
CLUSTER RAPTOR: Dynamic Geospatial Imagery Visualisation using
Backend Repositories

John Hildebrandt, Michael Owen, and Robert Hollamby
Information Technology Division

Defence Science and Technology Organisation
DSTO C3 Research Centre, Fernhill Park

Department of Defence
CANBERRA ACT 2600 AUSTRALIA

POC: john.hildebrandt@dsto.defence.gov.au

Keywords: Imagery, GIS, Mosaic, JAVA, JAI, Application, Experience

Abstract

Command, Control, Computers, Communications, Intelligence, and Surveillance (C4ISR)
systems make extensive use of geospatial and image based information. Map displays and aerial
photography are often used as the backdrop for the display of other information in systems to
assist in providing situation awareness. Given the desire to have high-resolution information, the
volume and variety of geospatial information is increasing. Both commercial and experimental
systems are being developed to manage, serve and process these large volumes of image and
geospatial information.

This paper describes the development of a dynamic server based on Enterprise Java Beans
technology that communicates with backend image repositories, and to a JAVA map display
client to deliver a virtual mosaic of the imagery within the displayed region. Since imagery is not
always stored in georeferenced form we have had to provide a processing chain that maps the
image coordinates to the map coordinates for display. This is implemented using the JAVA
Advanced Imaging library. To reduce the footprint of the client the dynamic server that
processes the imagery from the backend repository can be distributed off of the client system via
an RMI connection. To maximise the interactive performance of this application various types of
caching of queries, and image data have been implemented. The use of clusters of image servers
and processing servers has been investigated.

1 Introduction

Imagery and Geospatial information are recognised as critical foundation data in any C4ISR
system and organisations are collecting large amounts of foundation data to meet a wide range of
possible situations. The volume and variety of imagery data is increasing for example
commercial remote sensing satellites will soon produce in excess of 1 TB of information daily. It
must be remembered however that the imagery is not an end to itself and that the user will want
to visualise the information in a variety of ways and combine data with other information.

To deliver Imagery and geospatial systems that can scale and handle this volume of information
a number of components must be developed. Firstly systems to store, index, manage, and

disseminate information must be provided to form the foundation on which applications can be
developed. Secondly processing or exploitation frameworks must be developed that can source
information from the information sources in a manner matched to the repositories capabilities
and the end user application requirements. Finally end user applications must allow the user to
visualise the information in a variety of ways without placing excessive demands on the end user
computing environment. For example many applications are aiming to deliver browser-based
applications to the user.

In this paper we examine the provision of a dynamic virtual image mosaic application that
delivers the appearance of delivering an image layer to a map display application connected to a
geospatial information repository. This application was chosen since it had the following
characteristics that we believe will be needed in other more general C4ISR applications:

• The application involved the use of at least two underlying services, namely the
geospatial information repository and the image repository.

• The application involved the visualisation of information in different ways than the
default mode of storage. For example imagery is often stored on the basis of a frame or file
basis where as geospatial information is often organised in layers. In this application we
deliver the appearance of an imagery layer without requiring the underlying image repository
to change its storage management.

• Dynamic processing of information is needed to deliver the required visualisation. Many
imagery sources do not deliver geo-registered images by default and so will be stored in
unregistered form in backend repositories. It is possible to use COTS tools to register
imagery if one has the required expertise and time to register imagery before placing it in the
data repository. However we have aimed at delivering the appearance of registered image
information without imposing the requirement to pre-register the imagery before storage.
This will enable more rapid delivery of information and on demand construction of custom
products to non-technical users.

• To reduce the demands for client-side computing capability the client application should
be as lightweight as possible.

The remainder of this paper is structured as follows. Next some of the potential technologies for
image management and dissemination are described ending with the experimental system we
have used. Once one has a repository of information available an exploitation framework is
required to process this information. In this paper we focus on options that can process
information on demand as required in our application. Some of the scenarios that are driving our
research are described and finally our implementation is demonstrated.

2 Imagery Servers

In image information systems both the size of individual images and the number of images in a
collection may be very large. To manage this volume of information a number of commercial
and experimental systems are being developed to store, manage and disseminate image
information. Some of these systems are described in the following subsections.

2.1 Flashpix and IIP

The Digital Imaging Group [DIG, 2000] has developed the Flashpix Image format and Internet
Imaging Protocol (IIP) for distribution of high-resolution imagery in Internet like environments.
This format and protocol support tiled multi-resolution imagery and access to data only as
required. Imagery servers using IIP are available commercially for distributing high-resolution
imagery. Several commercial imagery products have built in support for Flashpix. The JAVA
Advanced Imaging (JAI) library supports Flashpix images and IIP servers.

The Flashpix format stores imagery in multiple resolution levels to allow quick access to the
image at multiple resolutions. Within each resolution level the image is tiled to allow fast access
to arbitrary regions within the image. Each tile may be stored in uncompressed or JPEG
compressed form.

The Internet Image Protocol (IIP) is designed to communicate tiled multi-resolution image data
over network connections. The specification supports socket and HTTP connections. The
protocol supports requests for regions and resolution levels within the image data. Some
processing operations such as affine transformation and contrast enhancement can optionally be
supported by the protocol.

The DIG are also working with the JPEG2000 developer’s to take advantage of the JPEG2000
standards wavelet technology and to define a file format for JPEG2000 images.

2.2 MrSID

MrSID [Lizardtech, 2000] is a commercially available wavelet based image format that is
available from a single vendor. The use of wavelets avoids the need to store multiple resolution
levels and tile the image. This format allows the viewing of very large raster datasets on standard
hardware. Viewers and plug-ins for Internet browsers are available and several third party
vendors support the format. To create MrSID imagery a commercial product from the developer
of this format must be purchased. An image server, browser plug-ins, and JAVA applets are
available for using MrSID imagery in Internet environments.

2.3 GIAS

The US National Imagery and Mapping Agency (NIMA) have developed the Geospatial and
Imagery Access Services (GIAS) [GIAS, 1998] specification to define the interface to its
libraries of geospatial and imagery information. The interfaces are specified using the Object
Management Group (OMG) Interface Definition Language (IDL) to support implementation in
multiple languages.

The specification defines a number of managers which each provide specific functionality. The
functionality provided includes querying a library to determine its contents, adding imagery to a
library, and requesting imagery data from the library.

2.4 IMAD

IMAD [Grigg et al, 1999] provides access to a federation of distributed image libraries via 3
services with interfaces defined in CORBA [Siegel, 1998] IDL. The base interface is the library
interface that is a subset of the NIMA GIAS specification [GIAS, 1998]. Then two additional
services provide extra functionality. The Image Query Manager (IQM) provides access to a
distributed collection of libraries and provides a federated query mechanism across libraries.
Libraries implement the GIAS interface and register with a CORBA trader, which the IQM uses
to locate libraries. The Image Dissemination Manager (IDM) uses a factory pattern to generate
retrieval objects to get imagery to the client in the most appropriate form. JavaBeans have been
developed to simplify access to these interfaces for developers. The Query Bean simplifies
querying IMAD while the Image Client Bean sets up source and destination objects to conduct
actual image transfer. Use of Beans allows a developer to access IMAD without the need to
understand CORBA internals.

3 Exploitation Frameworks

In our application the imagery must be processed before being passed to the map display
application. If the imagery is georeferenced to the map grid then only scaling and translation will
be required to overlay on the map. However some forms of imagery are still archived in non-
georeferenced form and inserting a georeferencing step on the full image at ingest time may not
be practical. So in this case a coordinate transformation must be applied to the image to map it to
geospatial coordinate system. Hence a processing or exploitation framework is required that
process imagery directly from the underlying repository. Some potential exploitation frameworks
are now discussed.

3.1 JAVA Advanced Imaging

Sun has developed the Java Advanced Imaging [JAI, 2000] library as a standard JAVA extension
to support image exploitation application development. The JAI supports concepts useful for
image exploitation frameworks such as tiled images, just in time processing, client-server
execution, and processing pipelines. Several formats are supported by JAI including TIFF, JPEG,
Flashpix and Internet Imaging Protocol (IIP). New formats can be added and used as native JAI
data types.

Within JAI the PlanarImage class provides the typical base level of access to data. This class
provides access methods for obtaining image data and metadata without concern for the type of
imagery. The JAI framework supports distributed processing of imagery leveraging the Remote
Method Invocation (RMI) of JAVA. JAI defines a RemoteImage class to support this capability
and once registered with RMI remote users can access this object to perform distributed imaging
operations.

The JAI also supports the concept of attaching properties to image objects. This is useful for
transmitting image metadata along a processing chain for use in specialised processing steps that
require image metadata.

3.2 GIXS

The GIXS [GIXS, 1998] standard is a CORBA IDL API standard for distributed image
exploitation under development by the US National Imagery and Mapping Agency (NIMA).
This standard has been influenced by the JAI development but defined in CORBA IDL to
provide language independence. This would allow algorithm development in a variety of
languages and reuse of existing image processing libraries.

The GIXS standard includes a number of IDL based interfaces related to both computational and
management services to support development of exploitation environments. The Data Container
Objects (DCO) IDL provides an interface to tiled image data. This includes the Rendered Image
Interface to provide access to image objects. A factory interface is provided to generate
Rendered Images from files. The DCO is implemented using an Exploitation Buffer that receives
image files from a GIAS library. Other sources of imagery could also be supported as this is an
implementation detail and not reflected in the DCO interface.

At this point an implementation of GIXS is not available. It is not clear what the performance
implications of a CORBA based framework is. To provide a connection from IMAD to GIXS, a
new factory interface supporting creation of a GIXS DCO Rendered Image is required.

3.3 Image Understanding Environment

The Image Understanding Environment (IUE) [IUE, 2000] has been developed under
sponsorship by the US Defence Advanced Research Programs Agency (DARPA). This
environment is designed for use by researchers in developing image-understanding algorithms.
The environment is C++ based and supports the addition of new classes by researchers. A
distinguishing characteristic of this framework from the others discussed here is that it supports
classes representing objects within images as well as just pixel processing. This offers the
possibility to move beyond pixel processing to processing recognised objects within imagery.

4 Application Scenarios

In many imagery systems the images are stored and manipulated by the users as individual
entities. For example one may have applications in which users query for images in particular
regions. Then a user may select particular images for display and processing. In contrast
geospatial information in map displays and geographic information systems is typically managed
in terms of layers of information. For example if a user wishes to view rivers on a GIS display
they typically simply turn on the river layer for display rather than submitting a query for rivers
within a certain geographical extent.

In this paper rather than treat imagery as a special form of geospatial information we present
imagery information as a standard geospatial layer without requiring the underlying storage of
individual images to change. We propose treating the image coverage’s as a standard dynamic
GIS layer rather than a ‘special’ layer generated by special steps via user interface based queries.
Hence image coverages will be a layer that the user can turn on when they wish to view imagery
coverage’s on the GIS display. To be geospatially accurate the coverage polygons should reflect

the true ground coverage of the imagery. Hence knowledge of the imaging geometry and
mapping projections used will be required.

Similarly it is proposed that the user treat the imagery itself as a standard GIS layer. This may be
required to support viewing of broad regions rather than just individual images separately. In this
case the interaction will be similar to image coverages but instead of image coverages being
displayed the actual image data is displayed. To avoid the client being swamped with data only
the required imagery data for a particular region or resolution should be transmitted (as IMAD is
designed to support). In this case multiple images will be rendered onto the GIS layer. To handle
imagery overlaps some layer management within this GIS layer will eventually be required. To
be geospatially accurate the image data will need to be registered to the map projection before
being rendered onto the image layer.

Treating the imagery as a standard layer will stress the backend services in a different manner
than in case of user initiated queries. Typically the user inputs a relatively small number of
queries, and then the hit list is produced for the user to select from. In our scenario however an
IMAD repository query would be needed each time the geospatial display is altered by the user
that in scrolling and zooming situations will generate large numbers of queries.

In our case we implement the image mosaic scenario without assuming that the underlying
imagery is geo-referenced. This requires a live connection to the data repositories and a
processing framework that can connect directly to these repositories, in order to use the metadata
to perform the required image coordinate transformations.

5 Application Implementation

To provide a dynamic virtual mosaic of imagery as described in the previous section we have
developed a live link between an image repository and a processing environment. A server
process has been developed that manages requests from the display client for image data and
initiates requests on the image repository for data to process for display purposes.

The Image Server employed in our prototype was the IMAD system due to its availability
internally and geospatial query capabilities, but any of the servers mentioned previously could
also be used provided they could also supply the required metadata, geospatial query capability,
and a link to the image exploitation framework. In the case of IMAD we developed a bridge to
the JAVA Advanced Imaging (JAI) exploitation framework. Again other exploitation
environments could be employed. More recently we have developed a link to a Flashpix image
server for image data while using IMAD for metadata management.

For a client application an Open source JAVA GIS tool, Openmap [BBN, 2000] was adapted for
use. This enabled us to develop the image mosaic and coverage functionality by developing
layers to plug into a GIS display application.

Supporting multiple display clients and image server implementations will be an area for future
research and development.

5.1 RAPTORImage

The initial step in delivering processing capability to IMAD sourced imagery involves the
wrapping of the IMAD IDM JavaBean as a JAI tiled image source. With this design the existing
IMAD dissemination management objects are used to deliver data to a JAI image source. The
object wrapper handles conversion of IMAD image data to JAI tiles to support processing
pipelines. Once available as a JAI image object JAI processing can be applied to imagery and
then displayed using standard JAI display code.

To add a new image to the JAI framework that provides tiles on demand from IMAD required
the development of a subclass (named RAPTORImage) of the JAI PlanarImage. The
RAPTORImage constructor sets up the connection with the IMAD IDM using the IMAD
ImageClientBean and initialises JAI parameters. Inputs to the constructor are the ImageID,
Library Address, image width, image height and the desired zoom level, most of which would
typically be sourced from a query on IMAD. To provide better compatibility with the GIAS and
GIXS standards a valid input to the constructor should be the image id only as specified in these
standards. Currently this would require changes to the IMAD IDM to supply image metadata or
use of both the IMAD IQM and IDM in the constructor. As an image constructor is not focused
on querying for imagery the use of the IQM would be inappropriate. This will be addressed in
the next release of the IMAD prototype.

The other key method that must be implemented is the getTile() method that returns requested
image tiles. In RAPTORImage this is implemented with the aid of the IMAD Receiver object
that handles data transmission. Caching of tiles is provided within JAI to improve the
performance by avoiding uncompressing the data for a tile many times. Further caching is
implemented within this subclass to avoid retransmitting data from IMAD in cases where the JAI
cache is flushed. The tile size of the RAPTORImage object is fixed at the tile size encoded for
the image on the server side (usually 256x256 or some power of 2). The getTile() method also
supports downloading multiple tiles simultaneously from the IDM to reduce the startup
connection time to talk to the IMAD IDM when requesting individual tiles. Finally, the class
supports the ability to make asynchronous requests for tiles, which will spawn a thread to
download the additional tile data needed, as well as decoding the available tile data to provide
the image data immediately. This asynchronous method may be called many times while the
image data is being downloaded from the IMAD IDM, and the image will become sharper as the
additional data arrives at the client.

The RAPTORImage class also supports multiple image resolutions delivered from the IMAD
repository. The encoding method being used is a fully progressive multi-resolution wavelet
based compression algorithm. The bitstream for the tile can be used to generate a zoomed-out
representation of the original tile down to a 1x1 tile. Since the constructor allows a desired zoom
level to be selected when the RAPTORImage is instantiated the same encoded image data can be
recycled between different RAPTORImage objects. This allows the client to minimise the data
downloaded when using the same image multiple times, such as having a small overview
window displayed of the entire image, together with the full representation of the image in
another window. The data used to generate the small representation of the image is then used to
render the larger representation, with the additional data required downloaded from the IMAD
repository on demand.

With the aid of the RAPTORImage class imagery can be accessed and processed within JAI
without any requirement for code specific to the underlying repository. Hence the same client
code can be used with imagery sourced from the local file system, a remote JAI image, an IIP
server, or the on-line IMAD repository. Since JAI extensions are available the client applications
can apply JAI image processing operators to imagery without needing to adjust the code for the
imagery source. An example client (RAPTORApplet) has been developed to exercise the
RAPTORImage class. This client can display an image from multiple sources using JAI facilities
and insert processing operations before display. The operation of the RAPTORImage class is
illustrated in figure 1.

JAI C lient
application

JAI
RAPTORIm age

IM AD IDM rx IM AD IDM tx

IIO P + sockets

Figure 1: Client side JAI wrapper

The JAI supports the setting of properties on images that can store image metadata. Since some
exploitation algorithms require image metadata it will be essential to make this available to the
exploitation framework. Again this requires the IDM to support metadata transfer or, as a work
around, use of the IQM in the image constructor.

Providing the client side wrapper allows the processing of imagery using JAI on clients. An
alternative method of providing JAI access is to provide an implementation of the JAI client
server imaging capabilities. In this case the JAI remote image class constructor on the client
accepts a server reference and a reference to an image or a processing sequence that can be
instantiated on the server. To support this mode of operation custom serialisation capabilities
have been implemented within the RAPTORImage class. This supports the instantiation of a
lightweight reference to a RAPTORimage on the client that can then be submitted to a JAI image
server as part of a processing sequence. The actual connection to IMAD occurs on deserialisation
at the JAI image server. This is illustrated in figure 2 and will support the distribution of
processing chains over multiple servers via JAI RMI connections. We intend to use this
capability to investigate parallel processing of separate images on a cluster of JAI server
machines to deliver the required processed imagery.

A side benefit of the serialization was the ability to serialize an IMAD connection to a file. Only
the IMAD connection details are stored with no image data held. Hence a small file may be sent
to another person or program for processing. Then on deserialisation the connection to IMAD is
remade so that the image can be accessed. Currently this reconnects to the same library as the
original connection. In the future this should be developed so that it connects to the nearest
IMAD library that contains the same image data. An example application of this capability is to
email serialized images to create a simple workflow involving large image datasets.

5.2 Display client

The use of the Openmap [BBN, 2000] map display client reduced the client development task to
developing two layers that can be loaded by the Openmap container application. The image
coverage layer sends a request to the server each time the display region is changed by the user.
This request includes the details of the region being viewed and the details on the type of
imagery the user is interested in. The server processes this request and returns a collection of
polygons and positions of the selected image types. The client then adds these polygons to the
Openmap display list to allow Openmap to update the display. The second layer, the image layer
implements the same type of interaction except that instead of polygons being returned to the
client the actual image data at a resolution appropriate to the current zoom is returned. The result
of this is to provide a virtual mosaic of the imagery in the Openmap display.

JAI Client
application

JAI
REM OTEIm age

IM AD

CORBA IIOP
+ sockets

JAVA RM I

JAI Remote
Im age

Im plem entation
(server) JAI processing

RAPTORIm age

RAPTORIm age

Lightw eight Object
serialisation

transfer
Dynam ic IM AD

reconnection on
deserialisation

Figure 2 : Server side JAI wrapper

5.3 Dynamic Server

A dynamic server has been constructed which implements the business logic of the mosaic
application that in this case corresponds to the logic to place imagery as a standard geospatial
layer on a map display. The server has been built as a collection of Enterprise Java Bean (EJB)
components. In this way the EJB server handles the complexities of multiple client connections
allowing us to focus of the specifics of the application. Once the server accepts a client request it
packages and submits a query to the IMAD repository Image Query Manager (IQM). The IMAD
system then returns a list of images matching the query request. In the case of the Image layer,
for each image a RAPTORImage object is generated that uses the IMAD IDM to retrieve image
data but exposes this information as a JAI compatible object. Each RAPTORImage is then
passed through a JAI processing chain to scale the imagery to the correct orientation for overlay
on a map display. Finally the image is converted to a Java2D BufferedImage that is compatible
with the Openmap display application. The resulting images and display positions are then
transferred via RMI to the client for display. Figure 3 illustrates the operation of the image layer
within Openmap. The coverage layer server side logic is identical except that instead of image
data needing to be returned to the client a polygon representing the image coverage is returned.
Figure 4 illustrates the operation of the coverage layer.

To facilitate connection to multiple image servers and to support multiple image types the server
has been designed as multiple enterprise beans. The query bean supports connection to the
IMAD IQM to obtain the image metadata entries for the region of interest. Several image-
processing beans have been built for different image types and to support connection both to the
IMAD IDM and a Flashpix server.

5.4 Performance Optimisations

Since the operation of this application involved requests to backend services in response to
display events at the client it was necessary to reduce the requests on the backend services to a
minimum to deliver acceptable interactive performance. So in addition to the basic logic
described in the previous section we have developed a number of optimisations to the server to
improve its interactive performance.

The first area of optimisation was in relation to the transfer of imagery data to the dynamic
server. As described in the RAPTORImage section this class included the caching of image data
to avoid requesting the same image data from the IMAD system multiple times.

Figure 3 : Image mosaic layer

Figure 4 : Image Coverage Layer

In applications (such as this) where multiple images are to be requested from a collection as a
result of user interaction it is possible that the same image will be requested multiple times. If the
same RAPTORImage is instantiated multiple times this will result in multiple connections to
IMAD and the benefit of the RAPTORImage cache will be wasted. Since IMAD imagery is
assumed to be read-only, multiple connections for the same image are unnecessary and
inefficient. The RAPTORHash class implements a HashMap collection of RAPTORImage
objects with keys based on identifiers that uniquely identify an image to IMAD. If this class is
used to manage instantiation of image objects then only one object will be requested for each
IMAD image requested. This class is used in this dynamic mosaic server application to improve
the performance of the IMAD IDM interaction and in effect delivers the functionality of a multi-
image cache. In addition, since the same image data is capable of producing images at different
zoom levels, the RAPTORHash object uses this knowledge by storing the data for a single image
once, within a cache object in RAPTORImage. If the image is requested at different zoom levels
it will automatically and transparently reuse the compressed image object and use it for the new
RAPTORImage object. The RAPTORImage objects are multi-thread safe, so they can both
access their respective image data concurrently, and even add to it concurrently while still
preventing redundant image data downloads.

Currently the main bottleneck in this application is the image processing to perform the
coordinate transformation from the image spatial reference to the map spatial reference
coordinates. In the simplest case this is a scale and zoom factor and more generally an affine
transformation is required. To improve the performance of the application we are investigating
two ways in exploiting clusters of workstation as part of the server processing. Firstly by
exploiting the remote imaging capabilities of JAI it will be possible to perform processing of
images on multiple JAI processing servers. In this case the EJB server would allocate images to a
cluster of JAI processing server using some scheduling algorithm. The second approach that is

currently implemented is to employ a commercial image server that can perform the necessary
scaling to eliminate the requirement for JAI processing. Since this server uses a URL based
interface we can deploy images across multiple instances of these servers to employ a cluster of
workstations. The current architecture of the system is shown in figure 5.

Enterprise Java Bean (EJB) Server/
Container

Raptor EJB's (default and
specific)

OPENMAP Client
GSS Layer

Image coverages
Layer

Image mosaic
Layer

RAPTOR processing
framework

JAI processing
(coordinate

transformation)

JAI RAPTORImage
class wrapper

IMAD IDM
JavaBean RX

RAPTORHash
multi image cache

GSS RepositoryOGC Simple Features
CORBA API

Java T3 or RMI

IMAD Repository

IMAD IQM

IMAD IDM

CORBA IDM API
+ sockets

Controller / Query EJB

IMAD IQM
Bean

CORBA IQM API

Raptor EJB's
(Flashpix Image

Server)

FlashPix Server (COTS)
IIP

URL Image access

Format conversion

Figure 5 : Current system design

6 Discussion

In this paper we have described an application that employs backend CORBA services together
with JAVA technologies to deliver a dynamic virtual image mosaic display application to the
user. Employing an EJB server to deliver this capability enables the use of a lightweight client
application or applet, and facilitates generation of scalable applications. An interface between the
IMAD repository and the JAI processing environment has been developed to enable standard JAI
processing functions rather than coding directly to the IMAD API’s.

It has been possible to connect our application server to multiple backend image repositories to
take advantage of commercial developments in this area. In the future it will be possible to
employ other front-end applications that can accept images for display on a map background. For
example use of ESRI ArcView or Arc/Info 8 is a possible commercial display client for future
investigation.

The provision of JAVABean client proxy components by the developers of the backend image
repository simplified the development of applications that employed these repositories. This is a
useful design pattern for other backend service providers and enabled use of specialised CORBA
services without developing CORBA specific code.

The requirement to visualize the image information in a different manner than it was stored
generated significant requirements for computational resources. Possible ways to address this are
clusters of image servers, clusters of image processing servers, and/or client side applications
with more processing capabilities.

7 Bibliography

[BBN, 2000] BBN OpenMap JavaBean 2000, http://openmap.bbn.com.

[DIG, 2000] The Digital Imaging Group, http://digitalimaging.com.

[GIAS, 1998] Geospatial and Imagery Access (GIAS) Specification 1998, US National Imagery
and Mapping Agency, http://www.nima.mil/aig/

[GIXS, 1998] Geospatial and Imagery exploitation (GIXS) Specification 1998, US National
Imagery and Mapping Agency, http://www.nima.mil/aig/

[Grigg, et al, 1999] Grigg, M.; Whitbread, P.; Irving, C.; Lui, A.; and Jana, Component Based
Architecture for a Distributed Library System, accepted for Distributed Multimedia Systems
Conference 99, Aizu, Japan, July 1999.

[Harwick, 1998] Hawick, K. and Coddington, P. Interfacing to Distributed Active Data
Archives, DHPC Tech. Rep. DHPC-043, 1998, Adelaide Uni., to appear in Int. J. on Future
Generation Computer Systems.

[IUE, 2000] Amerinex Applied Imaging IUE web site, 2000,
http://www.aai.com/AAI/IUE/IUE.html .

[JAI, 2000] Sun JAI web site, 2000, http://java.sun.com/products/java-
media/jai/index.html.

[LizardTech, 2000] LizardTech Website, 2000, http://www.lizardtech.com/ .

[Siegel, 1998] Siegel, J OMG Overview: CORBA and the OMA in Enterprise
Computing, Communications of the ACM, Vol. 41, No. 10, pp. 37-43, Oct. 1998.

