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Decision Support Systems and Models for 
Intelligent Mission Management 

Background
•Multi-mission, multi-tasking, optimally 
manned CICs will require greater 
reliance on automation.
•Operators will require resource 
management tools and planning aids to 
meet mission requirements - these must
reduce workload in the planning and 
execution process

GOALS
1. Model individual operator and team 
performance.
2.  Simulate and quantify the effects of 
increasing and decreasing team size 
providing a model of manning and 
automation requirements.  
3. Test the nature of task allocation and 
dynamic task reallocation schemes among 
team members and autonomous agents.
4. Develop methods to dynamically predict 
team performance.
5. Develop displays to depict actual team 
performance dynamically to team leaders 
and methods to recommend changes 
towards optimization.
6. Discover behavioral results of team 
performance awareness with regard to 
team self-monitoring and correction.



Purpose of Modeling

• Predict impact of design on human performance - before 
system is built.

• Compare alternative designs.
• Compare alternative job structures, positions, team 

definitions.
• Predict and compare performance results for design 

reference missions.
• Reduce design risk.
• Identify design changes and corrections before costly 

mistakes made.



Modeling Approaches
1. GOMSL Modeling (Micro):

• Explicitly represents the strategies an individual operator 
and teams of operators may use to perform tasks.

• Quantifies operator performance based on these strategies. 

2. Queueing Modeling (Macro):

• Quantifies large-scale aspects of system performance: 
workload, input, output and work throughput

• Represents dynamic flow of tasks among a team of 
operators.  

• These statistics represent emergent characteristics of a 
system that are not directly modeled by GOMSL. 



•Multimodal Watchstation (MMWS) 
•Land Attack Weapons Systems (LAWCS)

The increased automation of combat weapon 
systems is changing the role of the human
operator from that of controller to supervisor.  

As a supervisor, the operator is responsible for
monitoring and performing multiple tasks.

Task Manager Display Supports multitasking 
activity associated with supervisory control.

Queueing Theory and Supervisory 
Control
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Air Defense Warfare Task Monitoring

Representation of work in terms of tasks servers as a trace -
enables designers to track workload and flow of tasks among team
members.

Posting of Task analogous to customers arriving at a queue for 
service: Model Teams with Queueing Theory and Queueing 
Networks.
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AWC = Air Warfare Coordinator
IQC = Information Quality Control
AIC = Air Intercept Controller



Components of Queueing Model

1. The Input or Arrival Process 

2. The Service Mechanism 

3. The Queueing Policy



Components of Queueing Model

The Input or Arrival Process:

• The arrival of customers to a queue is often unpredictable, so 
arrival is modeled as a random process.

• The arrival process is often assumed to be Poisson in nature 
where arrival rate, λ, is the reciprocal of the mean inter-
arrival time of customers.

• For the Poisson distribution with parameter λ, the probability, 
Pk, that k arrivals occur in the time interval (0,t) is given by:
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Components of Queueing Model
The Service Mechanism:

• Service refers to the number of "servers" and the 
lengths of time the customers hold servers.  

• In our case this is the number of operators and the 
distributions of reaction times it takes operators to 
perform various tasks. 

• Service time is  modeled by a continuous random 
variable, x,  exponentially distributed with parameter μ : 
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Components of Queueing Model
The Service Mechanism:

• Human reaction time to various tasks, and task 
components, are exponentially distributed (see 
Townsend & Ashby, 1984).

• Service time may be modeled and shaped. For example, 
service may be viewed as composed of several serial 
stages each of which is expontentially distributed.

• In this case, an Erlang distribution is used to model 
service time (r represents the number of stages):
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Components of Queueing Model
The Queueing Policy

• Entails the method by which the system selects 
customers for service: 

• First-Come-First-Served (FCFS)
• Last-Come-First-Served (LCFS)
• Priority
• Random.

Queueing Policies for this research: FCFS and Priority



Vital Statistics of a Queueing System
• The Load or Intensity, ρ, to a queueing system is 

defined to be the ratio of the rate of arrivals, λ. to the 
rate of service, μ:

• Little’s Theorem: The average number of customers to 
the system, N, is equal to the product of the rate of flow 
of customers, λ, and the average time spent in the 
system, T:
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• Four  5-member ADW teams were tested on a 2 hour Scenario - Sea of Japan (SOJ).
• Tactical Action Officer, Air Warfare Coordinator, Information Quality Control (2), 

Air Intercept Controller. 
• Operators were assigned Primary and Secondary Tasks.
• All system recommended tasks were presented on a Task Manager (TM) Display.
• All Teams “self-organized” - were “free” to allocate tasks amongst themselves - not 

told how or when to reallocate.
• Only support for allocation was visual - listing of tasks on the TM display.

Air Def. Warfare MMWS Experiments

The results provide a basis for building team models.

Results show a contrast between team performance outcomes.



C2 Team Modeling Problem
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AWC = Air Warfare Coordinator
IQC = Information Quality Control
AIC = Air Intercept Controller

Air-Defense Warfare Team
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Work Products

Problem: The rate at which tasks arrive on the 
Task Manager display varies - there is a “Rush 
Hour” Effect - But Rush Hour comes and goes.  



C2 Team Modeling Problem
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Potential for correlations
to arise.

PROBLEM: Correlations between arrivals 
when tasks are passed between operators. 
Model has to account for these correlations.

Queueing and GOMSL Models

AWC = Air Warfare Coordinator
IQC = Information Quality Control
AIC = Air Intercept Controller



Real-World Issues Affecting Model Accuracy

Arrival Process:
This arrival process creates a challenge for queueing theory 
predictions since, tasks “back-up” during periods of high 
task flow, but then are completed as the flow of tasks 
subsides. 

Varying Workload:
The C2 mission impact for performance during time critical 
events must be addressed within the context of varying 
periods of high and low workload.

Varying Team Demands:
During periods of low workload the system may be over-
staffed, but during periods of high workload the system runs 
the risk of being under-staffed.  



Approach: MMPP Models

These are “Doubly Stochastic” Processes:

Two Task Arrival Rates (which are stochastic):

“Rush Hour” & “Non-Rush Hour”.

But how long Rush Hour and Non-Rush Hour 
lasts also varies and is itself stochastic - hence 
this combination of variable processes is called 
doubly stochastic.

The Markov-Modulated Poisson Process (MMPP) captures the ebb and 
flow of the task arrivals and their impact on the performance of a 
queueing system. 



In this Table we present the results of comparing the predictions for an M/M/1
queue to that of a matlab simulation of the Information Quality Control 1 operator (IQC1)
in our queueing network.  As can be seen, the predictions are rather poor.  This is because
in addition to tasks presented on the TM display for the IQC1, he is also
passed tasks to do from the AWC.

4.1521== insideoutside λλ
0.151=μ
3.131=V

Predicted Queueing 0.420 31.976 16.976
Observed IQC1 0.455 34.464 19.430
% Error 8.41 7.78 14.45

Addressing the Correlation Problem

Using a simplistic M/M/1 modeling approach prediction error is high…

Automation delivered tasks to the IQC1 and the AWC also manually delivered tasks.

N
(average 

# of 
tasks)

T
(average lifetime)

W
(average lifetime)

(Arrival Time Distribution/Service Time Distribution/# of servers)



4.1521== insideoutside λλ
0.151=μ
3.131=V

Predicted Queueing 0.455 34.478 19.478
Observed IQC1 0.455 34.464 19.430
% Error 0.03 0.04 0.25

Table 9: MMPP/M/1 Queueing model predictions compared to observed IQC1 correlated
arrival simulation.

Addressing the Correlation Problem

Using The Markov-Modulated Poisson Process (MMPP) % error
Is substantially reduced…

N
(average 

# of 
tasks)

T
(average lifetime)

W
(average lifetime)



To review: Our previous model handled the first 33 minutes of the 
Sea of Japan Scenario and incorporated several features:

1. The Service Time function was generalized to an 6 stage 
Erlangian.

2. The server took “Vacations” when there were no tasks on the 
Task Manager Display.

3. The Tasks were prioritized: high and low.

Addressing the Rush Hour Effect…

From M/ER/1 to MMPP/ER/1 Model…

M/ER/1 Model Results
λ1 = 1/332.52

λ2 = 1/48.66

μ1 = 1/16.72

μ2 = 1/16.79

V = 1/17.73

N1
Mean 

number 
of Class 
1 tasks

N2
Mean 

number 
of Class 
2 tasks

N
Mean 

number 
of tasks 

in 
system

T1
Mean 

total time 
for Class 
1 tasks in 

system

T2
Mean 

total time 
for Class 
2 tasks in 

system

T
Mean 

total time 
for a task 
in system

W1
Mean 

waiting 
time for 
Class 1 
tasks in 
system

W2
Mean 

waiting 
time for 
Class 2 
tasks in 
system

W
Mean 

waiting 
time for a 

task in 
system

Predicted 0.096 0.867 0.964 32.077 42.198 40.906 15.362 25.406 24.124

Observed 0.098 0.787 0.884 32.467 39.602 38.651 15.752 22.496 21.616

% Error 1.22 9.28 8.23 1.22 6.15 5.51 2.54 11.45 10.39



Needed to extend model to entire 1 hour and 45 minute scenario:

Several obstacles first had to be overcome:

1) The data capture didn’t specify start and end times of many tasks.
• use estimates of task times derived with GOMSL models and 
• viewed hours of time stamped video tapes of the scenario to accurately capture 

begin and end times.

2) The change in task arrival rate had to be captured.
• implement a Change Point Analysis and an entirely different algorithm found 

in the literature (Meier-Hellerstern).

Both of these Algorithms have their flaws; they give comparable results 
but not the same answer.

The question: C2 task flow varies but is it best represented with a 2-stage MMPP?

MMPP/M/1 Model and the Rush Hour Effect



MMPP/M/1 Model and the Rush Hour Effect

Change point analysis based on the inter-arrival time between AWC 
tasks for the entire scenario.  Asterisks represent the running average.

Task Inter-arrival times

Lower workload
(longer inter-arrivals)

Higher workload
(shorter inter-arrivals)



Reducing Prediction Error

Erlangian 2-stage service minimizes second moment 
error - model predictions compared to AWC data for the 
entire scenario.  



Reducing Prediction Error

MMPP/Er/1: 2-state MMPP queueing model predictions 
(Fischer and Meier-Hellstern, 1992) compared to AWC 
data for the entire scenario.  

Type Mean Waiting 
Time of Tasks 

in System

Mean Number 
of Tasks in 

System

Mean Total 
Time of Task 
in System

Predict 43.75 1.553 61.250

Observe 39.708 1.443 57.256

Error 4.042 0.110 3.993

% Error 9.239 7.104 6.520

1/λtot: 39.434
1/μ:   17.500
ρ:      0.444

1/λ1: 59.215
1/λ2: 17.015

1/r1: 1677.767
1/r2: 425.3667



Resolving MMPP/M/1 Model Limitations

Issues:
• Need to incorporate generalized service distribution (Done).

• Need to add vacationing server. 

• Need to add Prioritization.

We found a discrepancy between our calculated predictions and 
another algorithm we recently found and implemented from the 
literature (Fischer and Meier-Hellstern) 

The two methods agree only over certain values of the parameters: λ1, 
λ2, r1, r2, μ -

This has to be resolved… (FY06 effort)



Conclusions

Queueing Statistics characterize operator and 
system performance.  Allows for 
summarization and quantification of system 
performance.
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