal. As a mobile user operates in a dynamically changing
environment where they would be engaged in multiple activities, their information needs and
desires would differ from that of a person trapped in an office. Thus, it would be unlikely that
the user would be focused on their devices in the same fashion as a person sitting in front of a
desktop computer. Instead, the information a mobile worker would require are usually related to
their situation at hand, and as a result, the timely arrival of information on their handset will be
of greater importance than a deluge of data. This results in a need for defining an intelligent
entity that can search the network on behalf of the user, gathering, filtering and sorting data and
alerting the mobile user about any useful information relevant to their circumstances [Jagiello &
Walker, 1999]. The entity should be simple to define and easily programmable, and should be
able to offer a range of services and functions such as data mining, filtering, communication, etc.
Thus, this entity, or perhaps even “virtual ego”, can be customised to become an active
participant in the mobile user’s activities. The entity would be an electronic representative of the
user and the user would rely on the entity to sort through the overload of information and interact
with other entities on the user’s behalf.

The concept of instant access to information at a press of a button and an intelligent management
system that can gather, collate and represent data in such a way that can be easily interpreted by
a user has many distinct benefits for Defence. As technology advances will inevitably lead to a
miniaturisation of devices, such as a transition from laptop computers to increasingly smaller
PDAs, mobile users will have greater and longer access to information and events. Dismounted
infantry, in particular, can receive and send a great deal more information relevant to their
immediate tactical situation than has been possible in the past. With the concept of intelligent
mobile agents [Bradshaw, 1997] gaining a more widespread acceptance, it is possible in the
future for personnel to design and define intelligent entities to monitor the network for useful
data and alert the user to any material that might affect their situation. Thus, the personnel can
focus their attention on other tasks, relying on the entity to keep them up-to-date on any events.

Project Charm

Pervasive computing is an emerging technology direction. It is undoubtable that computing will
no longer be defined as a desktop world; instead it would be closer to a ubiquitous world where a
user has a multitude of devices comprising of a combination of office/static devices and portable
pervasive ones. And though it seems that more and more pervasive devices are announced daily,
the question arises whether pervasive computing is available in the present. There is a lot of
hype and smoke and mirrors surrounding this term, and even though a mobile phone with a
keyboard on its side cannot be deemed as “pervasive computing”, it is undeniable that the
technology is almost within our grasp.

The Charm project is a collaborative effort between the Defence, Science and Technology
Organisation (DSTO), the Australian Defence Force (ADF) and IBM designed to examine the
limitations and potential of pervasive devices for Defence. The proposal concentrated on
exposing mobile workers to an existing Web portal interface to Defence web sites through a

wireless medium. Two types of wireless technologies were trialed as a means of delivering
information: GSM for the field environment and the IEEE802.11b standard for the mobile office
environment. The Charm architecture is presented in the following figure.

Figure 1: Charm Architecture

Bandwidth Limitations

The limitations in bandwidth is usually a major problem with distributed applications and
services, or any program that requires the transfer of information from one system to another.
Bandwidth is typically the bottleneck in performance and it has a profound impact on ways
information will be structured and delivered to the mobile worker. Currently, the GSM networks
can deliver data with the speed ranging between 9.6 to 43.2 Kbps. The wireless local area
networks using the 802.11b protocol can deliver data with speed ranging between 1 - 11Mbps.
And even though the future 3G spectrum promises transmission rates of up to 2Mbps, the
advances in wireless communication will always seem to lag behind the transmission rates of
fixed line, static systems. Concurrently, application development is becoming more and more
complex, requiring increasingly larger amounts of memory and space to operate. With the pace
of web technology growing at almost exponential rate and new technology innovations emerging
(XML, XSL), web content will become richer and more sophisticated, creating a greater gap to
the pervasive world.

Internet

Wireless
Network
(GSM)

Defence WAP
Gateway

Transcoding

GSM
WAP
phone

Public
ISP

Gateway

LAN

IEEE
802.11

Chariot
Portal

Other
Providers

Pervasive Devices

In a dynamically mobile environment, personal digital assistants (PDAs) and mobile phones are
ideal devices to use due to their small size and portability. Pervasive devices such as PDAs
which were initially designed in the past as pocket organisers, are now being redefined as a
gateway for a huge deluge of office information usually available on a desktop. With wireless
communication and new protocols and specifications defined for interoperability and
synchronisation between the mobile and office world, the potential for pervasive computing is
only just being realised.

Understandably, the processing power and graphical capability of PDAs such as small handheld
computers and pocket devices are not comparable with the capabilities of an avergage desktop
computer. Due to the limitations in size and power consumption, PDAs have limited storage and
processing power and as a result, “cut down” versions of applications are designed for these
systems. Though, for example, HTML browsers have most of the functionality of their desktop
brothers and could view most web pages, pages that use the leading edge of technology
(DHTML, Java applets, etc) would be totally inaccessible. Thus, to obtain functionality with
PDAs, a service which can filter out the advanced functionality (java, objects, DOM) is required,
or simpler and more basic HTML pages must be designed.

Wireless Application Protocol (WAP) phones are further limited in screen size and available
memory. The Nokia 7110 mobile phone for example is limited to a mono-screen display of
96x44 pixels and very little capacity [Nokia, 1999]. Due to the huge discrepancy between the
functionality of a desktop computer and a mobile phone, it is unrealistic to expect the phone can
access any HTML pages. So instead, a new mark-up language (WML) was developed for
mobile phones and other pervasive devices in mind. Though WML shares some similarity with
HTML, the differences in the structure results in an incompatibility between both markup
languages. In such a case, a whole new set of WML pages must be written to allow a user to
view a site or some intelligent service, which can dynamically translate HTML into WML must
be developed.

In order to moderate imbalances between these "two disparate worlds", rich in content and
bandwidth desktop environment and limited in bandwidth and resources mobile environment an
architectural solution must be found. In order to deliver information to a mobile worker
environment content should be profiled based on: the mobile network and PDA characteristic
and the requirements of the end-user.
This profiling process can be done statically and dynamically.

Static Profiling

The static profiling is based on the idea that the pre-programmed content will be designed for the
mobile worker as well as the office worker. Each one will have its own separate set of
information. A mobile worker will access it by a mobile phone or PDA whilst the office worker
will access it from the standard desktop environment. There are two ways of generating this
content:

• Hard coded content for the mobile worker
• Generated content with the dynamic update

Hard coded content

The mobile worker set will exist in parallel with the office set. At any point of time whilst the
office set is generated the mobile worker set will be designed and generated as well. This idea
will work fine for the static sets of information but requires two independent code base lines. The
negative side of this approach is that synchronisation and maintenance of two sets of information
will be very hard.

Figure 2: Static Profiling – Hard coded content

Generated content with the dynamic update

The mobile worker set will exist in parallel with the office set. At any point of time whilst the
office set is generated, the mobile worker set will be regenerated as well. The difference is that
any request for an element from the office set will cause the regeneration of the equivalent
element in the mobile set. The mobile set will always be behind the current state of the office set.

Figure 3: Static Profiling – Content with dynamic update

Office
Application

Mobile
Application

Content Publisher

Mobile
Content

Office
Content

Content
Design

Serving
Process

Office
Application

Office
Content

Content
Design

Serving
Process

Mobile
Design

Mobile
Content

Mobile
Application

Content
Design

Dynamic Profiling

On the contrary to the static profiling the dynamic profiling will produce the content dynamically
from the office baseline. Thus, the mobile worker content will always be up to date with its
office counter part regardless its nature: static or dynamic. There are at least three strategies of
generating this content:
• Best effort
• Mobile Markup Language
• Universal Data Notation

Best effort

The office content regardless its form will be dynamically converted to the appropriate mobile
form eg. HTML content will be converted to the SHTML or WML content. The office
infrastructure, a network or a mobile device can perform the conversion process. This
conversion could be in the form of a translation or mapping of HTML tags into WML tags,
though it can lead to a mobile content that contains no information at all. Such a case could exist
if the HTML comprises of a java applet, and WML has no support for java, resulting in an empty
page being generated for WML (a similar case could exist for DHTML and DOM).

Figure 4: Dynamic Profiling – Best effort

Mobile Markup Language

The office content will have embedded special construct that will allow for generation of the
mobile content. For example the HTML will have a set of the new tags that will be used to
generate dynamically a WML content. During the design process of the office content this
extension will have to be implemented otherwise the best effort strategy will apply.

Office
content

Back-End
Service

Proxy

Mobile
Application

Office
Application

Dissemination Process

Figure 5: Dynamic Profiling – Mobile Markup Language

Universal Data Notation

Information, regardless of its deployment (office, mobile environment) will be kept in a unified
format eg. XML object. Request for a content will be mapped dynamically to a unified object.
Then, depending on the requesting device, the proper format will be generated taking into
account the capability and profile of the requesting device eg, Web page for a browser with
limited functionality, WML or XML application. This approach to profiling makes a distinction
between the information and its presentation layer. The content is created dynamically from the
generic set of objects taking into account the source of the request (standard desktop PC or
mobile phone). It requires a proper architectural design.

Figure 6: Dynamic Profiling – Universal Data Notation

Charm Implementation

The goal of the charm project was to deliver HTML content to mobile devices such as mobile
phones, PDAs running WAP or HTML browsers with limited functionality. Due to the large

 Mobile
Mark up
Language

Back-End
Service

Proxy

Mobile
Application

Office
Application

Dissemination Process

Unified
Content

Back-End
Service

Proxy

WML
Application

Dissemination Process

XML
Application

HTML
Application

amount of web content already available and the difficulties in developing and maintaining
multiple sets of web data, the dynamic profiling solution was implemented using the IBM
Transcoding technology. The transcoder software was deployed as the network proxy
intercepting the HTML requests and converting them accordingly to the format required by the
requesting device.

Figure 7: Transcoding architecture

Experiments with this topology demonstrated that the transcoder was successful in translating
static HTML pages into WML pages. However this translation is a straight mapping of tags,
meaning that a large HTML document would produce a large WML document. What would be
preferable is some sort of data-mining functionality, which can extract only the key points in the
HTML document and use it to populate the WML page. Another problem with the transcoder is
related to the limited screen space available for WAP devices, resulting in a poor layout
translation for some documents. Advanced techniques such as dynamic scripting and applet
programming have no support in the WML specification. Thus, web pages that contain scripting
and applets could result in the creation of a WML document containing no information or data.

Though the transcoder demonstrated some successes in generating WML pages from HTML,
more work is required in the future. More intelligent methods must be devised, such as data-
mining briefly touched upon before, to examine the data within a HTML document and to
convert it into a WML document. The layout of the WML document must also be considered,
and structural designs such as nested tables available in HTML must be better translated to
provide a more user-friendly layout in the WML representation.

An alternative solution is to look at the content of the information during the design process for
HTML documents and ensure that no complex scripting is included. This method is often
already considered by web designers to accommodate “old” browsers and the resultant “simple
HTML” pages should be easily translated by the transcoder into WML documents. However,
this solution would mean that desktop users would have the functionality of their web content
limited to enable mobile users access. Another alternative would be to separate the data and
presentation content for web pages (XML and XSL, or HTML and CSS) and have the dynamic
profiling method extract the necessary data and present it in a particular layout according to the
user’s device.

HTML
content

Web Server

Transcoding
Proxy

WML
Browsers

HTML
Browsers

Dissemination Process

Vision for the Mobile Robot

With the explosion of the internet, the concept of the network is becoming progressively more
important. Rather than each computer being thought of as purely an independent entity, they are
increasingly being referred to as a part of the whole. Computers are becoming a part of a
societal network framework [Jagiello & Walker, 1999], similar to a hive of “ants”. With the
introduction of pervasive computing and the concept of everyday devices, almost every aspect of
our lives will be controlled and supported by a set of virtual computer ants. These ants can exist
in both hardware or software form, but they will have one common attribute: they will be able to
communicate between themselves to control and change each other’s behaviour to adopt to
changing conditions. They will act on our behalf to perform tasks and achieve goals that we
assigned to them. Users or rulers of kingdoms will have a small set of these ants and can use
them to define his network by changing the roles and behaviours of the ants.

Figure 8: “Ant” network

Scenario

A person wishing to organise a dinner party decided to make use of his own virtual cook, to
assist him to organise this event. According to personal preferences, the owner would compose
the personality of this virtual cook assistant. Available for selection are various cooking
traditions and styles consisting of European, Asian and Latin American flavours.

In this occasion, the owner would like an Asian dinner menu with a touch of European flavour.
So, the owner customised this personal cook assistant to satisfy specific menu, budget and
quantity requirements. Furthermore, the owner is also able to make use the virtual assistant to
organise a bar tendering service and the purchase of non-alcoholic drinks, liquor and other party
supplies.

Firstly, the virtual cook assistant would contact various sources to produce the best possible
menu satisfying the given requirements. It would travel the Internet, contacting newsgroups and
publishing its request in directories and search engines around the world. As soon as the virtual
cook assistant finds an appropriate menu, it would return to the owner for confirmation. After the
menu is confirmed, the cook assistant would begin coordinating both, the purchase of the
necessary ingredients and the hiring of the caterer. For the purpose of finding a caterer, the cook
assistant would travel the network contacting local business directories and search engines where
it will post requests.

The virtual cook assistant might also broadcast a job advertisement on local media groups such
as community magazines and, if the budget permits, local newspapers. A job advertisement is
produced by the cook assistant and posted on the web site of each media publication on their
employment or other relevant section. The switchboard at each newspaper or magazine would
register the advertisement, becoming the main contact providing more information for the
position to those interested.

The job advertisement was published on the local newspaper, and it reads “Cook/Caterer Wanted
Urgently”. The owner of the virtual assistant, a chef himself, was interested on this job
opportunity and rings the number on the advertisement. At the newspaper switchboard, the
attendant informed him that the specific task required involves catering for a small function with
the menu provided. However, date and venue details may be notified with only two hours notice,
and for this a 25% increase on the hourly rate was offered. The owner agreed to these conditions
and began waiting for notification regarding venue, date and time details.

Closer to the date, the cook assistant verified the ingredients for the chosen dish to create a
purchase list. In order to compose a list of ingredients to purchase, the cook assistant might
communicate with the household’s fridge, looking for the menu ingredients in the fridge’s
inventory facility. Then, the cook assistant would travel the network in search of the local
supermarket’s web site, on which it would place an order for the required ingredients. Similarly,
it may include all other needed party supplies in the purchase order. All the purchased items
were delivered at the owner’s house at the date and time selected on the purchase request. For
this dinner party, the cook assistant was instructed to purchase a specific items on a given liquor
list, for which a liquor store would be contacted. As for the menu ingredients and party supplies,
the additional items were delivered to the party venue on the requested date.

On the day of the dinner party, while the owner is at home, he received the job notification.
However, he was stunned to discover that the venue matched his address, and thus the
advertisement referred to his own party.

If we assume that this scenario is real then the question that first comes to our mind is how to
achieve something like this? What are the requirements for a technology to support this case?

Initially, the owner created his own “virtual ant” for the purpose of organising the party. It was a
software artefact that was composed and programmed to perform a particular job. The owner
could have built any other ego for any other purpose such as a car buyer or car seller. If he would
have the opportunity to build any ant for any purpose to perform any task he wishes to do then
what he would need is all necessary requirements to do so. Alternatively if he wouldn't have all
necessary requirements then he could customise and re-program the existing ants. Our cooking
assistant was created to be aware about different cooking traditions and styles and other cooking
knowledge. Furthermore, it was built dynamically on the fly so it can be referred to as a
composeable software artefact.

In order to organise the catering our cook assistant had to travel across the network to find out
who can offer the best possible solution within the budget constrains. Our cook assistant was
mobile and was navigating through the surrounding environment. It went on the discovery
mission like a human being and gathered the knowledge about a particular subject. In this
particular instance; who the catering companies were and what were their offerings.

To complete its task, the cook assistant had to communicate with the surrounding environment,
interact with other service providers and make decisions to minimise the cost within defined
boundaries.

However, all these activities performed by our artificial cook would never have happened if the
infrastructure wouldn't exist to support it. Similar to ants requiring pheromones or chemical
signals to aid it in finding food or its nest, the cooking assistant needs guides to help it in finding
information. These signals are active and could be created by other “ants” or by the environment
as sign posts to ensure that the cooking assistant is following the correct path. In the cooking
assistant’s case, the network was the infrastructure. The network was this thing that understood
the cook and helped him to travel. The network had an interface by which the cook was able to
communicate with it. What it meant was that network understood and was aware of the cook
presence. The network was pro-active in the sense that knew about cook's requirements and was
helping him all the way. The network became the part of the cook's personality.

If we draw an analogy to the pheromones placed in an environment, the network in our example
was the active participant in allowing the cook to travel and was supplying the cook with the
information. The cooking assistant had his goal to achieve and was using network to help him to
achieve this goal.

The fundamental question is how the current network and an application concept fits into this
paradigm. The answer is inconclusive. Some flavour of this example can be found in the
literature describing the mobile agent type technologies [Bradshaw, 1997]. However the
differences in paradigms and solutions are quite substantial. Our example allows for the owner to
create his own private ant for whatever purposes. That means that the end-user will be creating
the agent like entity dynamically without the knowledge of the technology. Secondly the network
must understand this entities to interact with it. It means that the network and the agent must be

blended together into a one coherent system. This contradicts some fundamental principles of the
layered approach to architecture and design of a distributed system.

Technology attributes

The current role of the network is to carry information from the one place (client) to another
(server) with no impact on the information itself. We can term this phenomenon, a truck or
“wheelbarrow” network because the network acts as a carrier of information and plays no role in
determining what information should be delivered and to whom. In contrast, the network
described in the cook assistant scenario was playing a more active role in the delivery of
information. It was capable of possessing knowledge of the entities being hosted as well as to act
under preset business policies and rules. It was serving the cook through facilities such as
filtering, amalgamation, analysis, transformation and collation of information.

To make a break from the current computing paradigm we have to recognise that an integrated
approach is required for the concept of application and the network. The “application” and the
network are inseparable parts and should be tied together through some form of the intelligent
networking layer. At the same time this network will host and will create entities build from the
components that are mobile, interactive, intelligent and have learning abilities. They are
knowledgable entities and we can call them mobile robots or MOBOTs for short.

1.Mobility

As previously mentioned, the mobot will have to have the ability to move around the network.
This ability is based largely on the ability of the creator to predefine the mobot’s mobility or by
the mobot itself as a result of the decisions it makes. A mobot has a particular job to perform on
the network but doesn’t know which nodes it must visit to complete the job. It may be given a
starting point and proceed around the network gathering the information it requires to perform its
task until the task is completed. This implies that a mobot should have certain attributes:

• Purpose - A mobot travelling across the network will always have a job that it has been
created to perform. In some ways this would be the major goal of the mobot.

• Itinerary – This is a list of subtasks for each place visited that should be performed by the
mobot. Although initialized on creation, it could be dynamically changed according to
decisions made by the smart mobot itself. This enables the concept of the mobot making its
own decisions based on goals and information gathered along the way.

• Method of execution – This is what the intelligent mobot should do at each node it lands at
on the network.

• Information – This is data that was provided to begin with and also data collected during the
smart mobot’s travels.

2.Component build mobot

The idea is relatively simple – take some building blocks and put them together to form
something useful. This is the same principle that has been used for thousands of years in a
physical sense. If people were able to devise a way to build a chair from a few pieces of wood

and on a larger scale a house from bricks, why can’t they build a mobot from a few pieces of
code or components using a visual composition environment. The concept of building a mobot
from building blocks is something that the general population of computer users can comprehend
without much difficulty. To allow non-train user to build its own software artefact the building
process must be as intuitive and simple as possible.

Visual development and composition environments are becoming increasingly popular.
Unfortunately they are not ready yet for the public in a way we described in our example. An
intuitive voice recognision interfaces will make this vision more of a reality and will benefit
more the development community [Turk, 1998].

3. Interactivity

We have established that the network should be able to make decisions as a result of defined
goals, interaction with mobots on the network and information gathered through those
interactions. This indicates that there is a need for the network to interact with mobots that travel
across it. Therefore, the mobots will have to have a mechanism to enable the network to access
their characteristics.

This requires a standard that the mobot builders adhere to. All entities will need to have some
sort of generic interface so that all of the information required can be made available. To do this,
there must be a mechanism defined for interaction between them. This interface will be a
conceptual way of information exchange between two entities using commonly understood
languages.

Some common mechanisms that could be used are:

• Introspection – A way in which the structure and functionality of code can be discovered.
• Events – A way of notifying interested entities that something has happened. These “events”

may also contain related information.
• Knowledge Exchange Interfaces – Entities implement an interface that is mutually agreed

upon so that each entity can communicate with the other.

4.Intelligence

The mobots travelling across the network should be intuitive enough to be able to make
decisions based on goals, knowledge and interaction with other entities such as the network. The
mobots we are describing will each have their own intelligence that is defined or preprogrammed
by its creator with a hierarchical structure of goals. A given mobot will have a set of goals that is
a combination of the goals of the components it is composed of. It will be the job of the mobot
itself to make decisions about its operation based on the consideration of its own goal/s and the
goals of the environment and infrastructure, in addition to its knowledge[Busetta et al, 1999].

Quebec Implementation of the Mobot Concept

Quebec arose as an implementation model for the concept described in this paper. It was
designed to allow users to dynamically and instantly create applications to fit their requirements.
And as users were unlikely to be proficient computer programmers, a further requirement was
imposed on Quebec; that the applications would be simple and easy to create. It allowed users to
create complex applications by adding and connecting java components in an environment; much
like a child connects building blocks to create a toy house.

The implementation model was built using currently available technologies. Sun Microsystem’s
JavaBean specification was the basis for designing our Building-Blocks [Englander, 1997]. The
Bean Development Kit (BDK) was employed as a model demonstrator of the docking station (an
environment where the java components could be created and exist). IBM’s MQSeries was used
as our middleware integration technology [Blakeley et al, 1995][Lange & Oshima, 1998]. Its
interface was utilised to connect the BDK tool to the network to allow for the dynamic delivery
of the mobot functionality to other docking stations. The benefits of deploying the MQSeries as
the integration platform were as follows:

• taking the full advantage of MQSeries methods of delivery - direct, distribution list,
publish/subscribe,

• interface compatibility with the BeanBox tool which is a part of the BDK software,
• independence from the platform and protocol implementations,
• support for reliability and priority of delivery.

This section will outline the implementation details and discuss its limitations.

JavaBeans

The physical world of Building-Blocks can be easily compared with the abstract world of
software components. They are self-contained units of functionality with well-defined
interfaces. JavaBeans is Java's component model that we used to build mobots. One of the most
important bean developed was the MQSeries JavaBean that was internally used by the BeanBox
tool as well as the communication mechanism for a mobot. The MQSeries JavaBean is a simple
network component that allows for the easy construction of network aware applications without
requiring familiarity of the MQSeries API. The concept of a network connectivity bean and its
MQSeries implementation was presented in [Jagiello et al, 1999]. Figure 9 shows the basic
elements of the MQSeries JavaBean. This bean was designed to utilise three basic methods of
communication: point-to-point, distribution and publish-subscribe.

Transmit
Receive

Configuration

Conversion

Distribution

Object
Interface

Buffering

Filtering

Object Interface: Allows any object to be passed to and from the network. It is the
essential layer that gives the network component complete independence from any
business component that uses it.

Distribution: Sorts and allocates objects to user specified components (applications).
This ensures that components linked to this bean receive objects they desire, and also
prevents undesired objects from being distributed to an application.

Buffering: Helps to moderate any performance imbalance between application
processing and networking processing. This is useful when we don’t want one
component to slow down the processing of another.

Filtering: Allows for extra conditions to be met before objects are allowed to flow to/from
the network. This is useful when business components have no filtering capability
themselves and there is a need to limit the flow of objects based on some set of rules.

Configuration: Allows the network component to be tailored in different ways for different
situations. Provides a general-purpose default configuration for the inexperienced user
plus easy access to lower level options (eg. protocol settings) for the experienced
developer. To some extent, configuration plays a role in all parts of the network
component (eg. buffering, filtering) and it is this flexibility that increases the scope in
which it can be utilised. Allows for the configuration of the publish/subscribe service.

Conversion: Provides an ability to accept and release the network data in forms other
than just objects. This is useful when the network component is to be used to
communicate to/from other legacy systems that may not be object oriented.

Transmit & Receive: Provides the actual connection into the infrastructure. This is
where the details of the underlying technology are known and the translation to/from the
vendor specific format is performed. It is these details that the network component
strives to hide from the user.

Figure 9 .The MQSeries JAVA Bean.

BeanBox Tool

Sun Microsystem’s JavaBeans is the architecture allowing the Bean Development Kit to be used
as a visual building environment. This environment allows components (in this case beans) to be
quickly and easily connected together to form application functionality. Each bean available in
the BeanBox tool is an object, and a set of these beans linked together also represents an object
that can be transmitted through the network to a destination by the BeanBox tool. Although it
was designed for testing purposes its functionality allows for the modification of bean properties
as well as visually associating them. The event mechanism binds beans together by association
of events on the sourceBean with the actions on the target Bean [Englander, 1997]. Our
implementation of the BeanBox tool has an extra functionality that allows for:

• serialisation of the container content and the ability to send it across the network,
• receiving a container, deserialising it and creating its instance,

The sending and receiving options are configurable by the BeanBox tool (see Fig.9). This is an
interface by which the tool accesses the MQSeries infrastructure.

Figure 10: The BeanBox Configuration
MQSeries

The network profiles within Defence include low and high bit transfer rates, low and high error
rates, high and low latency, reliable or unreliable network links.

Commercial
Quality Networks

Commercial
Quality Networks

Low
Bandwidth

Poor
Quality

High Error
Rate

Radio
Silence

Island
Networks

Data
Diodes

Secret

UnClas

Satellite

Figure 11: Defence Networks

Information exchange models include push, pull, synchronous and asynchronous information
flows with exchange formats covering raw digital data, remote sensor readings (eg. GPS
sensors), structured information (eg. database transactions, updates), rich content objects with the
multimedia content (eg. e-mail). These digital networks rely on and link multiple software
platforms, providing a complex integration problem between applications and information
systems.

Defence networks and the concept of a synchronous connection between any server and client
are not viable with unreliable and high error rate networks and where the network infrastructure
cannot guarantee constant connection links. Additionally, the requirement for synchronisation is
restrictive and clashes with the nature of many typical Defence business processes. In some
instances, software processes can be mobile and sometimes “invisible” for varying time periods
(or even not available for a period of time). Networking infrastructures at different levels of the
command chain cannot be guaranteed to always be available (24 hrs/7 days). Inhebrently,
tactical networks are always likely to be unreliable. Thus any software infrastructure deployed
into this network environment must be able to cope with these characteristics. This is a reason
why the MQSeries software was used as an integration technology for mobile functionality.

Experiment

In our example, we demonstrate the ability to dynamically create and then distribute a mobile
functionality to other parties using our implementation. Upon the arrival at its destination(s), it
will be automatically connected to the network and communicate with other parties in real time.

Three laptops were connected together by the MQSeries middleware to represent a network.
Each computer was running its own copy of the BeanBox software and was registered as a
publisher and subscriber of the mobile functionality. A simple functionality was built on one
laptop, consisting of a whiteboard component and the MQSeries bean. The whiteboard
component was a simple drawing area GUI that fired drawing events to any interested
components (in this case, the MQSeries bean). The purpose of this was to create a distributed
whiteboard where images could be drawn on one device, and to be seen on another. The
MQSeries bean was configured as the Publisher and Subscriber of Data Objects and was set in
such a way that allowed the bean to be dynamically active upon arrival at its destination. The
receiving party did not have to know anything about the network and how to access it. The
content of the current container (the mobile functionality) was then published on the network.

Figure 12: Mobile Functionality Construction

The MQSeries service was used to push the mobile functionality to a destination or set of
destinations (Fig.12). The result was that every BeanBox that received its copy and created the
instance of it. Because the mobile functionality had in this case a network connectivity
component, it was connected to the network and could exchange information, creating a form of
collaborative environment.

Figure 13: Mobile Functionality Delivery

MQSeries
& Publish
Subscribe
Service

MQSeries &
Publish
Subscribe
Service

MQSeries
Interface

MQSeries
Interface

MQSeries
Interface

Thus, a line drawn on one whiteboard resulted in a copy of this information being distributed to
any mobile functionality on the network who were listening for these objects. The outcome was
that an image drawn on the one BeanBox appeared in all BeanBoxes in real time.

Figure 14: Interaction Between Mobile Functionalities

It should be noted that the example used to illustrate the implementation could contain any type
of a building block and it doesn’t imply that this type of technology could be deployed only for
collaborative environments. On the contrary the combination of building blocks will determine
the domain of applicability. Despite the primitive nature of our example the idea was to present
the real time aspect of a dynamically created functionality capable of interacting with created
counterparts across the network.

Conclusions

The aim of the Charm project was to examine the limitations and potential for the pervasive
computing in Defence. Experiments showed that the information delivered to a mobile worker
will be limited in the near future due to network and device limitations. The idea to convert
dynamically a content from the office environment and deliver to the mobile worker
environment will be hard to implement. The IBM transcoding software was successfully
translating static HTML pages into WML pages but this is only small portion of the information
available on the Web. Another aspect is the quality of the translation that wasn't satisfactory as
well. Taking into account all these limitation this paper was proposing some architectural
solutions to elevate this problem.

The Quebec project shows the value of convergence between the networking and the end-user’s
environment. It highlighted the need for development of an advanced infrastructure to allow for
the interactions between these two environments. The implementation example presented

MQSeries &
Publish
Subscribe
Service

demonstrates how the mobile functionality could be built from basic building blocks (JavaBeans)
and distributed across the network.

Bibliography

[Blakeley et al, 1995] B. Blakeley, H. Harris & R. Lewis. Messaging and Queuing using MQI.
McGraw-Hill Inc, 1995

[Bradshaw, 1997] Jeffrey M. Bradshaw. Software Agents. The MIT Press, Menlo Park,
California, 1997.

[Busetta et al, 1999] P Busetta, R Ronnquist, A Hodgson & A Lucas. Using Java for Artificial
Intelligence and Intelligent Agent Systems. JavAus Conference, 1999

[Englander, 1997] Robert Englander. Developing Java Beans. O’Reilly, 1999

[Gerstner, 2000] Lou Gerstner. 2000 IBM Annual Meeting of Stockholders. Cleveland, OHIO,
2000.

[Jagiello and Walker, 1999] Jerzy Jagiello , Matthew Walker. Concepts of a Societal Model in
the Computing World. Defence Science and Technology Organisation, Canberra, 1999.

[Jagiello et al, 1999] J Jagiello, A Devereux & M Walker. Component Based Networking and
the MQSeries Java Bean. ASG’99 Conference 18-20 July 1999, Sydney, 1999

[Lange and Oshima, 1998] D Lange & M Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998

[Nokia, 1999] Nokia Mobile Phones. Service Developer’s Guide for the Nokia 7110.
http://www.forum.nokia.com, 1999

[Turk, 1998] M Turk. Moving from GUIs to PUIs. Symposium on Intelligent Information
Media, Tokyo, 1998

