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Problem Formulation
In a dynamic, complex threat
environment, agile responses from 
Command and Control are needed ―
especially for cross-scale interaction
Biologically inspired methods based 
on individual behavior to population 
response dynamics will be explored 
for coupling scales
Sensor Enterprise Proof-of-Concept:
– The Sensor Enterprise Scales
– Air Operation Center (AOC) Scales
– Develop agent-based models to 

investigate biologically inspired 
methods for coupling / exploitation

Map threats in the Sensor Enterprise 
to optimal scale coupling method for 
agile response capability
Extension to other domains (disaster 
response, distributed operations)
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Scales in the Air Operations Center

Multiple scales in AOC
– The Asset Scale (TCT Scale 1)

– The Unit Scale (ATO Scale 2)

The Asset scale includes:
– National Assets 

– Combat Air Forces - CAF 
(e.g. F-15, AWACS, etc.)

– Mobility Air Forces – MAF
(e.g. KC-10, KC-135, etc.)

The Unit scale includes the 
controlling organizations 
The ATO and TCT have 
distinct cycle times
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Technical Idea - Example:
Bacterial “Milky Sea”
Distributed cell-to-cell 

communication or quorum 
sensing, and coordinated 

light production (1)
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1) Haddock, S. and Case, J. 2006. University of California at Santa Barbara.
2) Camilli and Bassler.  2006. Science 311:1113-1116.
3) Ward et al. 2001. IMA Journal of Mathematics Applied in Medicine and Biology 18:263-292.
4) Miller et al. 2005. Proceedings of the National Academy of Sciences 102(40):14181-14184.

(2)
(3)
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Mathematical Description
of Quorum Sensing 

and Extension to
Netted Sensors

1) Ward et al. 2001. IMA Journal of Mathematics Applied in Medicine and Biology 18:263-292.
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1. Population Model: Differential Equations (Deterministic)

2. Extended to Sensor Mote Field (3):
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3. Probability of Sensor Detection (Pd)

4. Quorum Sensing Concentration or 
Shared Information

State Changes:

α - QS Parameter

β - Forgetting Rate

Application to Acoustic Sensor Mote Field

MITRE
Motelab
Testbed
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Hall and Ilinas. 1997. An Introduction to multisensor data fusion. Proceedings of the IEEE 85(1):6-23.
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Situational Assessment
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JDL Data Fusion Level 1

JDL Data Fusion Level 3

Joint Directors of Laboratories
(JDL)

Data Fusion Working Group

Relationship to JDL Fusion Levels

Biologically inspired methods can be applied to all fusion levels
Proof-of-Concept: Application to the mote sensor field (fusion level 1)
Research: Application to the Sensor Enterprise (fusion level 3) 
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Technical Proof-of-Concept
Bacterial quorum sensing molecule
(QSM) algorithm

– Based on the non-linear dynamics 
observed at the population scale

– Calculate the QSM level or information
sharing level at each acoustic node

– Neighboring nodes make use of this
QSM level to calculate their level

Can be applied to all JDL levels / 
Moving Target Indicator Exploitation

– Proof-of-Concept: Mote field scale
– Future Work: Sensor Enterprise scale
– Measure performance with standard engineering tools
– Validation with specific test cases / applications

Agent-Based Modeling (ABM)
– The threat value for different parts of the environment 

can be determined (uncoordinated collaboration)
– The QSM can be viewed as a token of information 

being passed around (coordinated collaboration)
– Map threats to optimal coupling / exploitation method 

Detect Threats in Mote Field
MITRE Motelab Testbed
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Scenario for Force Protection and Border Security

Agent-Based Modeling Scenario
for Border Security
– Protect ground bases (blue squares)
– JSTARS/space radar detects 

moving target on the ground and
assigns a “threat value” to the area
where detected

– A UAV responds to this “threat value”
and changes its field of view, obtaining
video of the target—the “threat value”
is further increased

– In response to the high “threat value,” AWACS attempts to provide radio 
frequency emitter data for the target (Electrical Support Measures, ESM) 

– In response to the high “threat value,” the aggregated (A) motes field 
provides increased power for the acoustic sensors, which can distinguish 
small targets from large targets

Probabilistic models with appropriate structure for each asset

Uncoordinated Collaboration
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Sensor Networks, Air Operations Center (AOC), 
Netcentric Enabled Command and Control (NECC)
Disaster Response (e.g. DHS)
– Simulation environment to experiment with “marking” and “reading” the 

environment
– Facilitate single scale “communication” (e.g. first responders)
– Facilitate cross-scale “communication” (e.g. local and state/federal 

representatives)

1) The Federal Response to Hurricane Katrina Lessons Learned.  February 2006.

(1)

Transition Opportunities

Four Quorum
Sensing-like
Molecules?

Uncoordinated Collaboration
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“Big challenges for future computing
systems have elegant analogies and 
solutions in biology, such as the 
development and evolution of complex
systems, resilience and fault tolerance,
and adaptation and learning.”
Towards 2020 Science
“These different strategies of change
are not independent but operate at 
different time scales and either at the
individual or population level.  We 
propose and interdisciplinary exploration 
of adaptation, learning, self-organization, 
evolution, and other emergent functionalities of living systems for the 
design of new computing models, algorithms, and software programming 
paradigms.” ERCIM News: Emergent Computing
“Integrating artificial life simulation with synthetic biology” a session at the 
International Conference on the Simulation and Synthesis of Living Systems 
conference, better known as Artificial Life X.  ALIFE X, June 3-7, 2006

Emmott, S.  Towards 2020 Science.  2006.  Microsoft Corporation.
Plexousakis, D.  2006.  Bits, Atoms and Genes Beyond the Horizon.  ERCIM News: Emergent Computing 64.
Mateus Rocha, L. et al. (Eds).  2006.  Artificial Life X. The MIT Press.

State-of-the-Art: Biologically Inspired Methods
Signal Processing / Speech 
Recognition
Evolutionary Computation 
(e.g. search algorithms)

– Genetic Programming 
(e.g. evolving code)

– Genetic Algorithms  
(e.g. mutation for variation)

– Evolutionary Programming 
(e.g. evolving code with mutation)

Neural Networks 
(e.g. estimation / pattern recognition)
SWARM Intelligence (e.g. robustness)
Cross scale-interaction or coupling
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Promising Biological Strategies
Stem Cell Differentiation
T-Cell Pathogen Recognition and Reaction (1)
Cell Pattern Formation (2)
Cell Division
Reaction/Diffusion Behavior (skin patterns)
Apoptosis or programmed cell suicide (3, 4)

•Stem Cells muscle
•Immune system response (1)
•Bacterial nitrogen fixation
•Bacterial virulence (5)
•Biofilm production (6)

•Pulsed response to a steady 
input (e.g. bacterial enzyme 
production, 7)
•Chemical concentration 
gradients cause cell 
differentiation (2)

Digital (on/off, threshold) Analog (proportional, amplified)

1) Parham. 2006.  Nature 441:215-216. 2) Basu et al.  2005.  Nature 434:1130-1134.
3) You et al.  2004.  Nature 428:868-871. 4) Sterritt and Henchey.  2005.  FAABS 2004 262-270. 
5) Anguige et al. 2004.  Mathematical Biosciences 192:39-83. 
6) Chopp et al. 2002.  Journal of Industrial Microbiology & Biotechnology 29:339-346. 
7) Basu et al.  2004. Proceedings of the National Academy of Sciences 101(17):6355-6360;  
Weiss.  2006.  Synthetic Biology: From Bacteria to Stem Cells.  MITRE Technology Program Speaker Series.
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Corporate Thrust on Enterprise System Engineering
Corporate Thrust on Biotechnology / Biosecurity
Agile functionality for conventional & asymmetric threat (3)

1) Vabo and Nottestad.  1997.  Fisheries Oceanography 6(3): 155-171.
2) Charles Maxwell Underwater Video Services. 2002. Sardine run. Permission for non-profit use of movie granted.
3) Cabana, K. A., et al. 2006. Agile Functionality for Decision Superiority. MITRE Product No. MP05B0000043.

Strategic Relevance

(1) (2)

Uncoordinated Collaboration
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Map threats or disaster-related 
challenges to optimal scale 
coupling / exploitation method
– Uncoordinated Collaboration

(e.g. biologically inspired)
– Coordinated Collaboration

(e.g. passing tokens)
– Hybrid Approach

Uncoordinated
Coordinated / Peer-to-Peer
Hierarchical

Technique will be beneficial for many multiple scale Enterprise 
challenges (e.g. disaster response, distributed operations, and data 
sharing)
Searchable Web interface for biological strategies applied to 
Command and Control challenges

Impacts 
http://sepo1.mitre.org:8080/bstrategies

Distributed
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1) Ward et al. 2001. IMA Journal of Mathematics Applied in Medicine and Biology 18:263-292.
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