

Modeling Skill Growth and Decay in Edge Organizations: Near-Optimizing Knowledge & Power Flows (Phase Two)

Doug MacKinnon

Advised by: Dr. Ray Levitt and Dr. Mark Nissen

http://crgp.stanford.edu

A CARCINIZAD IM

CCRTS Paper: C-152

Acknowledgements: OASD-NII/CCRP and Center for Edge Power

Agenda

- Motivation
 - Research Questions
- Phase I Review
 - Inventory theory: Knowledge as a perishable good
- Phase II Efforts
 - Conceptual models: Skill acquisition and decay
- Phase I and II Integration
 - Empirical validation
- Extended agent-based computational model
 - POW-ER experiments
- C2 Application
- Phase III: Next Steps
- Theoretical Contributions

Motivation

Edge Organization definition

- No headquarters to rely upon
- Requires: shared awareness / self synchronization
- Developing and maintaining adequate levels of critical skills is especially crucial for Edge Organizations
 - High levels of strategic & operational knowledge needed at nodes
 - Enables "agility" in an uncertain environment
 - Understanding knowledge growth & decay in Edge organizations critical for optimizing performance

Research Questions

- Phase I:
 - How can inventory theory help to inform our understanding of knowledge flows in Edge Organizations?
- Phase II:
 - How can individual skill acquisition and decay be computationally modeled, calibrated, and validated?
 - How is the performance of Edge project organizations affected by the aggregation of individual participants' skill growth and decay?

Phase I: Inventory Theory Analysis and Insights

 For a supply chain of <u>perishable</u> goods, managers gain insights considering

Economic Order Quantity (EOQ = Q*)

- Reorder point
- Make vs. Buy decisions
- Inventory policies
 - Just-in-Time
 - Just-in-Case

Phase II: Conceptual Model Individual Skill Acquisition and Decay

- Extensions to POW-ER computational modeling
- Develop fine-grained agent knowledge metric (k/K)
- Provide for dynamic, continuous knowledge over time
- Develop framework to account for agent knowledge
 - Inflows (OJT, formal training, mentoring)
 - Outflows (decay, interference, obsolescence, personnel turnover)

Phase I and II Integration New conceptual model

Phase II: Theoretical Point of Departure Skill Context (Dar-El et al., 1995)

- Different skill types seem to have different learning curves
 - Ranging from highly cognitive to highly motor skills

Modeling High Cog to High Motor

Empirical Validation of Learning Rates

Dar-El Learning Curves *Plotted Against* Observed Individual & Group Learning Rates

Empirical Validation of Learning Rates

Computational Model

Dynamic Skill Acquisition and Decay

Organizational Level POW-ER Experiments

- Consider the effects on skills and task duration of:
 - Employee training
 - Maintaining knowledge level too high
 - Minimum knowledge level adequate for project

Results from POW-ER Experiments

- Edge employee training
 - Baseline with no training 45 day project duration
 - Consider impact on project duration of providing training that takes different lengths of time to raise skills from:
 - Low to medium
 - Low to high
 - Graph shows tradeoff of:
 - Production time lost to training vs.
 - Production time gained by increase in production rate with higher skill after training

Results from POW-ER Experiments

- Edge employee training
 - Baseline with no training 45 day project duration
 - Consider impact on project duration of providing training that takes different lengths of time to raise skills from:
 - Low to medium
 - Low to high
 - Graph shows tradeoff of:
 - Production time lost to training vs.
 - Production time gained by increase in production rate with higher skill after training

C2 Application

- Knowledge as perishable inventory provides framework
- Example: Crew training (deployment preparation)
 - Consider inventory model with learning curves
 - Knowledge interventions
 - Inflows and outflows
 - Lead time consideration
 - Safety stock
 - Frequency and magnitude of "reordering" increases to maintain proficiency
 - Example: ASW vs. Damage Control training

Phase III: Next Steps

- Compare empirical findings to extant cognitive psychology literature
- Leverage results to develop and validate a computational model
 - To predict project lengths for a single project
 - Based on agent growth and decay of skills and interactions between agents (e.g., mentoring)
- Develop MatLab_{tm} model
 - To predict knowledge inventories in a project team
 - Given knowledge growth and decay interventions
 - Based on supply chain theory for perishable goods
- Make predictions about organizational knowledge inventories
 - In a set of Just-In-Time/Case scenarios
 - Compare predictions from MatLab_{tm} model to simulation model

Theoretical Contributions

- Phase I
 - New knowledge concerning how inventory theory can inform knowledge flows in Edge organizations
- Phase II
 - Extend the capability of computational modeling to reflect optimally contingent knowledge flow in Edge and other organizations
 - Provide preliminary computational model to predict how Edge organizations and projects are effected by the sum of individual participants' skill growth and decay
- Phase III
 - Produce "engineering" knowledge management solutions in organizations via a Knowledge Chain Management approach

Modeling Skill Growth and Decay in Edge Organizations: Near-Optimizing Knowledge & Power Flows (Phase Two)

Doug MacKinnon

Advised by: Dr. Ray Levitt and Dr. Mark Nissen

http://crgp.stanford.edu

A CARCINIZAD IM

CCRTS Paper: C-152

Acknowledgements: OASD-NII/CCRP and Center for Edge Power